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A b s t r a c t .  A global optimization algorithm is proposed for finding the global mlnimtan poten- 
tial energy conformatiolts of small molecules. The minimization of the total potential energy is 
fomnulated on an independent set of internal coordinates involving only torsion (dihedral) angles. 
Analytical expressions for the Euclidean distances between non-bonded atoms, which are required 
for evaluating the individual pairwise potential terms, are obtained as functions of bond lengths, 
covalent bond angles, and torsion angles. A novel procedure for deriving convex lower bounding 
fm~ctions for the total potential energy function is Mso introduced. These underestimating func- 
tions satisfy a nmnber of important theoretical properties. A global optimization algorithm is then 
proposed based on all efficient partitioning strategy which is guaranteed to attain ~-convergence 
to the global minimum potential energy COlffiguration of a molecule through the solution of a 
series of nolflinear convex optimization problems. Moreover, lower and upper bomlds on the total 
finite number of required iterations are also provided. Finally, this global optimization approach 
is illustrated with a number of example problems. 
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1. I n t r o d u c t i o n  

The  s t u d y  of molecu la r  confo rmat ions  is as fasc ina t ing  a sub jec t  as i t  is u t t e r ly  
complex .  A l t h o u g h  the bas ic  bu i ld ing  blocks of  molecules ,  the  a toms ,  r e m a i n  vir- 
t ua l l y  unchanged  in different c o m p o u n d s  the  versa t i l i ty  of  the  ways t ha t  they  can be 
combined  and  reconfigure the  o b t a i n e d  a t o m  chains resul ts  in m a n y  different spa t i a l  
conf igura t ions  for a given molecule .  One of  these conf igurat ions ,  the  mos t  s tab le  
one, is of  p a r t i c u l a r  i m p o r t a n c e  because  i t  d ic ta tes  mos t  of the  p rope r t i e s  of  the  
molecule .  Th i s  p rovides  enough m o t i v a t i o n  to  pred ic t  the  mos t  s tab le  confo rma t ion  
of  a molecule  based  solely on the energet ics  of  the  in te rac t ions  be tween the  a t o m s  
compos ing  the molecule .  Molecular  mechanics  is a widely  used m e t h o d  designed to  
provide  a pr ior i  accura te  r epresen ta t ions  of  s t ruc tures  and  energies for molecules .  
I t  o r ig ina t ed  in 1946 when Hill [13] p roposed  t ha t  van der W a a l s  in te rac t ions  a long 
wi th  s t r e tch ing  and  bend ing  de fo rma t ions  can be used for express ing the  po t en t i a l  
energy of  a molecule .  Dos t rovsky ,  Hughes  and  Ingold  [9, 7] u t i l ized  this  s ame  bas ic  
pr inc ip le  in an effort to u n d e r s t a n d  the  ra tes  a t  which var ious  ha l ides  underwent  
the  S N 2  reac t ion .  However,  i t  was Wes t ehe imer  and  Mayer  [34, 24] who first used 
mo lecu l a r  mechanics  ideas  successfully in exp la in ing  the r a t e  of  r a c e miz a t i on  of 

*AUTHOR TO WHOM ALL CORRESPONDENCE SHOULD BE ADDRESSED. 



136 M A R . A N A S  A N D  F L O U D A S  

some optically active compounds. With the advent of computers during the 1950% 
molecular mechanics became one of the standard methods of structural chemistry. 

The most accurate representation of the potential energy of a molecule is the ab 
initio quantum mechanical approach. Quantum mechanical calculations, however, 
for all but the simplest molecules such as H2 or HCl are not feasible because of 
the large associated computational effort. As a result, tractable potential energy 
expressions had to be derived which adequately captured the energy contributions 
resulting from various types of atom interactions. In doing so, trade-offs between 
maximizing the accuracy of the potential energy expression and at the same time 
minimizing the computational effort to evaluate these functions had to be addressed. 

