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A deterministic global optimization algorithm is introduced for locating global mInlmUm 
potential energy molecular conformations. The proposed branch and bound type algorithm 
attains finite €-convergence to the global minimum through the successive refinement of 
converging lower and upper bounds on the solution. These bounds are obtained through a novel 
convex lowering bounding of the total potential function and the subsequent solution of a series 
of nonlinear convex optimization problems. The minimization of the total potential energy 
function is performed on an independent set of internal coordinates involving only dihedral 
angles. A number of example problems illustrate the proposed approach. 

I. INTRODUCTION 

The search for the global minimum potential energy 
conformation of a molecule faces the existence of a pleth­
ora of minima in the multi variable potential energy hyper­
space making it as fascinating a subject as it is utterly 
complex. Wille I has shown, that the complexity of deter­
mining the global minimum energy of a system of atoms 
interacting via simple two-body forces belongs to the class 
NP, which implies that there is no known algorithm that 
can solve this simplified problem in nonexponential time.2 

Although the basic building blocks of molecules, the 
atoms, remain virtually unchanged in different compounds, 
the versatility of the ways that they can be combined and 
reconfigure the resulting atom chains results in numerous 
different conformations for a given molecule. One of these 
conformations, the most stable one, is of particular impor­
tance because it dictates most of the properties of the mol­
ecule. Experimental evidence3.4 shows that in the great ma­
jority of cases the most stable conformation corresponds to 
the one involving the global minimum potential energy. 
This enables molecular conformation identification based 
solely on the energetics of the interactions between the 
atoms composing the molecule. 

Molecular mechanics calculations employ an empiri­
cally derived set of potential energy contributions for ap­
proximating these atomic interactions. This set of potential 
energy contributions, called the force field, contains adjust­
able parameters that are selected in a such a way as to 
provide the best possible agreement with experimental 
data. The main assumption introduced in molecular me­
chanics is that every parameter is associated with a specific 
interaction rather than a specific molecule. These parame­
ters can be bond lengths; covalent bond angles; bond 
stretching, bending, or rotating constants; nonbonded 
atom interaction constants, etc. Thus whenever a specific 
interaction is present, the same value for the parameter can 
be used even if this interaction occurs in different mole­
cules.5 Note that experimental results provide sufficient ev­
idence that it is a reasonable assumption in most cases. 
Many different models have been proposed for approximat­
ing the force field, and some of the most popular ones are 

ECEPP,6-8 MM2,9 ECEPP/2,1O CHARMM,11 AMBER, 12 
GROMOS87,13 MM3,14 and ECEPP/3. 15 

A very large number of methods have been proposed 
for finding the most stable conformation of a molecule 
through the identification of the global minimum point of 
the potential energy surface. Most methods attempt to lo­
cate this point by tracing paths on the potential energy 
surface conjecturing that some of them will converge to the 
global minimum point. Molecular dynamics (MD) meth­
ods trace the time evolution or trajectory of a molecule, 
described by the principles of Newtonian mechanics, by 
integrating the equations of motion. The necessity of tak­
ing small step sizes limits the ability of molecular mechan­
ics to simulate long trajectories. Despite the above caveat, 
people have utilized this method for obtaining conforma­
tional possibilities for small and moderately sized, as well 
as macromolecular systems. I 6-27 In Monte Carlo (MC) 
simulations the dynamic behavior of a molecule is exam­
ined by performing random perturbations in the positions 
of the atoms. A trial configuration is accepted if it results in 
reduction of the total potential energy. Otherwise, it is 
accepted with a probability set by typically the Metropolis 
algorithm.28 Although the Monte Carlo method has been 
primarily used for the simulation of liquids, variations of 
this method in conjunction with other methods (e.g., mo­
lecular dynamics, energy minimization, electrostatics, 
adaptive importance sampling) have been used to study 
conformations of small molecules and constrained motions 
in proteins.29-39 

Simulated annealing (SA), introduced by Kirkpatrick 
et al.,4O is a stochastic nonequilibrium procedure designed 
to cope with large energy barriers, based on an analogy to 
the process by which a many-body system is brought to a 
low energy state by annealing. A number of researchers 
have recently used simulated annealing to locate good mo­
lecular conformations.41-43 A similar approach with simu­
lated annealing is the one based on stochastic conforma­
tional searches on a number of candidate conformations. 
These initial conformations are either selected indepen­
dently, without sharing ofinformation,45-5o or alternatively 
the history of the optimization process is utilized in the 
selection of the next candidate conformation.51 

J. Chern. Phys. 100 (2). 15 January 1994 0021-9606/94/100(2)/1247/15/$6.00 © 1994 American Institute of Physics 1247 
Downloaded 19 Aug 2011 to 130.203.217.149. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



1248 C. D. Maranas and C. A. Floudas: Global optimization for structure determination 

Relaxation of dimensionality (RD) methods are 
mainly motivated by the fact that the number of local min­
ima of the potential energy function are greatly reduced by 
relaxing the requirement of maintaining the molecule in 
the three-dimensional space and allowing it to span a 
higher than a three dimensional space. By doing so indi­
vidual potential energy terms can be independently driven 
to their respective minima since the additional dimensions 
absorb some or even all overlapping constraints. The heart 
of the problem, however, is how to project the molecule 
back to the three-dimensional space in such a way that the 
increase in potential energy is minimum. This is accom­
plished either by the use of the Caley-Menger determi­
nants,52,53 or by energy embedding. 54-58 

Distance geometry methods attempt to satisfy external 
constraints (e.g., maintain covalently bonded atoms at 
their equilibrium bond length separation; keep nonbonded 
atoms from getting closer than the sum of their van der 
Waals radii; satisfy supplied upper and lower bounds on 
interatomic distances), rather than directly minimizing the 
potential energy of the resulting configuration. They have 
been applied to small as well as larger molecular sys­
tems.59-63 In spite of the simplicity and elegance of distance 
geometry methods, the indirectly performed minimization 
of the total potential energy is not always adequate. A 
technique which is conceptually related to the distance ge­
ometry methods but avoids working on the atomic coordi­
nate space is the ellipsoid algorithm.64,65 The advantage of 
this method is that the dimensionality of the problem is 
defined by the number of independent dihedral angles 
whereas in distance geometry the dimensionality is deter­
mined by the Cartesian coordinates of all atoms. 

Gradient type methods, in connection with other ap­
proaches, have been extensively used for locating minimum 
energy conformations of molecules.66,67 It must be noted, 
however, that since the total potential energy function is in 
general nonconvex gradient type methods can guarantee 
convergence to a local minimum at best. By recognizing 
that bond lengths and bond angles do not deviate consid­
erably from their eqUilibrium values in molecules, internal 
coordinate systematic search methods attempt to generate 
molecular conformations by systematically varying each of 
the dihedral angles in a molecule by some small increment, 
while keeping the bond lengths and bond angles fixed. Grid 
search methods utilizing sufficiently small increments,68,69 
in conjunction with tree searching algorithms,70,71 and fil­
tering algorithms72,73 have been applied to a number of 
conformational problems. 

Finally, a host of diverse approaches including "build 
up" methods,14-77 the random incremental pulse search 
(RIPS) method,78-80 optimization of electrostatics 
(SCEF),81 neural networks,82,83 genetic algorithms,84 dy­
namic programming,85 pattern recognition importance 
sampling minimization (PRISM),86-88 the diffusion equa­
tion method (DEM),89-91 sequence homology meth­
ods,92,93 the probabilistic quasiquantal (QQ) method,94,95 
and the self-consistent multitorsional field (SCMTF) 
method96 have been proposed to predict the structure of 
macromolecules. 

Despite the plethora of the currently available methods 
and the intriguing ways that they propose to circumvent 
the existence of myriads of local minima in the potential 
energy hypersurface, little progress has been made towards 
proving convergence to the global minimum. The key lim­
itation shared by all the aforementioned methods is that 
unless there is a single potential well, the obtained mini­
mum energy conformation depends heavily on the supplied 
initial conformation. This is why in practice many trial 
geometries serve as initial points for the employed optimi­
zation method. These geometries are usually chosen from 
Dreiding models, or other similar considerations and thus 
there is no guarantee that important conformations are not 
overlooked. Therefore, the obtained minimum energy con­
formations are limited by which initial configurations 
seemed appropriate to the researcher.97 The need for a 
method that can guarantee convergence to the global min­
imum potential energy conformation motivated our initial 
effort to introduce such a method for microclusters,98,99 
and small molecules lOO interacting with relatively simple 
force fields and apply it to a number of molecular confor­
mational problems in this work. 

11. PROBLEM DEFINITION AND ANALYSIS 

The main focus of this work is to introduce a system­
atic procedure for locating the most stable conformation of 
a given molecule in the three-dimensional space based 
solely on the energetics of the interactions between the 
atoms that compose the molecule. The simplifications em­
ployed herein start with the well established conjecture in 
molecular mechanics that the most stable conformation of 
the molecule is the one involving the global minimum po­
tential energy. Tractable expressions for this potential en­
ergy function are estimated based on the Born­
Oppenheimer approximation. Because the most stable 
conformations of nonpolar molecules are sought in this 
work, only pairwise, additive, two-body interaction terms 
are considered. Furthermore, since covalent bond lengths 
and angles do not deform significantly from their equilib­
rium values without substantial increase in the potential 
energy of the molecule, they are assumed to remain fixed at 
their equilibrium values, which is a fairly good approxima­
tion in most cases. 