In quantum mechanics the Born-Oppenheimer approximation is routinely used. 
It states that  the SchrSdinger equation for the molecule can be separated into a part 
describing the motions of the electrons and a part that describes the motion of the 
nuclei; and thus these two sets of motions can be studied independently. This means 
that the potential energy of a molecule in the ground electronic state is a function 
of only the nuclear positions. This defines a potential energy multi-dimensionM 
hypersurface in the coordinate set of the nuclear positions. In molecular mechanics 
this hypersurface is simply called potential energy surface and encompasses the 
effect on the potential energy of all possible conformations that a molecule can 
resume. Any point of this surface corresponds to a different conformation of the 
molecule and local minimum points on this surface are referred to as conformers. 
The systematic identification of the global minimum point on this surface is the 
focus of this work. Experimental evidence [28] shows that in the great majori ty 
of cases this total potential energy global minimum point corresponds to the most 
stable conformation of the molecule. However, there exists examples where this is 
not true due to the interplay of rotational-vibrational motions [25]. 

Molecular mechanics calculations employ an empirically derived set of potential 
energy contributions for approximating the Born-Oppenheimer surface [3]. This 
set of potential energy contributions, called the force field, contains adjustable pa- 
rameters that  are selected in a such a way as to provide the best possible agreement 
with experimental data. The main assumption introduced in molecular mechanics 
is that  every parameter is associated with a specific interaction rather than a spe- 
cific molecule. These parameters can be bond lengths; covalent bond angles; bond 
stretching, bending, or rotating constants; non-bonded atom interaction constants, 
etc. Thus, whenever a specific interaction is present, the same value for the param- 
eter can be used even if this interaction occurs in different molecules [14]. Although 
it is not possible to prove the validity of this assumption, experimental results pro- 
vide sufficient evidence that it is a reasonable assumption in most cases. Molecular 
mechanics force fields include two-body, three-body or even n -body  interaction 
terms. 

v : E + E + E + . . .  

i>j i>j>k i>j>k>l 

It can be seen that the total potential energy V is not simply the sum of all pair 
interactions; it may involve energy terms which depend on the position and prop- 
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erties of three or even more atoms due to the fact that the charges on the particles 
are in general polarized. However, for nonpolar atoms these terms can be neglected 
with little effect on the total potential energy [14]. This means that for nonpolar 
molecules the total potential energy expression is given approximately by, 

V = ~ V ~ j ( B )  + ~--~V~j(NB) 
i > j  i > j  

where B indicates bonded atom interactions and NB nonbonded atom interactions. 
In most conformational calculations the bonded atom interactions are assumed to 
be constant and independent of the actual conformation and thus they can be 
omitted since they do not contribute to the configuration of the molecule. Also, in 
general only pairwise additive terms are significant in conformational calculations 
although higher order terms can become important  under certain conditions. 

The general behavior of two-body potentials is very well studied. The force field 
is repulsive due to coulombic nuclear-nuclear and electron-electron interactions and 
attractive due to electron-nuclear interactions. In practice the pairwise potential 
interactions are usually represented by Lennard-Jones,  Buckingham's, or Kihara's 
classical empirical potential functions: 

1. L e n n a r d - J o n e s  6 - 1 2  P o t e n t i a l  F u n c t i o n  

Bij Aij 
~)ij ~ r l  2 r6 

The attractive term - A i j / r  6 is rigorously derived for a pair of identical spheri- 
cally symmetrical  and chemically saturated molecules, and Bij /r  12 is an approx- 
imation for the repulsive component for which no rigorously derived expression 
exists. 

2. B u c k i n g h a m  P o t e n t i a l  F u n c t i o n  

c~j 
vij = Aij exp (Bijrij) + r~j 

The Buckingham potential function differs from the Lennard-Jones function 
only in the form of the repulsive term. A two-parameter  exponential function 
is used which in principle should be more specific in describing the repulsive 
interaction because of the additional parameter.  

K i h a r a  P o t e n t i a l  F u n c t i o n  

V i j  ---- 4Co r i J / ~  - -  7 - -  r i j / ~  - -  

With the help of the parameters 7, a Kihara's potential introduces an effective 
core and a shape dependence. 

3. 
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Before solving the resulting energy minimization problem it is necessary to decide 
whether or not the energy minimization will be performed on an independent set 
of internal coordinates (all bond lengths, covalent bond angles, and torsion angles) 
or on the Cartesian coordinates. Because it is easier to calculate the internal co- 
ordinates which are needed for evaluating the potential function from Cartesian 
coordinates rather than from an independent set of internal coordinates, most min- 
imization methods use Cartesian coordinates. A number of methods have been 
proposed for finding the most stable conformation of a molecule through the iden- 
tification of the global minimum point of the potential energy surface. All methods 
a t tempt  to locate this point by tracing paths on the potential energy surface con- 
jecturing that some of them will converge to the global minimum point. There 
are two main groups of methods; simulation type methods and gradient methods. 
Simulation type methods, including Monte-Carlo minimization and simulated an- 
nealing share the problem of selecting good strategies for "temperature" reduction 
dependence, optimal step size selection, and efficient random generator algorithms 
for generating the random walk. Gradient type methods are the most widespread 
methods for potential energy minimization of molecules. They can be divided into 
first derivative and second derivative minimization techniques. First derivative 
techniques (steepest descent) [35] follow a path defined by the steepest descent di- 
rection at every point. They perform satisfactorily only if all first derivatives are 
of the same order of magnitude, otherwise scaling problems cause oscillations. It 
has been also reported [2] that torsion angles are often not well minimized with 
these methods. Second derivative techniques, although more complicated, are far 
superior to first order methods. By utilizing second order derivative information 
calculated either analytically [1, 33, 29] or numerically [16], improved convergence 
rates are achieved. 

It is important  to note that  most energy minimization procedures do not locate 
energy minima, but rather stationary points which occur when all first order deriva- 
tives are equal to zero. Therefore such procedures may converge to a saddlepoint or 
even a energy maximum on the potential energy surface rather than to an energy 
minimum. For example, in the case of cyclohexane the boat conformation (C2,) or 
the conformation that  has all six carbon atoms on a plane (D6h) may erroneously 
appear as energy minima. However, the main limitation shared by all the aforemen- 
tioned methods is that  unless there is a single potential well, the obtained minimum 
energy conformation depends heavily on the supplied initial conformation. This is 
not surprising because all currently available methods are local optimization meth- 
ods guaranteed to find a local minimum at best. This is why in practice many trial 
geometries serve as initial points for the employed optimization method. These ge- 
ometries are usually chosen from Dreiding models, or other similar considerations 
and thus there is no guarantee that  important  conformations are not overlooked. 
Therefore, unless a systematic method capable of always converging to the global 
minimum potential energy independent of the initial conformation is employed, the 
obtained minimum energy conformation will be limited by which initial conforma- 
tions seemed appropriate to the researcher [3]. The need for a method that can 
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guarantee convergence to the global minimum potential energy conformation is the 
motivation for this initial effort to introduce such a method for small molecules 
interacting with relatively simple force fields. 

2. P r o b l e m  D i s c u s s i o n  

The problem to be addressed in this work can be stated simply as follows: 

"Given the connectivity of the atoms in a molecule and the force field 
according to which they interact, find the molecular conformation(s) in the 
three-dimensional Euclidean space involving the global minimum total po- 
tential energy" 

The simplifications employed herein are as follows: 

1. The molecular mechanical approximation of the Born-Oppenheimer surface is 
adopted. 

2. Only palrwise, additive, two-body interaction terms are considered. 

3. Covalent bond lengths and angles are assumed to remain at their equilibrium 
values. 

. The expression representing the pairwise non-bonded .atom potential interac- 
tions is assumed to be a function of only the Euclidean distance between the 
interacting atoms. 

Approximation (1) is well established in the study of molecular conformations 
providing tractable expressions for the total potential energy of the molecule. Sim- 
plification (2) is valid for nonpolar molecules whose most stable conformations are 
sought in this work. Assumption (3) is adopted for the sake of convenience and it 
is fairly accurate in most cases because covalent bond lengths and angles do not 
deform significantly from their equilibrium values without substantial increase in 
the potential energy of the molecule. Finally, assumption (4) is made routinely in 
the field of molecular mechanics without significant loss of accuracy. 