Under the aforementioned simplifications the expres­
sion for the total potential energy Vof a molecule involves 
only the sum of a number of pairwise potential interaction 
terms. Each pairwise potential term is a function of only 
the Euclidean distances rij between the interacting atoms i 
and j which are directly related to the Cartesian coordi­
nates of the atoms forming the molecule. Therefore, V can 
be fully represented in the coordinate space Xi' Yi' Zi of the 
atomic coordinates. 

Note, however, that a number of equality constraints 
must be included in the formulation to reflect the fact that 
all covalent bond lengths and covalent bond angles are 
assumed to be fixed at their equilibrium values. After de­
fining f!iJ to be the set of bonded atoms and ff f!iJ the set of 
nonbonded atoms, V can be expressed in the Cartesian 
atomic coordinate space as follows: 
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V= I v(rij), 
i<j 

where 
ijeA'gj 

Vijk such that ij,jkEf!lJ, 

and 

XI =YI =ZI =Y2=z2=z3=O, 

where Vis the total potential energy of the molecule; v(rij) 
is the pairwise potential expression; rij is the Euclidean 
distance between nonbonded atom i with atom j; r?j, ff/jk 
are the fixed covalent bond lengths and angles, respec­
tively; and Xi' Yi' Zi are the atomic Cartesian coordinates. 
Note that in the summation i < j so that we avoid double­
counting pair interactions and the interaction of an atom 
with itself. Furthermore, by imposing XI =YI =ZI =Y2=Z2 
=Z3=O we eliminate the translational and rotational de­
grees of freedom of the molecule. 

The use of Cartesian coordinates in local optimization 
techniques greatly facilitates the calculation of the total 
potential energy V. However, by employing Cartesian co­
ordinates we introduce a number of complex, highly non­
linear equality constraints, one for each I/j' ff/jI(.I which are 
very difficult to handle in the context of a deterministic 
global optimization algorithm. On the other hand, the set 
of independent internal coordinates reduces to a set of in­
dependent torsion angles because the covalent bond 
lengths and angles are assumed to be constant. Therefore, 
it suffices to select one torsion angle per rotational degree 

y 

x 

z 

FIG. 1. Coordinate set of atomic chain. 

subject to 

of freedom. In polycyclic molecules, however, it may be­
come more involved to define a set of independent internal 
coordinates because the bond and torsion angles are cor­
related. In principle, the independent set of torsion angles 
is smaller than the set of atomic coordinates. This is a 
considerable advantage for global optimization algorithms 
where the number of variables is typically the bottleneck of 
the computational effort. Therefore, in this work indepen­
dent internal coordinates rather than Cartesian coordinates 
are employed. The total potential energy can then be writ­
ten in the set of independent internal coordinates as fol­
lows: 

V= I v[rij(tk)], 
i<j 

ijeff!IJ 

where tk is the set of independent internal coordinates, 
k= 1, ... ,K. Note that the above formulation does not in­
volve any equality constraints; however, the functionality 
between rij and the set of independent internal variables 
(independent torsion angles) needs to be established. 

Although it is quite straightforward to express all ri/s 
in the Cartesian coordinate set, unfortunately this is not 
the case when rij must be expressed as a function of an 
independent set of internal coordinates. In doing so it is 
first necessary to establish a connecting path, formed by a 
sequence of covalent bonds, between every atom i and 
atom j. For all pairs of atoms (i,j) in a molecule there is 
always an acyclic chain of atoms, connected by covalent 
bonds, which links atom i with atom j, because the con­
nectivity of atoms in a molecule always defines a undi­
rected connected graph. 101 This introduces a natural way of 
partitioning the set of nonbonded r;/s according to the 
minimum number of atoms participating in an acyclic 
chain connecting atom i with atom j. The aforementioned 
partitioning of r;/s can be realized with the definition of 
the following sets: 

f!lj = { (i,j ): i,j bonded atoms} 
fff!lJ ={(i,j): i,jnonbonded atoms} 

f!lj 2 = { (i,j): i < j, and (i,j) E f!lj } 

f!ljm={(il>i2, ... ,im): i l <im, and 
(il ,i2) E f!lJ , ... , (im-loim) E f!lj, 
where (i" i2, ... ,im )acyc1ic chain}. 
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Note that ffIJ is the set of pairs of atoms which are 
connected with covalent bonds and vY ffIJ is the set of pairs 
of atoms which are not. Also, fflJ 2, ... ,fflJ m

, correspond to 
directed sets of chains of covalently bonded atoms involv­
ing two, three, and m atoms, respectively. 

If only a single atom (2) is between atoms (I) and (3) 
such that (1,2,3) E ffIJ 3, then it is well known that, 

where 8123 is the angle formed by covalent bonds (1-2) 
and (2-3). However, when more than one atom is required 
to connect atoms i and j the derivation of rij is much more 
involved (see Fig. I). The coordinates of the mth atom in 
an m-atom acyclic chain, composed by atoms connected 
sequentially with covalent bonds, in the coordinate system 
that the first three atoms define are given by!02 

-cos(8m) -sin(8m) 0 

Bm= 
sin ( 8m)cos(<Pm) -cos(8m)cos(<Pm) -sin(<Pm) 

sin(8m)sin(<pm) -cos(8m)sin(<pm) cos(<Pm) 

0 0 0 

following the simplified notation, 

<Pm-3,m-2,m-l,m--<Pm' 

Based on the above analysis, explicit expressions for 
the Cartesian coordinates x m' Ym, zm of the mth atom in a 
m-atom chain can be obtained as functions of the bond 
lengths, covalent bond angles, and torsion angles. Since 
Xl=Yl=ZI=O, the squared Euclidean distance rim is, 

rim=x~+Im+z!.· 
After expanding the squared terms, the expression for rim 
becomes the sum of a very large number of terms involving 
the product of bond lengths with sines and/or cosines of 
covalent bond lengths and/or dihedral (torsion) angles. 
Simplified explicit expressions for rim' m=2, ... ,6 as func­
tions of <Pijkl 

rim = rim ( <Pijkf,ij kl E fflJ4) 

are obtained via symbolic computations and are given in 
Appendix A of Ref. 100. Note that, although in this paper 
explicit expressions of the Euclidean distances as functions 
of dihedral angles are utilized this is not a requirement of 
the proposed global optimization algorithm. In fact, work 
currently under way have shown to us that it is possible to 
couple the local optimization algorithm with a procedure 
designed to efficiently evaluate all nonbonded atoms Eu­
clidean distances for a given set of values for the dihedral 
angles. This negates the need of having explicit expressions 

where Bz, B3"'" and Bm are 4X4 transformation matrices 

-1 0 0 -r12 

o 1 0 0 

o -1 o 
o 0 0 1 

-cos(8123) -Sin(8123 ) 0 -r23 COS(8123 ) 

sin ( 8123) -cos(8123 ) 0 r23 sin ( 8123 ) 
B3= 

0 0 1 0 

0 0 0 

and Bm is 

-rm cos(8m) 

rm sin(8m) cos (<Pm) 

rm sin(8m)sin(<pm) 

1 

for the Euclidean distances as functions of dihedral angles 
which can potentially become the bottleneck of our ap­
proach for larger molecules. 

Note, however, that not all dihedral angles are inde­
pendent. In fact, for acyclic molecules, a set of independent 
dihedral angles can be defined involving one independent 
dihedral angle per rotational degree of freedom. For exam­
ple, propanelike molecules require only three dihedral an­
gles in order to fully specify all other dihedral angles and 
therefore the molecular conformation. In general, for each 
dihedral angle <Pijkl of an acyclic molecule an independent 
dihedral angle tk can be found such as, 

<Pijkl= tk+CtJijkl, 

where CtJijkl counts how many degrees <Pijkl is lagging or is 
ahead of t k' This means that all nonbonded distances rij' 
and consequently the expression for the total potential en­
ergy V can be expressed as a function of only these inde­
pendent dihedral angles, defined one for each rotational 
degree of freedom 

m 

where 
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and V(i,j,k,I)E~4, 3k, CtJijkl such that ¢ijkl=tk+CtJijkl' 
Where m is the number of atoms in the longest chain con­
necting two interacting atoms; ril,i

j 
is the expression de­

rived earlier for the Euclidean distance between the two 
end atoms i l and ij ; and V(ril'ij) is the pairwise potential 
interaction function. Note that j starts from (j=4) be­
cause there must be at least two atoms between the inter­
acting atoms before considering their contribution to the 
total potential energy of the molecule. 91 

This implies that the problem of minimizing the total 
potential energy of an acyclic molecule can be formulated 
as an unconstrained optimization problem in the space of 
independent dihedral angles. The expression, however, for 
the total potential energy function is nonconvex therefore 
existing optimization algorithms cannot guarantee conver­
gence to the global minimum. To overcome this problem, a 
deterministic branch and bound type global optimization 
algorithm is proposed which locates the global minimum 
solution by constructing converging lower and upper 
bounds. These bounds are successively refined by itera­
tively partitioning the initial feasible region into many 
subregions. Upper bounds to the global minimum can be 
obtained by simply calculating the value of V at some 
point. Lower bounds, however, are more difficult to derive. 
One way is to underestimate the original nonconvex total 
potential energy function with a convex function whose 
single global minimum can be routinely found. This global 
minimum can then serve as a lower bound on the global 
minimum solution of the total potential energy function. In 
the next section, such a convex lower bounding function is 
proposed and its properties are analyzed. 