Under the aforementioned simplifications the expression for the total potential 
energy V of a molecule involves only the sum of a number of palrwise potential 
interaction terms. Each pairwise potential term is a function of only the Euclidean 
distances rlj between the interacting atoms which are directly related to the Carte- 
sian coordinates xi, yi, zi of the atoms forming the molecule. Therefore, V can be 
fully represented in the coordinate space xi, y~, zi of the atomic coordinates. How- 
ever, a number of equality constraints must be added in the formulation to reflect 
the fact that  all covalent bond lengths and covalent bond angles are assumed to be 
fixed at their equilibrium values. After defining B to be the set of bonded atoms 
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and AfB the set of non-bonded atoms, V can be formulated in the Cartesian atomic 
coordinate space as follows: 

V 

where 

r i j  

subject to 

og k 

= 

i < j  
i j E .t,f ~ 

= r  ~ + ( y i - y j ) 2 + ( z i - z j )  ~, V i j  E AfB 

! 
= ~ / ( x i - x j ) 2 + ( y i - y j ) 2 + ( z i - z j )  2, V i j  E B 

- - + - yj)(y  - + - z j ) ( z j  - z , )  

r o r ~ ~j jk 
V i jk  such that  ij, j k  E 13 

and xl = Yl = Zl = Y2 ---- z 2  ---- z 3  ---- 0 

where V is the total  potential  energy of the molecule; v(rij) is the palrwise potential  
expression; r~j is the Euclidean distance between nonbonded a tom i with a tom j; 
r~ O~ are the fixed covalent bond lengths and angles respectively; and x~, Yi, zi 
are the Cartesian coordinates. Note that  in the summat ion  i < j so that  we 
avoid doublecounting pair interactions and the interaction of an a tom with itself. 
Furthermore,  by imposing xl = Yl -- Zl -- Y2 = z2 = z3 = 0 we eliminate the 
translational and rotational degrees of freedom of the molecule. This means that  
the total  number  of degrees of freedom are: 

F = (3N - 6) - Nbonds -- Nangles 

where N is the total number  of atoms, Nbond~ the total  number  of covalent bonds 
in the molecule, and Nangles the total  number  of independent covalent bond angles. 
Note that  only five out of six covalent bond angles are independent for tetravalent 
atoms. 

As it has been discussed in the introduction, the use of Cartesian coordinates 
in local optimization techniques greatly facilitates the calculation of internal co- 
ordinates. However, by employing Cartesian coordinates we introduce a number  
of complex, highly nonlinear equality constraints, one for each r .~ 0o which do ~3 ~ i j k '  

not allow the application of a global optimization algorithm. On the other hand, 
because the covalent bond lengths and angles are assumed to be constant, the set 
of independent internal coordinates reduces to a set of independent torsion angles. 
One simple possibility is to select one torsion angle per rotational degree of free- 
dom. In polycyclic molecules, however, it may become more involved to define a 
set of independent internal coordinates because the bond and torsion angles are 
correlated. In principle, the independent set of torsion angles is rather small which 
is a considerable advantage for global optimization algorithms where the number  
of variables is typically the bottleneck of the computat ional  effort. Accordingly, in 
this work independent internal coordinates rather than Cartesian coordinates are 
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employed. The total potential energy can then be written in the set of independent 
internal coordinates as follows: 

v = 
i<j  

i jE~fB 

where tk �9 set of independent internal coordinates, k = 1 , . . . ,  K 

Note that  the above formulation does not involve any equality constraints; how- 
ever, the functionality between rij and the set of independent internal variables 
(independent torsion angles) has not been established yet. In the next section, an 
efficient procedure for obtaining explicit expressions for rij as functions of indepen- 
dent internal parameters is introduced. 

3. P r o b l e m  F o r m u l a t i o n  in  I n t e r n a l  C o o r d i n a t e s  

Although it is quite straightforward to derive expressions for the rij 's  in the Carte- 
sian coordinate set, unfortunately this is not the case when rij must be expressed 
as a function of an independent set of internal coordinates. In doing so it is first 
necessary to establish a connecting path, formed by a sequence of covalent bonds, 
between every atom i and atom j. For all pairs of atoms (i~j) in a molecule there is 
always an acyclic chain of atoms, connected by covalent bonds, which links atom 
i with atom j, because the connectivity of atoms in a molecule always defines a 
undirected connected graph [5]. This introduces a natural  way of partit ioning the 
set of nonbonded rij 's  according to the minimum number of atoms participating in 
an acyclic chain connecting atom i with atom j. The aforementioned partitioning 
of rij 's  can be realized with the definition of the following sets: 

B = { ( i , j )  : i,j bonded atoms} 

H B  = { ( i , j )  : i,j nonbonded atoms} 

B 2 = { ( i , j )  : i < j ,  and (i, j )  �9 B} 

B 3 = { ( i , j , k )  : i < k ,  and (i, j )  �9 B, ( j , k )  �9 B} 

B 4 = { ( i , j , k , l )  : i < l ,  and (i, j )  �9 B, ( j , k )  �9 B, (k , l )  �9 B, 

where (i, j, k, l) acyclic chain} 

etc. 