III. CONVEX LOWER BOUNDING OF V 

A convex lower bounding function ~ of V can be 
defined by augmenting V using the same principles that 
have been proposed in Refs. 98 and 99 

K 

!£'= V+a L (tf-tk)(tf-tk) 
k=1 

where 

a > max{ max 0, (-!Ai)}. 
k 

tf<.tk<.tf 

Note that tf, tf correspond to the lower and upper bounds 
on tk which are typically set to tf=o and tf =21T. Also, a 
is a nonnegative parameter which must be greater or equal 
to the negative one half of the minimum eigenvalue of V 
over tf<h<tf. This parameter a can be estimated through 
the solution of an optimization problem, or with the use of 
the concept of the measure of a matrix. lOO The effect of 
adding the term, 

K 

a L (tf-tk) (tf -tk) 
k=1 

to V is to make !£' convex by overpowering the noncon­
vexity characteristics of V with the addition of the term 2a 
to all of its eigenvalues, 

).:{ =Ai +2a. 

Here At, Ai are the kth eigenvalues of~, V, respectively. 
This function ~ involves a number of very important 
properties which enable us to construct a global optimiza­
tion algorithm for finding the global minimum of V in the 
space defined by the independent dihedral angles tk' These 
properties, whose proof is given in Ref. 100, are illustrated 
in the following. 

Property 1: ~ is always a valid underestimator of V 
inside the box constraints. 

Vtk E [tLtf) , ~Ctk)< VCtk)' 

Property 2: !£' matches Vat all comer points. 

Vtk such that tk=tf or tk=tf, !£'(tk)=VCtk)' 

Property 3: ~ is convex in [tf ,tf]. 
Property 4: The maximum separation between ~ and 

V is bounded and proportional to a and to the square of the 
diagonal of the current box constraints 

K 
1 ~ U L 2 max (V-!£') =-4 a £.. (tk -tk ) . 

L u k=1 
tk <.tk<.tk 

Property 5: The underestimators constructed over su­
persets of the current set are always less tight than the 
underestimator constructed over the current box con­
straints for every point within the current box constraints. 
Therefore, the values of different definitions of ~ at any 
point, if ~ is constructed over a tighter box of constraints 
each time, define a nondecreasing sequence. Vtk 

E [tf! ,tfl], V [tf2 ,tr] such that [tfl ,tfl] ~ [tf2 ,tr], 

~(tktat,tf1 ,tfl» ..? (tk,a2,tf2 ,tf'Z) , after imposing 
a 2>al in the selection process for aI, a 2, where 

m:x [-!Ai Uk)]} 
tfl <.tk<.tfl 

and 

Furthermore, in Appendix C of Ref. 100 it is shown 
that function ~ corresponds to a relaxed dual bound of 
the original function V. 103

-
101 In the next section, based on 

the aforementioned properties, a branch and bound type 
global optimization algorithm is discussed. 

IV. GLOBAL OPTIMIZATION ALGORITHM 

Based on the properties introduced in the previous sec­
tion a deterministic branch and bound type global optimi­
zation algorithm is proposed for locating the global mini­
mum potential energy V* by constructing converging 
lower and upper bounds on V*. A lower bound on V*, 
denoted as VL, within some box constraints is derived by 
invoking Properties (1) and (3). Based on these properties 
~ is a convex lower bounding function of V. Therefore, its 
single global minimum within some box constraints is a 
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valid lower bound VL on the global minimum solution V* 
and can be guaranteed to be found with available local 
optimization algorithms. An upper bound on V*, denoted 
as VU, is then simply the value of Vat the global minimum 
point of .!L'. 

From Property (4) we know that the gap between these 
upper and lower bounds V U - VL is at most, 

1 K 
(VU_VL)<;;-a 2: (tf-tf)2. 

4 k=1 

The next step, after establishing an upper and a lower 
bound on the global minimum, is to refine them by using 
Property (5). This property implies that the value of .!L' at 
every point, and therefore at its global minimum, is in­
creased by restricting the box constraints within which it 
has been defined. Tighter box constraints can be realized 
by partitioning the rectangle that the initial box 'constraints 
define into a number of smaller rectangles. One way of 
partitioning is to successively divide the current rectangle 
in two subrectangles by halving on the middle point of the 
longest side of the initial rectangle (bisection). At each 
iteration the lower bound of V* is simply the minimum 
over all the minima of .!L' in every subrectangle composing 
the initial rectangle. Therefore, a straightforward (bound 
improving) way of tightening the lower bound VL is to 
halve at each iteration, only the subrectangle responsible 
for the infenum of the minima of .!L' over all subrectangles, 
according to the rules discussed earlier. This procedure 
generates a nondecreasing sequence for the lower bound V L 

of V*. Furthermore, we construct a non increasing se­
quence for the upper bound VU by selecting it to be the 
infenum over all the previously recorded upper bounds. 
Clearly, if the global minimum of.!L' in any subrectangle is 
greater than the current upper bound VU we can ignore 
this subrectangle because the global minimum of V cannot 
be situated inside it (fathoming step). 

Property (4) answers the question of how small these 
subrectangles must become before the upper and lower 
bounds of V inside these subrectangles are within E. If l) is 
the diagonal of the subrectangle, 

K 

l)= 2: (tf -tf)2 
k=1 

and E is the convergence tolerance, from Property (4) we 
have the following condition for convergence: 

1 K 1 
n~ - a 2: (tf -tf)2=- al)2 ;, V U - VL 

4 k=1 4 

which means that if the diagonal l) of a subrectangle is, 

l)<~ 
then E convergence to the global minimum of V has been 
achieved. It is interesting to note that the required for 
convergence value of l) is proportional to the square root of 
E. Therefore, if for example E is set to be 0.0001, l) suffices 
to be proportional to 0.01. Note also, that l) is inversely 
proportional to the squared root of the parameter a reflect-

ing the fact that the smaller the value of a is, the faster the 
convergence rate becomes. Proof of E convergence to the 
global minimum of the proposed global optimization algo­
rithm is given in Ref. 100. The basic steps of the proposed 
global optimization algorithm are summarized in the fol­
lowing section. 

v. STEPS OF THE GLOBAL OPTIMIZATION 
ALGORITHM 

Step 1: Initialization. A convergence tolerance E is se­
lected and the iteration counter Iter is set to one. Appro­
priate global bounds 4'BD, t~BD on tk are chosen and local 
bounds tf,Iter, tf,Iter for the first iteration are set to be equal 
to the global ones. Lower and upper bounds on the global 
minimum 0-BD, VUBD are initialized and an initial current 
point ~lter is selected. 

Step 2: Update of upper bound VUBD• V is calculated at 
the current point vc,Iter and the upper bound VUBD is up­
dated as follows: 

VUBD = min [ VUBD, V(~Iter)]. 

Step 3: Partitioning of current rectangle. The current 
rectangle [tf,Iter ,tf,ItJ , k= 1, ... ,K is partitioned into the 
following two rectangles (r= 1,2): 

tL,Iter 
I 

t
L,Iter 
iI'er 

tL,Iter 
K 

( t L,lter + tU,lter) 
ilter ilter 

2 

tL,Iter 
I 

( t L,lter + tU,Iter) 
ilter ilter 

2 

tL,Iter 
K 

t
U,Iter 
ilter , 

where lIter corresponds to the variable with the scaled long­
est side in the initial rectangle, 

( tU,lter _ tL,Iter) 
riter k k 
r =arg max (UBD DO) . 

k tk -fk-

Step 4: Solution of convex problems in two subrectan­
gles. Update the parameter a and solve the following con­
vex nonlinear optimization problem in both subrectangles 
(r= 1, 2) by using a nonlinear solver: 

X (tf,Iter_ tk ). 

If a solution L~lter is less than the current upper bound, 

Lr,lter/ VUBD 
sol ... 

then it is stored along with the value of the variable tk at 
the solution point ~~~[. 

Step 5: Update iteration counter Iter and lower bound 
0-BD

• The iteration counter is increased by one, 

Iter --Iter + 1 
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and the lower bound vLBD is updated to the minimum 
solution over the stored ones from previous iterations. Fur­
thermore, the selected solution is erased from the stored set 

vLBD = L~lter' 

where 

L r' .Iter' - nun' L r•l r 1 2 I 1 Iter 1 sol - sol' =" = , ... , -. 
r.l 

Step 6: Update current point t~Iter and Bounds tf·lter , 

tf·lter on tk • The current point is selected to be the solution 
point of the previously found minimum solution in Step 5, 

..c.lter .r' .Iter' k 1 K 
'k =rk,sol' = , ... , 

and the current rectangle becomes the subrectangle con­
taining the previously found solution, 

[tt lter ,tf·lter] = 

[tf.rter ,tf·lter] = 

tL •lter' 
I 

t U•lter' 
1 

£olter' 
(L.lter' U.Iter' ) 
t [Iter' + t [Iter' 

t ilter ' 
2 

tf?lter' t U•Iter' 
K 

t£oIter' 
1 

t U•lter' 
I 

( L.Iter' + U,Iter') 
t flter ' t ilter' U.Iter' 

t[lter' 
2 

t£oIter' 
K 

t U•Iter' 
K 

, if r'=I, 

, if r' =2. 

Step 7: Check for convergence. IF (VUBD _ vLBD) > €, 

then return to Step 2. Otherwise, € convergence has been 
reached and the global minimum solution, and solution 
point are 

V* +- VU•Iter", 

..lie ..c. Iter" tic +-lk , k=I, ... ,K, 

where 

Iter" =arg{ VU,l = VUBD}, 1= 1, ... ,Iter. 
I 

Proof of € convergence to the global minimum can be 
found in Ref. 100. In the next section, the proposed ap­
proach is applied to a number of molecular conformation 
problems. 

VI. EXAMPLES 

Based on the analysis and the assumptions presented in 
the previous sections, the problem of minimizing the total 
potential energy of a molecule can now be explicitly for­
mulated in the coordinate space of independent dihedral 
( torsion) angles t k 

o 
10(H) 

FIG. 2. Propanal molecule. 

m 

min V= L L. v(ripiJ, 
tk j=4 (i\ ..... ij)efjJJ J 

where 

ri\.ij=ri\,i) tPijkl> (i,j,k,l) E &6 4
], 

V(il, ... ,i)E:?JJ j
, j=4, ... ,m, 

H(8) 

and V (i,j,k,l) E &6 4
, 3k, mijkl such that tPijkl= tk+mijkl 

tf<.tk<.tf, k= 1, ... ,K. 

Note that V is the total potential energy composed by the 
sum of all pairwise potential interactions v(ri iJ which in 

\'J 
turn are functions of only the corresponding interatomic 
distances ri\.i.' These distances are defined over all unique 

J . 
acyclicj-atom chains (il, ... ,i}) belonging to fflJl. Note also 
that j spans from j =4, avoiding constant distance atom 
chains for j = 2, 3, to j = m where m is the longest acyclic 
chain in the molecule. Explicit expressions for the inter­
atomic Euclidean distances ri\.ij for all acyclic atom chains 
[UI, ... ,i}), j=4, ... ,m] in terms of dihedral angles tPijkl> 
(i,j,k,l) E &6 4 are provided in Appendix A of Ref. 100. 
Based on the topology of the molecule an independent set 
of dihedral angles tk, k= I, ... ,K can be selected so as each 
other dihedral angle tPijkl differs by a constant factor mijkl 
from some independent dihedral angle tk' Finally, lower 
and upper bounds tf, tf typically 0 and 21T are provided for 
the independent dihedral angles tk' 

In the following subsections, five example problems 
will be considered. For each individual example problem 
the expression for the selected pairwise potential energy 
function is provided along the necessary parameters. Fur­
thermore, from the set of dihedral angles a set of indepen-

TABLE I. Covalent bond lengths ro in the propanal example. 

Atom-atom 

C=O 
C-C 

C-H(ald) 
C-H 

1.208 
1.509 
1.113 
1.113 
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TABLE II. Covalent bond angles eo in the propanal example. 

Atom-atom-atom 

O=C-H(ald) 
O=C-C 

H(ald)-C-C 
C-C-C 
C-C-H 
H-C-H 

120.00" 
120.00" 
120.00· 
109.500 
109.500 
109.500 

dent dihedral angles is selected and explicit relations be­
tween dependent and independent dihedral angles are 
established. Finally, information on the computational per­
formance of the proposed global optimization algorithm as 
well as of a local optimization algorithm, MINOS 5.3 108 are 
summarized for each individual example. 

A. Propanal 

The first example is the problem of finding the global 
minimum potential energy conformation of the propanal 
molecule (CH3CHzCHO) (see Fig. 2). This molecule in­
volves fifteen chains of four covalently bonded atoms and 
six chains of five covalently bonded atoms. The values of 
the covalent bond lengths and covalent bond angles are 
assumed to be fixed at their equilibrium values and they are 
given in Table I and Table II, respectively.l09 Note also 
that the Buckingham potential function was selected to 
model the nonbonded atom interactions 

Gij 
v(rij) =Ajj exp(Bijrij) +-::0. 

rij 

The values of the interaction parameters A ij , B ij , and Gjj 
are given in Table III. 109 

Clearly, this problem involves two independent inter­
nal coordinates. One possible selection can be the dihedral 
angle tl between the planes defined by O(l)==C(2)-C(3) 
and C(2)-C(3)-H(5), and tz the dihedral angle between 
the planes H(5)-C(3)-C(7) and C(3)-C(7)-H(8). The 
bounds on t l , tz are as follows: 

21T 
O<t l <21T, O<tz<3" . 

All other dihedral angles are, 

cf>O(l)=C(Z)-C(3)-H(5) =t}> 

21T 
cf>0(1)=C(Z)-C(3)-H(6)=tl +3"' 

TABLE III. Data for parameters Au, Bjj , and Cjj in the propanal 
example. 

Atom-atom A (kcal/mol) B (A-I) C (kca1A6/mol) 

H-O 16152.0 -3.85800 -144.970 
H(ald)-C 15628.0 -3.43410 -282.030 

H-C 13 188.0 -3.63370 -169.550 
H(ald)-H 13 630.0 -4.16677 -77.0920 

H-H 13630.0 -4.16677 -77.0920 

FIG. 3. 1,2,3-trichloro-l-fluoro-propane molecule. 

21T 
cf>O(1)=C(Z)-C(3)-C(7)=tl -3" ' 

cf>C(4)-C(2)-C(3)-H(5) = tl +1T, 
1T 

cf>C(4)-C(2)-C(3)-H(6) =tl-3' 

1T 
cf>C( 4 )-C(Z)-C(3 )-C(7) = t 1+ 3 ' 

cf>H(5)-C(3)-C(7)-H(S) =t2' 

21T 
cf>H(5)-C(3)-C(7)-H(9) =t2+3" , 

21T 
cf>H(5)-C(3)-C(7)-H(IO)=t2-3" ' 

21T 
cf>H(6)-C(3)-C(7)-H(S)=t2-3" ' 

cf>H(6)-C(3)-C(7)-H(9) = t2, 

21T 
cf>H(6)-C(3)-C(7)-H(lO)=t2+3" ' 

21T 
cf>C(2)-C(3)-C(7)-H(S) =/2+3"' 

21T 
cf>C(2)-C(3)-C(7)-H(9) = t2 -3" ' 

cf>C(2)-C(3 )-C(7)-H( 10) = t2· 

TABLE IV. Covalent bond lengths ro in the 1,2,3-trichloro-I-fluoro­
propane example. 

Atom-atom ro (A) 

C-C 1.54 
C-H 1.06 
C-Cl 1.77 
C-F 1.39 
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For the given set of data the following solutions have 
been found by repeatedly solving the problem of minimiz­
ing the total potential energy with the local optimization 
solver MINOS 5.3108 using randomly selected starting points. 

t[ =41.1" t2=59.84° -+ V min=0.769 101 kcallmol, 

tl=198.83°, t2=60.l6°-+Vmin=0.769101 kcal/mol, 

t I = 300.00°, t2 = 60.00° -+ V min = O. 830 866 kcal/mol, 

tl =360.00", t2=60.06° -+ V min=0.844 303 kcallmol. 

The proposed global optimization algorithm with a = 5 
and tolerance E= 10-4 converged in all 100 runs to either 
of the two multiple global minimum solutions, 

(41.1 1,59.84°) or (198.83°,60.16°) -+ V* 

=0.769 101 kcal/mol 

in about 400 iterations with an average CPU time of 80 s 
on a HP-730 workstation. For a= 1 convergence to the 
global minimum is attained in all 100 runs in about 110 
iterations requiring only 20 s of CPU time. 