Note that  B is the set of pairs of atoms which are connected with covalent bonds 
and N'B is the set of pairs of atoms which are not. Also, B 2, B 3, B 4, correspond 
to directed sets of chains of covalently bonded atoms involving two, three, and four 
atoms respectively. By generalizing the above analysis, the directed set of chains  
of m covalently bonded atoms is defined as, 

B m = { ( i l , i 2 , . . . , i m )  : il < ira, and (i l , i2) �9 B, (i2,i3) �9 B , . . . ,  

( i m - l , i m )  �9 I3, where ( i l , i 2 , - . . , i r a )  acyclic chain} 
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If only a single atom (2) is between atoms (1) and (3) such that (1, 2, 3) E B 3, 
then it is well known from trigonometry that,  

r~3 = ,'1~ + 7"23 - 2r12r23 cos(0123) 

where 0123 is the angle formed by covalent bonds (1-2) and (2-3). However, when 
more than one atom is required to connect atoms i and j the derivation of rij is 
much more involved. 

Let us now consider three atoms, numbered (1), (2), and (3) such that atom (1) 
is bonded with atom (2), and atom (2) is bonded with atom (3). The bond lengths 
r12 and r23 as well as the covalent bond angle 0123 are given. First, we select a base 
coordinate system defined by the positions of the first three atoms, (1), (2), and 
(3) such that  the origin is chosen at atom (1), the negative x-axis passes through 
atom (2), and atom (3) lies in the first or second quadrant of the xy plane (See 
Figure 1). It is easy to show that  the Cartesian coordinates of these three atoms 
are: 

Xl : 0 ,  yl =0 ,  Zl---0 ) 
x2 -~ --r12, Y2 ~- O, Z 2 -'- 0 

x3 = r23 cos(0123) - r12, Y3 -- r23sin(0123), z3 = 0 

The position of an additional atom (4), bonded to atom (3), can be fully specified 
if the length of the bond r34, the bond angle 0234, and the dihedral (torsion) angle 
r are known. r is the angle between the plane defined by atoms (1), (2), 
(3) and the plane defined by atoms (2), (3), (4). The coordinates of atom (4) after 
rotational transformation and a translation are given by [27], 

X4 
Y4 
Z4 
1 

= B 2 B 3  B 4  

where B2,  B 3 and B 4 

- 1  
0 

B 2 = 0 
0 

are 4 x 4 transformation matrices. 

0 0 - r l~  
1 0 0 
0 - 1  0 ' 
0 0 1 

B 3 = 

- cos(0123) -sin(0123) 
sin(0123) - -  cos(0123) 

0 0 
0 0 

0 -~23cos(e123) 
0 r23sin(91~3) 
1 0 
0 1 
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and B 4 is equal to, 

- cos(O=a4) - sin(e234) 0 -r34 c0s(0234) 
sin(0234) cos(r - cos(O2a4) cos(d~2a4) - sin(d~2a4) ra4 sin(0234) cos(r 
,in(0=~4) ~i~(r - cos(O=~d sin(r cos(r r~ sin(O=~d ~i~(r 

0 0 0 1 

By repetitively placing extra atoms in the initial four atom chain, an m-chain is 
formed composed by atoms connected sequentially with covalent bonds. By gen- 
eralizing the presented analysis the coordinates of the m th atom in the coordinate 
system that  the first three atoms define are, 

X m 

Ym 
Zrn 

1 

B 2 B 3 B 4 . . .  B m  

where B i n  is defined as, 

- cos(Om) 
sin(Ore) cos(era) 

B m =  sin(O,~) sin(era) 
0 

- sin(Om) 0 
-cos(Om)cos(r - sin(era) 
- cos(Ore) sin (6,~) cos(era) 

0 0 

-r.~ cos(0m) ] 
rm sin(Ore) cos(era) 
rm sin(Ore) sin(era) 