B. 1,2,3-trichloro-1-fluoro-propane 

In the second example the most stable conformation of 
1,2,3-trichloro-l-fluoro-propane (CHCIF-CHCI-CH2CI) 
(see Fig. 3) is sought. This molecule features eighteen dif­
ferent chains of four covalently bonded atoms and nine 
different chains of five covalently bonded atoms. Further­
more, all angles are assumed to be tetrahedral (109.5°), the 
bond lengths are given in Table IV,s and the parameters Ai} 

and Bi} for the Lennard-Jones potential, 

Bi} Aj} 
veri}) =-..rr--:o 

r i} ri} 

which models the nonbonded interactions are given in 
Table 5.5 

The selected pair of independent variables is, 

tl<-¢F( 1)-C(4)-C(S)-CI(6), 

t2 -¢C1(6)-C(S)-C(7)-CI(9), 

and the bounds are [0,21T]. The expressions for the rest of 
the dihedral angles are 

¢F( 1)-C(4)-C(5)-CI(6) =t1, 

21T 
¢F(l)-C(4)-C(S)-C(7) =tl +3' 

21T 
¢F(I)-C(4)-C(S)-H(8)=tl-

3 
' 

21T 
¢C1(2)-C(4)-C(5)-CI(6) =t1-3' 

¢C1(2)-C(4)-C(5)-C(7) = tl> 

21T 
¢C1(2)-C(4)-C(S)-H(8) =tl +3' 

d 
H(3) 

, , , 

H(13) 

FIG. 4. 1,2,3-trichloro-I,4-bifiuoro-butane molecule. 

21T 
¢H(3)-C(4)-C(5)-C1(6) = II +3 ' 

21T 
¢H(3)-C(4)-C(5)-C(7) =tl-

3
, 

¢H(3)-C(4)-C(5)-H(8) =tl> 

¢C1(6)-C(5)-C(7)-CI(9) =t2. 

21T 
¢C1(6)-C(5)-C(7)-C(10) =t2+3' 

21T 
¢C1(6)-C(5)-C(7)-H(1I) =t2-3' 

21T 
¢C(4)-C(S)-C(7)-CI(9) = t2 -3 ' 

¢C( 4 )-C(5 )-C(7)-C( 10) = t2, 

21T 
¢C(4)-C(S)-C(7)-H(1I)=t2+3 ' 

21T 
¢H(8)-C(S)-C(7)-CI(9)=t2+3 • 

21T 
¢H(8)-C(S)-C(7)-C(10) = 12 -3 • 

¢H(8)-C(5)-C(7)-H(1I) =t2• 

For the given set of parameter values and nonbonded 
interaction expressions the following solutions for the min­
imum potential energy problem have been found with the 
local nonlinear solver MINOS 5.3 108 by employing multiple 
inItial points 
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TABLE V. Data for parameters Aij' Bij in the 1,2,3-trichloro-l-fluoro­
propane example. 

Atom-atom A (kcal J... 6/mol) B (10-4 kcal J...12/mol) 

F-Cl 457.6 29.6700 
F-H 79.8 0.9361 
F-C 223.2 10.0700 
H-H 76.0 0.7220 
H-C 127.4 3.7430 
H-Cl 272.8 8.0740 
CI-CI 1562.0 200.5000 
CI-C 759.3 64.6400 

t l=291.50°, 12=188.75° ..... Vmin =-3.526175 kcal/mol 

II =55.97°, 12=67.22° ..... V min= -3.325395 kcal/mol 

11=193.52°, 12=187.88° ..... Vmin=-3.322530 kcal/mol 

tl=291.30°, 12 =282.73° ..... Vmin=-3.242106 kcallmol 

II = 193.65°, 12=282.65° ..... V min= -3.004 820 kcal/mol 

t l=288.39°, 12=66.48° ..... Vmin= -2.836 006 kcal/mol 

II =56.60°, 12= 191.77" ..... V min = -2.816 008 kcallmol 

II = 193.50°, 12 =66.91°-+ V min = -2.702393 kcal/mol 

II =55.91°, 12=282.40°-+ V min= -2.629182 kcallmol 

tl =55.97°, t2 = 67.22°-+ Vmin= -2.325395 kcallmol. 

After applying the presented global optimization algorithm 
with a= 10 and tolerance €= 10-4 the global minimum 
solution, 

t1'=291.50°, tf=188.7SO ..... V*=-3.526175 kcal/mol 

is obtained in all 100 runs in about 200 iterations with an 
average CPU time of 70 s on a HP-730 workstation. After 
halving the value of parameter a to a=5.0 the global min­
imum solution for all 100 runs is still found requiring 
about 110 iterations and 40 s of CPU time. 

c. 1 ,2,3-trichloro-1 ,4-bifluoro-butane 

This third example addresses the problem of finding 
the global minimum total potential energy conformation 
of 1,2,3-trichloro-l,4-bifluoro-butane (CHCIF-CHC1-
CHCI-CH2F), (see Fig. 4). This molecule involves 27 dif­
ferent chains composed of four covalently bonded atoms; 
18 chains of five covalently bonded atoms; and 9 chains of 
six covalently bonded atoms. In this example all covalent 
bond angles are assumed to be tetrahedral (109.5"). The 
equilibrium bond lengths as well as the parameters Aij and 
Bij for the Lennard-Jones potential are listed in Table IV 
and Table V of the previous example. 

Clearly, only three dihedral angles are required to fully 
describe the rotational conformation of the molecule, and 
one possible selection is the following: 

0<tl ..... 4>F(l)-C(4)-C(S)-C1(6)<21T, 

0<t2 ..... 4>Cl(6)-C(5)-C(7)-CI(9) <21T, 

0</3 ..... 4>Cl(9)-C(7)-C( IO)-F( 12) <21T. 

The expressions for all 27 dihedral angles are then, 

4>F( I )-C(4)-C(S)-C1(6) = 110 

21T 
4>F(1 )-C(4)-C(S)-C(7) = II +3 ' 

21T 
4>F(I)-C(4)-C(S)-H(8) = t l - 3 , 

21T 
4>CI(2)-C(4)-C(S)-C1(6) =tl-3 ' 

4>Cl(2)-C(4)-C(5)-C(7) = II' 

21T 
4>Cl(2)-C(4)-C(5)-H(8) = tl +3 ' 

21T 
4>H(3)-C(4)-C(5)-C1(6) =/1 +3' 

21T 
4>H(3)-C(4)-C(S)-C(7) = 11- 3 ' 

4>H(3)-C(4)-C(S)-H(8) =/10 

4>CI(6)-C(S)-C(7)-C1(9) = t2, 

21T 
4>CI(6)-C(S)-C(7)-C(10) =/2+3' 

21T 
4>Cl(6)-C(S)-C(7)-H(11) =/2-3 ' 

21T 
4>C(4)-C(5)-C(7)-C1(9) =/2 - 3 ' 

4>C(4)-C(5)-C(7)-C(10) =/2, 

TABLE VI. Solutions for the 1 ,2,3-trichloro-l ,4-bifluoro-butane 
example. 

II t'i tl 0: kcal/mol 

291.95 180.42 182.86 -5.271002 
291.95 180.49 290.97 -5.159241 
291.94 180.06 64.59 -5.127455 
194.32 179.85 182.85 -4.975758 
291.08 292.43 184.17 -4.944256 
194.33 179.91 290.95 -4.865099 
291.07 292.13 65.12 -4.861028 
289.02 67.06 183.21 -4.841873 
194.30 179.49 64.62 -4.830295 
289.03 67.09 290.93 -4.697346 
289.04 67.06 65.54 -4.691369 
194.30 67.43 183.17 -4.603630 
194.61 292.47 184.16 -4.565333 
194.60 292.17 65.20 -4.485494 
194.60 292.21 291.12 -4.473805 
194.29 67.46 290.93 -4.461059 
194.29 67.44 65.53 -4.452745 
56.17 181.51 182.86 -4.451375 
56.16 181.58 290.87 -4.334131 
55.61 68.03 183.30 -4.296107 
56.18 181.14 64.58 -4.290602 
55.14 292.50 184.16 -4.192450 
55.60 68.02 290.99 -4.160 552 
55.61 67.98 65.47 -4.153306 
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21T 
tPC(4)-C(5)-C(7)-H(1I)=t2+"3 ' 

21T 
tPH(8)-C(5)-C(7)-Cl(9) =t2+3 , 

21T 
tPH(8)-C(S)-C(7)-C( 10) = t2 -"3 ' 

tPH(8)-C(5)-C(7)-H( II) =t2' 

q,C1(9)-C(7)-C( IO)-F( 12) = t3, 

21T 
q,CI(9)-C(7)-C(IO)-H(13) =t3+3' 

21T 
tPC1(9)-C(7)-C(10)-H( 14) = t3 -3 ' 

21T 
q,C(5)-C(7)-C(IO)-F(12) =t3 -3' 

q,C(5)-C(7)-C(IO)-H(13) = t3, 

21T 
q,C(5)-C(7)-C(10)-H(14) =t3 +3' 

21T 
tPH(II)-C(7)-C(IO)-F(12) =t3+3 , 

21T 
q,H(II)-C(7)-C(IO)-H(13)=t3-3 ' 

q,H( II )-C(7)-C( IO)-H( 14) = t3' 

For the current set of data and interaction type the 
local optimization algorithm MINOS 5.3 108 generates a num­
ber of solutions which are summarized in Table VI. It is 
interesting to note that only 8 out of 100 runs resulted in 
generating the global minimum solution. 