1 

with the following simplified notation, 

r r n - l , m  +--- rm  

Om-  2,rn- l,rn +'---" Orn 

Crn--3,m-- 2,m-- l,rn 4------- ~rn 

Based on the above analysis, explicit expressions for the Cartesian coordinates 
z . ~ , y m , z , , ~  of the m th atom in a m - a t o m  chain can be obtained as functions of 
the bond lengths, covalent bond angles, and torsion angles. After recognizing that  
zl  = Yi = zl = 0, the Euclidean distance rl.~ can then be easily calculated, 

2 9. + z ~  r2m = x m -4- Ym 

After expanding the squared terms, the expression for r~m becomes the sum of a 
very large number of terms involving the product of bond lengths with sines and/or  
cosines of covalent bond lengths and/or  dihedral (torsion) angles. Due to the repet- 
itive matr ix  operations, the resulting formulas loose any special structure which is 
necessary for developing a global optimization algorithm. This special structure, 
however, can be uncovered with the repetitive application of the trigonometric for- 
mula, 

sin(x) 2 + cos(x) 2 = 1 
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through symbolic computations. After performing the aforementioned analysis, 
general expressions for the Euclidean distances between the end atoms in m - a t o m  
(m < 6) chains are obtained. These expressions are given in Appendix A. 

Based on the above analysis, the expression for the total potential can be parti- 
tioned as follows: 

j = 4  ( i l , . . . , i j )  e ~J 

where m is the number of atoms in the longest chain connecting two interacting 
atoms; ril,ij is the expression derived earlier for the Euclidean distance between 
the two end atoms il and ij; and v(r~,i~) is the pairwise potential interaction 
function. Note that j starts from (j = 4) because there must be at least two atoms 
between, the interacting atoms before considering their contribution to the total 
potential energy of the molecule [3]. This is because for j = 2, 3 the Euclidean 
distances between the end atoms il and ij are functions of only the fixed covalent 
bond angles and covalent bond lengths. Presumably, the corresponding pairwise 
interaction terms are constant independent of the conformation of the molecule and 
therefore they can be neglected. 

The main difficulty in finding the global minimum of V arises from the fact that 
it is a complicated nonconvex function. As it has been discussed earlier, any local 
optimization technique is likely to find only a local minimum at best and complete 
enumeration of all local minima is impossible. In the next section, a procedure is 
proposed for obtaining a convex lower bounding function of V. 

4. C o n v e x  L o w e r  B o u n d i n g  U n c t i o n  o f  V 

In the previous section, explicit relations for the nonbonded atom distances have 
been derived as functions of the dihedral (torsion) angles r However, not all of 
these dihedral angles are independent. In fact, there are only as many independent 
dihedral angles as the number of rotational degrees of freedom. For example, for 
ethane--like molecules all dihedral angles can be expressed as functions of a single 
dihedral angle. For propane-like molecules two dihedral angles are required for 
fully specifying the conformation of the molecule. This means that  all nonbonded 
distances rij and consequently the expression for the total potential energy V can 
be expressed as a function of only these independent dihedral angles, defined one 
for each rotational degree of freedom. 

v = v ( t k ) ,  

where tk's correspond to the K independent dihedral angles. 
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The next step in this analysis is to define the function s by augmenting V as it 
has been proposed in [19, 20]. 

K 

s = V + a E ( t L - - t k ) ( t ~ - - t k )  
k = l  

where a _> max{,~_<,k_<,~max 0 , ( - l A Y ) }  

L U Note that t~, t k correspond to the lower and upper bounds on tk which are typically 
set to t L = 0 and t U = 21r. Also, u is a nonnegative parameter which must be 
greater or equal to the negative one half of the minimum eigenvalue of V over 
t L < tk <_ t U. Guidelines for estimating a are provided in Appendix B. The effect 
of adding the term, 

K 

o~ E ( t  L - t~)(t U - tk) 
k----1 

to V is to make Z: convex by overpowering the nonconvexity characteristics of V 
with the addition of the term 2o~ to all of its eigenvalues, 

Here A~, A/ are the U h eigenvalues of s V respectively. In the following, a number 
of important properties, which s share, will be stated and proven. These properties 
will enable us to construct a global optimization algorithm for finding the global 
minimum of V in the space defined by the independent dihedral angles tk. 

P r o p e r t y  1: For every tk �9 [t L , t ~ ] ,  we have Z:(tk) _< V(t~).  

Proof: 

V t k  E [ tL , t~] ,  ( ~ _ 0 ,  ( t L - - t k ) ~ 0 ,  ( t ~ - - t k ) ~ O ,  

o~(t L - tk )(t U - tk ) <_ 0 
K 

a E ( t L  -- tk)(tU -- tk ) < 0 
k = l  

<_ [] 

R e m a r k :  s is always a valid underestimator of V inside the box constraints 
L U 

L U P r o p e r t y  2: For every corner point in [tk,t  k ], we have s = V. 
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Proof:  

Let t~ be a corner point of [t L,tU], k = l , . . . , K .  

V k =  1 , . . . ,K ,  (t L - t ~ )  = 0 or (t U - t ~ )  = 0, 

- t k ) ( t ; :  - t ~ )  = O, 
K 

E a ( t L  -- t~)(tU -- t~) = 0, 
k = l  

= v(t ) [] 

Remark :  s matches V at all corner points. 

P r o p e r t y  3: /: is convex in [tL,tU]. 

Proof:  

L U L U s is convex in [tk,t ~] if and only if for every t~ E [tk,t ~], 
all eigenvalues A~(tk) of s are nonnegative. This is equivalent with requiring 
the minimum eigenvalue of ~: over tk to be nonnegative. 

min A~(tk) > 0. 
k 

After substituting A~(tk) = A V(tk) + 2a 

and c~ > max O, max ( - g , ~ )  in the previous inequality we have, 
- -  k 

mink {.X•(tk)+max[O, maxk (-)~[(t~,))]} > 0 . _  

We can further simplify by combining the two max operators and transforming the 
resulting single max operator into a single rain operator. 

min A~/(t~) - min [o, AY(tk)] > O. 
k k - -  

Finally, we combine the two min operators by considering the two cases for the sign 
of $[  (tk). The resulting inequality is true for every tk in [tL,t[]: 

max[0,  ,~<_,k_<,~mink AV(tk)] _> 0. 
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L U Therefore, s is convex for every tk in [t k , t  k ] .  
L U R e m a r k :  s is convex in [tk, t k ] by construction. 

[]  

P r o p e r t y  4: 
K 

max ( V - s  = lo~ E (tU--tL) 2 
t~<_tk~t U k=l 

P r o o f i  

max (V - / ~ )  
~ ___t~___~ 

K 

= max - - a E ( t L - - t k ) ( t u - - t ~ )  
tL<--tk<--tU k = l  

K 

= min ~ E ( t L - - t k ) ( t U - - t k )  
t~<-tk<tu k----1 

The last function is convex and separable in tk. This means that  if the single 
stationary point is inside the box constraints [t L, t~] then it corresponds to the 
single global minimum [18]. After applying the stationarity conditions we find that  
the single stationary point t~ tat is indeed inside the box constraints, 

tfo  _ k = 1 K , �9 . . ,  

and therefore it corresponds to the single global minimum. After substituting the 
expression for tsk tat in the original function we have, 

K 

max . ( V - s  = 1 L 2 
t~<_t~<t[ 4~k~=1 ( t U - t k )  [] 

R e m a r k :  The maximum separation between s and V is proportional to a and 
to the square of the diagonal of the current box constraints. 

P r o p e r t y  5: 

V tk E [tLl,tU1] V [t kL2,t kU2] such that r, L1 ,U1] C r~L2 ,U21 , irk ,~k ] -- L~k ,~k J,  

~ ( t k ,  1 .L1 U1 IL2 ~,U2~ a ,~k ,tk ) >- s ok ,~k J, 

after imposing a2 > a l  in the selection process for a 1, a 2, 

where a 1 > max {0 
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Proof i  

and a 2 > m a x { 0 ,  m~x ( - - 1 A / ( t k ) )  } 

V tk E [tLl, t  U ] ] , a  2 > C~ 1 > 0, 

( tL2--tk) <_ ( tL l - - tk )  < 0, 

(tU2--tk) > (tUl--tk)  > 0 
K K 

OL1 ~'~{tL1 U1 0~2 ~ '~[ tL2 U2 Z . ~  k -- tk)( tk - - tk)