However, the proposed global optimization algorithm 
for a=5.0 and E= 10-4 in all 100 runs converged to the 
global minimum, 

t1'=291.95°, /f= 180.42°, 

t1= 182.86°-. V*= -5.271002 kcallmol 

in about 1000 iterations with an average CPU time of 1400 
s on a HP-730 workstation. 

D. 1,3-blfluoro-1-chloro-2-chloromethyl-propane 

The fourth example involves finding the most stable 
molecular conformation of 1,3-bifluoro-l-chloro-2-
chloromethyl-propane [CHFCI-CH( CHCI)-CH2F], (see 
Fig. 5). This molecule involves 27 different chains com­
posed of four covalently bonded atoms; and also 27 chains 
of five covalently bonded atoms. Note again that all cova­
lent bond angles are assumed to be tetrahedral (109.5°), 
and that the equilibrium bond lengths as well as the pa­
rameters Ajj and B jj for the Lennard-Jones potential are 
listed in Table IV and Table V of the second example. 

H(10) 

I o CI(12) 
CI(2) H(8) 

FIG. 5. 1,3-bifiuoro-l-chloro-2-chloromethyl-propane. 

Three dihedral angles are required in this example to 
satisfy all the rotational degrees of freedom of the mole­
cule, and one possible selection is the following: 

O<t l -tPF(1)-C(4)-C(5)-C(6) <21T, 

0<t2 <-q,C(4)-C(S)-C(6)-F(9) <21T, 

0<t3 <- tPC(4)-C(5)-C(7)-C1( 12) <21T. 

Explicit expressions for all 27 dihedral angles as functions 
of the above four are 

q,F(1)-C(4)-C(5)-C(6) = t l , 

21T 
q,F(1)-C(4)-C(5)-C(7) =tl +3' 

TABLE VII. Solutions for the 1,3-biftuoro-l-chloro-2-chloromethyl­
propane. 

If 4 tl 0: kcaI!mol 

293.41 296.58 189.20 -5.308668 
185.82 296.87 291.11 -5.294174 
293.40 183.59 189.20 -5.291917 
185.80 183.61 291.12 -5.291700 
293.41 59.65 189.20 -5.289884 
186.45 60.50 291.11 -5.273069 
291.30 296.59 289.05 -5.271459 
185.94 296.87 189.Q7 -5.255464 
291.28 183.59 289.05 -5.254775 
185.92 183.61 189.07 -5.252985 
291.29 59.65 289.05 -5.252699 
186.55 60.50 189.07 -5.234493 
60.86 59.79 291.93 -5.223234 
60.81 183.47 291.93 -5.220839 
60.42 295.69 291.93 -5.211 549 
60.78 59.79 188.81 -5.198598 
60.74 183.47 188.81 -5.196214 
60.34 295.69 188.81 -5.187023 

185.74 296.87 59.41 -5.173325 
293.77 296.57 59.92 -5.172 821 
185.72 183.61 59.41 -5.170854 
293.77 183.59 59.92 -5.156062 
293.78 59.65 59.92 -5.154038 
186.35 60.50 59.41 -5.152115 
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o/~ t1 ~ 

H(3) [t/t4 
CI(2) ~ , , , C(8) 

o 0 
H(17) H(15) H(14) 

H(16) 

FIG. 6. 1,3-bifiuoro-l-chloro-2,2-bimethyl-propane. 

21T 

cPF(1)-C(4)-C(5)-H(8) =tl-T' 

21T 

cPC1(2)-C(4)-C(5)-C(6)=t l -T' 

cPC1(2)-C(4)-C(5)-C(7) = tl, 

21T 

cPCl(2)-C(4)-C(5)-H(8) = tl +"3' 

21T 

cPH(3)-C(4)-C(5)-C(6)=tl +"3' 

21T 

cPH(3)-C(4)-C(5)-C(7)=tl-T' 

cPH(3)-C(4)-C(5)-H(8) =t" 

cPC(4)-C(5)-C(6)-F(9) = t2, 

21T 

cPC(4)-C(5)-C(6)-H(10)=t2+"3 ' 

21T 

cPC(4)-C(5)-C(6)-H(1I) =t2 -"3 ' 

21T 

cPC(7)-C(5)-C(6)-F(9)=t2-"3 ' 

cPC(7)-C(5)-C(6)-H( 10) = t2, 

21T 

cPC(7)-C(5)-C(6)-H( II) = t2 +T ' 

21T 

cPH(8)-C(5)-C(6)-F(9) =t2+"3' 

21T 

cPH(8)-C(5)-C(6)-H(10)=t2-"3 ' 

cPH(8)-C(5)-C(6)-H( II) = t2, 

cPC(4)-C(5)-C(7)-CI(12) =t3' 

21T 

cPC(4)-C(5)-C(7)-H(13) = t3 +"3 ' 

21T 

cPC(4)-C(5)-C(7)-H(14)=t3-"3 ' 

21T 

cPC(6)-C(5)-C(7)-CI(12) = t3 -T' 

cPC(6)-C(5)-C(7)-H(13) = t3, 

21T 

cPC(6)-C(5)-C(7)-H(14)=t3+T' 

21T 

cPH(8)-C(5)-C(7)-CI(12)=t3+T' 

21T 

cPH(8)-C(5)-C(7)-H( 13) = t3 -T ' 

cPH(8)-C(5)-C(7)-H( 14) = t3' 

For this example, the local optimization algorithm 
MINOS 5.3108 generates a plethora of very closely spaced 
solutions the best of which are tabulated in Table VII. It is 
interesting to note that only 39 out of 1000 runs resulted in 
generating the global minimum solution. This is less than 
4% success rate. 

However, the proposed global optimization algorithm 
for a= 1 and E= 10-3 in all runs converged to the global 
minimum, 

tt=293.41°, 4'=296.58°, 

t1= 189.20°-+ V*= -5.308668 kcallmol 

in about 100 iterations with an average CPU time of 300 s 
on a HP-730 workstation. For a=5 again convergence to 
the global minimum is achieved in about 400 iterations 
1200 s of CPU time. 

E. 1,3-bifluoro-1-chloro-2,2-bimethyl-propane 

The fourth example involves finding the most stable 
molecular conformation of 1,3-bifluoro-l-chloro-2,2-
bichloromethyl-propane [CHFCI--C (CH2CI) 2--CH2F] , 
(see Fig. 6). This molecule involves 36 different chains 
composed of four covalently bonded atoms; and 54 chains 
of five covalently bonded atoms. Note again that all cova­
lent bond angles are assumed to be tetrahedral (109.5"), 
and that the equilibrium bond lengths as well as the pa­
rameters AU and Bij for the Lennard-Jones potential are 
listed in Table IV and Table V of the second example. 

Four dihedral angles are required in this example to 
satisfy all the rotational degrees of freedom of the mole­
cule, and one possible selection is the following: 

0<t1 ..... cPF(1)-C(4)-C(5)-C(6)<21T, 

0<t2 -cPC(4)-C(5)-C(6)-F(9) <21T, 

21T 

0<t3-cPC(4)-C(5)-C(7)-H(12) <"3 ' 
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TABLE VIII. Solutions for the 1,3-bifluoro-l-chloro-2,2-bimethyl-
propane. 

Il ~ ~ Il 0= kcal/mol 

299.92 59.59 59.87 60.18 -7.121,635 
299.77 300.59 59.88 60.18 -7.102329 
299.68 179.37 59.88 60.18 -7.037667 

58.75 59.94 60.19 59.95 -6.933911 
181.40 300.45 59.95 59.86 -6.925400 
181.70 60.53 59.95 59.86 -6.922366 
181.34 179.89 59.95 59.86 -6.921 186 
58.85 179.41 60.18 59.95 -6.893233 
58.56 300.23 60.19 59.95 -6.835546 
58.75 59.94 60.19 120.00 -6.104 734 
58.74 59.94 0.00 59.95 -6.093669 

181.35 179.89 59.95 120.00 -6.089325 
181.34 179.89 120.00 59.86 -6.082174 
299.86 360.00 59.87 60.18 -5.880910 
181.68 0.00 59.95 59.86 -5.674856 
58.51 360.00 60.19 • 59.95 -5.645061 

21T 
O<t4-4>C(4)-C(S)-C(8)-H(lS)<] • 

Note that due to symmetry the last two dihedral angles 
suffice to vary only between 0 and 21T/3. Explicit expres­
sions for all 36 dihedral angles as functions of the above 
four are 

4>F( 1)-C(4)-C(5)-C(6) =tl> 

21T 
4>F(l)-C(4)-C(5)-C(7) = tl +]' 

21T 
4>F(l)-C(4)-C(S)-C(8) =tl-]' 

21T 
4>Cl(2)-C(4)-C(5)-C(6) =tl-3 , 

4>Cl(2)-C(4)-C(5)-C(7) =tl> 

21T 
4>C1(2)-C(4)-C(5)-C(8) =tl +3' 

21T 
4>H(3)-C(4)-C(S)-C(6) = tl +3 ' 

21T 
4>H(3)-C(4)-C(S)-C(7) =tl - 3 , 

4>H(3)-C(4)-C(S)-C(8) =tl' 

4>C(4)-C(5)-C(6)-F(9) =t2' 

21T 
4>C(4)-C(5)-C(6)-H(IO) =t2+3 , 

21T 
4>C(4)-C(5)-C(6)-H(lI) =t2- 3 , 

21T 
tPC(7)-C(5)-C(6)-F(9)=t2 -

3 
' 

4>C(7)-C(S)-C(6)-H(IO) =t2' 

21T 
4>C(7)-C(5)-C(6)-H(1l)=t2+] , 

21T 
4>C(8)-C(5)-C(6)-F(9)=t2+] , 

21T 
4>C(8)-C(5)-C(6)-H(lO) =t2 - 3 , 

4>C(8)-C(S)-C(6)-H(1l) =tz, 

t/>C(4)-C(5)-C(7)-H(12) =t3' 

21T 
t/>C(4)-C(5)-C(7)-H(13) =t3 +] , 

21T 
4>C(4)-C(S)-C(7)-H( 14) = t3 -3 ' 

21T 
4>C(6)-C(S)-C(7)-H(12) = t3 -]' 

4>C(6)-C(5)-C(7)-H(13) = t3. 

21T 
4>C(6)-C(5)-C(7)-H(l4)=t3+] • 

21T 
4>C(8)-C(S)-C(7)-H( 12) = t3 +3 ' 

21T 
t/>C(8)-C(5)-C(7)-H( 13) = t3 -] • 

t/>C(8)-C(5)-C(7)-H(l4) =t3. 

4>C(4)-C(5)-C(8)-H(15) =t4• 

21T 
4>C(4)-C(5)-C(8)-H(l6) =t4+3' 

21T 
4>C(4)-C(5)-C(8)-H(l7) =t4 -3' 

21T 
4>C(6)-C(5)-C(8)-H( 15) =14 -3' 

4>C(6)-C(5)-C(8)-H(l6) = t4• 

21T 
4>C(6)-C(5)-C(8)-H(l7) = t4 +3' 

21T 
4>C(7)-C(5)-C(8)-H(l5) =t4 +3' 

21T 
4>C(7)-C(5)-C(8)-H( 16) = t4 -3 · 

t/>C(7)-C(5)-C(8)-H( 17) = t4' 

The solutions generated by MINOS 5.3108 are summa­
rized in Table VIII. It is interesting to note that only 10% 
of the randomly distributed initial points generated paths 
leading to the global minimum solution. 
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However, the proposed global optimization algorithm 
with a = 5 converged to the global minimum solution 

t1'=299.92°, tt=59.59°, /f=59.87°, 

t1' = 60.18° -+ V* = - 7.121 635 kcal/mol 

in all runs requiring about 1000 iterations with an average 
CPU time of 4000 s. 

VII. SUMMARY AND CONCLUSIONS 

In this paper a deterministic branch and bound type 
global optimization algorithm was presented for finding 
the most stable conformations of molecules based solely on 
the energetics of nonbonded interactions. First, explicit re­
lations for the nonbonded atom Euclidean distances as 
function of bond lengths, covalent bond angles, and dihe­
dral (torsion) angles were derived. Then, the problem was 
formulated as an unconstrained nonconvex optimization 
problem on a set of independent dihedral angles. Based on 
an eigenvalue analysis, a convex lower bounding function 
.2' of the total potential energy function V was defined 
involving a number of important properties. These proper­
ties of function .2' coupled with an efficient partitioning 
scheme enabled us to construct a global optimization algo­
rithm guaranteed to always € converge to the global min­
imum conformation through the solution of a series of con­
vex nonlinear optimization problems. Finally, the proposed 
approach was applied successfully to a number of acyclic 
molecular conformation problems, six of which were in­
cluded in this paper. It should be emphasized that the 
proposed global optimization algorithm is applicable to 
other classes of problems (e.g., microclusters). Also, the 
presented analysis can be extended to more complicated 
interaction fields involving complex potential interaction 
terms (e.g., bending, stretching, torsion, bending­
stretching, and out-of-plane distortion). Work in this di­
rection is currently in progress. 

ACKNOWLEDGMENTS 

Financial support from the National Science Founda­
tion under Grants Nos. CBT-8857013 and CTS-9221411 as 
well as Exxon Co., Amoco Chemicals Co., Mobil Co., and 
Tennessee Eastman Co. is gratefully acknowledged. 

lL. T. Wille and J. Vennik, J. Phys. A 18, L419 (1985). 
2 M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide 
to the Theory of NP-Completeness (Freeman, San Francisco, 1979). 

3J. M. Troyer and F. E. Cohen, Simplified Modelsfor Understanding and 
Predicting Protein Structure (VCH, New York, 1991). 

4M. Levitt, Annu. Rev. Biophys. Bioeng. 11, 251 (1982). 
5 A. J. Hopfinger, Conformational Properties of Macromolecules (Aca­
demic, New York, 1973). 

6F. A. Momany, L. M. Carruthers, R. F. McGuire, and H. A. Scheraga, 
J. Phys. Chern. 78, 1595 (1974a). 

7F. A. Mornany, L. M. Carruthers, and H. A. Scheraga, J. Phys. Chern. 
78, 1621 (1974b). 

BF. A. Mornany, R. F. McGuire, A. W. Burgess, and H. A. Scheraga, J. 
Phys. Chern. 79, 2361 (1975). 

9N. L. Allinger, J. Am. Chern. Soc. 99, 8127 (1977). 
lOG. Nernethy, M. S. Pottle, and H. A. Scheraga, J. Phys. Chern. 89, 1883 

(1983). 

11 B. Brooks, R. Bruccoleri, B. Olafson, D. States, S. Swaminathan, and 
M. Karplus, J. Cornput. Chern. 8, 132 (1983). 

12S. Weiner, P. KoJImann, D. Nguyen, and D. Case, J. Cornput. Chern. 7, 
230 (1986). 

13W. F. van Gunsteren and H. J. C. Berendsen, Groningen Molecular 
Simulation (GROMOS) Library Manual (Biornos, Groningen, The 
Netherlands, 1987). 

14N. L. Allinger, Y. H. Yuh, and J.-H. Lii, J. Am. Chern. Soc. 111, 8551 
( 1089). 

15G. Nernethy, K. D. Gibson, K. A. Palmer, C. N. Yoon, G. Paterlini, A. 
Zagari, S. Rumsey, and H. A. Scheraga, J. Phys. Chern. 96, 6472 
(1992). 

16S. W. Fesik, T. J. O'Donnell, R. T. Gampe, and E. T. Olejniczak, J. 
Am. Chern. Soc. 83, 3801 (1986). 

17 A. T. Briinger, G. M. Clore, A. M. Gronenborn, and M. Karplus, Proc. 
Nat!. Acad. Sci. U.S.A. 83, 3801 (1986). 

18S. W. Fesik, G. Bolis, H. L. Sham, and E. T. Olejniczak, Biochemistry 
26, 1851 (1987). 

19H. Kessler, C. Griesinger, J. Lautz, A. Muller, W. F. van Gunsteren, 
and H. J. C. Berendsen, J. Am. Chern. Soc. 110, 3393 (1988). 

20L. Nilsson, G. M. Clore, A. M. Gronenborn, A. T. Briinger, and M. 
Karplus, J. Mol. BioI. 188,455 (1986). 

21R. Elber and M. Karplus, J. Am. Chern. Soc. 112,9161 (1990). 
22C. L. Brooks III, M. Karplus, and B. M. Pettitt, Proteins: A Theoretical 

Perspective of Dynamics, Structure, and Thermodynamics, Adv. Chern . 
Phys. LXXI (Wiley, New York, 1988). 

23J. A. McCammon and M. Karplus, Acc. Chern. Res. 16, 187 (1983). 
24H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, 

and J. R. Haak, J. Chern. Phys. 81, 3684 (1984). 
25E. R. P. Zuiderweg, R. M. Scheek, R. Boelens, W. F. van Gunsteren, 

and R. Kaptein, Biochimie 67, 707 (1985). 
26 J. Lautz, H. Kessler, R. Kaptein, and W. F. van Gunsteren, J. Cornp.­

Aided Mol. Design I, 219 (1987). 
27R. C. van Schaik, W. F. van Gunsteren, and H. J. C. Berendsen, J. 

Cornp.-Aided Mol. Design 6, 97 (1992). 
28N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and 

E. Teller, J. Chern. Phys. 21, 1087 (1953). 
29Z. Li and H. Scheraga, Proc. Natl. Acad. Sci. U.S.A. 84, 6611 (1987). 
3OZ. Li and H. Scheraga, J. Phys. Chern. 92, 2633 (1988). 
31D. R. Ripon and H. A. Scheraga, Biopolyrners 27, 1283 (1988). 
32D. R. Ripoll and H. A. Scheraga, J. Protein Chern. 8, 263 (1989). 
33D. R. Ripon and H. A. Scheraga, Biopolyrners 30, 165 (1990). 
34D. R. Ripon, M. Vasquez, and H. A. Scheraga, Biopolyrners 31, 319 

(1991 ). 
35G. H. Paine and H. A. Scheraga, Biopolyrners 24, 1391 (1985). 
36G. H. Paine and H. A. Scheraga, Biopolyrners 25, 1547 (1986). 
37 G. H. Paine and H. A. Scheraga, Biopolyrners 26, 1125 (1987). 
3BG. Chang, W. C. Guida, and W. C. StilI, J. Am. Chern. Soc. 11, 4379 

(1989). 
39D. M. Jones and J. M. Goodfellow, J. Cornput. Chern. 14, 127 (1993). 
4OS. Kirkpatrick, C. D. Gelatt, Jr., M. P. Vecchi, Science 220, 671 

(1983). 
41S. Wilson and W. Cui, Tetrahedron Lett. 29, 4373 (1988). 
42S. Wilson and W. Cui, Biopolymers 29,225 (1990). 
43R. A. Donnely, Chern. Phys. Lett. 136,274 (1987). 
44R. G. Juarez, L. B. Morales, and F. P. Neri, J. Mol. Struct. 208, 279 

(1990). 
45B. M. Pettitt, T. Matsunaga, F. Al-Obeidi, C. Gehrig, V. J. Hruby, and 

M. Karplus, Biophys. J. 60, 1540 (1991). 
46R. E. Bruccoleri and M. Karplus, Biopolyrners 26, 137 (1987). 
41R. E. Bruccoleri and M. Karplus, Biopolyrners 29, 1847 (1990). 
48M. Saunders, J. Cornput. Chern. 10, 203 (1989). 
49M. Saunders and N. Krause, J. Am. Chern. Soc. 112, 1791 (1990). 
soM. Saunders, J. Cornput. Chern. 12, 645 (1991). 
51 B. Robson and J. Garnier, Introduction to Proteins and Protein Engi­

neering (Elsevier, New York, 1986). 
52E. O. Purisirna and H. A. Scheraga, Proc. Nat!. Acad. Sci. U.S.A. 83, 

2782 (1986). 
53E. o. Purisirna and H. A. Scheraga, J. Mol. BioI. 196, 697 (1987). 
S4G. M. Crippen, J. Cornput. Chern. 3, 471 (1982). 
sSG. M. Crippen, J. Cornput. Chern. 5,548 (1984). 
56G. M. Crippen, J. Phys. Chern. 91, 6341 (1987). 
51 G. M. Crippen and T. F. Havel, Distance Geometry and Molecular 

J. Chem. Phys., Vol. 100, No.2, 15 January 1994 

Downloaded 19 Aug 2011 to 130.203.217.149. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



C. D. Maranas and C. A. Floudas: Global optimization for structure determination 1261 

Conformation, Chernornetrics Research Studies Series (Research Stud­
ies, Wiley, New York, 1988). 

51G. M. Crippen and T. F. Havel, J. Chern. Inf. Comput. Sci. 30, 222 
(1990). 

59G. M. Crippen, Distance Geometry and Conformational Calculations 
(Research Studies, Wiley, New York, 1981). 

60 1. D. Kuntz, Protein Eng. I, 147 (1987). 
61 J. Lautz. H. Kessler, J. M. Blaney, R. M. Scheek, and W. F. van 

Gunsteren, Int. J. Peptide Protein Res. 33, 281 (1989). 
62p. L. Weber, R. Morrison, and D. Hare, J. Mol. BioI. 203, 483 (1988). 
63T. F. Havel, Prog. Biophys. Mol. BioI. 56, 43 (1991). 
MM. Billeter, T. F. Havel, and K. J. Wuthrich, J. Cornput. Chern. 8, 132 

(1987). 
65 M. Billeter, A. E. Howard, I. D. Kuntz, and P. A. Kollman, J. Am. 

Chern. Soc. 110, 8385 (1988). 
66B. van der Graafand J. M. A. Baas, Rev. Trav. Chirn. Pays-Bas 99,327 

(1980). 
67M. Levitt, J. Mol. BioI. 170, 723 (1983). 
61 J. Moult and M. N. G. James, Proteins: Struct., Funct., Genet. I, 146 

(1986). 
69B. C. Wilkes and P. W. Schiller, Biopolyrners 26, 1431 (1987). 
10M. Lipton and W. C. Still, J. Cornput. Chern. 9,343 (1988). 
7IT. Ryhiinen, F. J. Bermejo, J. Santoro, M. Rico, Cornput. Chern. 11,13 

(1987). 
72D. N. J. White and D. H. Kitson, J. Mol. Graphics 4, Il2 (1986). 
73D. P. Dolata, A. R. Leach, K. Prout, J. Cornput.-Aided Mol. Design I, 

73 (1987). 
74K. D. Gibson and H. A. Scheraga, J. Cornput. Chern. 8, 826 (1987). 
75M. Vasquez and H. A. Scheraga, Biopolyrners 24, 1437 (1985). 
76M. Vasquez and H. A. Scheraga, J. Biornol. Stuct. Dyn. 5, 705 (1988a). 
17M. Vasquez and H. A. Scheraga, J. Biornol. Stuct. Dyn. 5, 757 (1988b). 
73D. M. Ferguson and D. J. Raber, J. Am. Chern. Soc. 111,4371 (1989). 
79D. M. Ferguson, W. A. Glauser, and D. J. Raber, J. Cornput. Chern. 10, 

903 (1989). 
8OD. M. Ferguson and D. J. Raber, J. Comput. Chem. 11, 1061 (1990). 
II L. Piela, H. A. Scheraga, Biopolyrners 26, S33 (1987). 
82L. Holley and M. Karplus, Proc. Natl. Acad. Sci. U.S.A. 86, 152 

( 1989). 
83D. Kneller, F. Cohen, and R. Langridge, J. Mol. BioI. 214, 171 (1990). 

84S. Le Grand and K. M. Merz Jr., J. Global Opt. 3, 49 (1993). 
85S. Vajda and C. Delisi, Biopolymers 29, 1755 (1990). 
86M. Lambert and H. Scheraga, J. Comput. Chem. 10, 770 (1989a). 
87M. Lambert and H. Scheraga, J. Comput. Chem. 10, 798 (1989b). 
88M. Lambert and H. Scheraga, J. Cornput. Chern. 10, 817 (l989c). 
89L. Piela, J. Kostrowicki, and H. A. Scheraga, J. Phys. Chem. 93, 3339 

(1989). 
90 J. Kostrowicki, L. Piela, B. J. Cherayil, and H. A. Scheraga, J. Phys. 

Chern. 95, 4113 (1991). 
91J. Kostrowicki and H. A. Scheraga, J. Phys. Chem. 96, 7442 (1992). 
92K. R. Acharya, D. I. Stuart, D. C. Phillips, and H. A. Scheraga, J. 

Protein Chern. 9, 549 (1990). 
93M. J. Dudek and H. A. Scheraga, J. Cornput. Chern. 11, 121 (1990). 
94R. L. Som01jai, J. Phys. Chem. 95, 4141 (1991). 
95M. Sylvain and R. L. Sornorjai, J. Phys. Chern. 95,4147 (1991). 
96K. A. Olszewski, L. Piela, and H. A. Scheraga, J. Phys. Chern. 96, 4672 

(1992). 
97U. Burkert and N. L. Allinger, Molecular Mechanics (American Chem-

ical Society, Washington, D.C., 1982). 
98C. D. Maranas and C. A. Floudas, J. Chem. Phys. 97, 10 (1992). 
99 c. D. Maranas and C. A. Floudas, Ann. Operation Res. 42, 85, (1993). 
IOOC. D. Maranas and C. A. Floudas, J. Global Opt. 4,3 (1994). 
101 T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to 

Algorithms (McGraw-Hill, New York, 1989). 
I02H. B. Thompson, J. Chern. Phys. 47, 3407 (1969). 
I03C. A. Floudas and Y. Yisweswaran, Cornput. Chern. Eng. 14, 1397 

( 1990). 
l04y. Yisweswaran and C. A. Floudas, Comput. Chem. Eng. 14, 1419 

(1990). 
105y. Yisweswaran and C. A. Floudas, Proceedings of Process Systems 

Engineering, PSE '91,1.6.1 (1991). 
I06C. A. Floudas and Y. Yisweswaran, J. Opt. Theory Appl. 78, Iss. 2 

(1993). 
lO7y. Yisweswaran and C. A. Floudas, J. Global Opt. 3, Iss. 4 (1993). 
108B. A. Murtagh and M. A. Saunders, MINOS 5.3 User's Guide (Sys­

tems Optimization Laboratory, Department of Operations Research, 
Stanford University, 1987). 

I09R. Susnow, R. B. Nachbar, C. Schutt, and H. Rabitz, J. Phys. Chem. 
95, 8585 (1991). 

J. Chern. Phys., Vol. 100, No.2, 15 January 1994 
Downloaded 19 Aug 2011 to 130.203.217.149. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions


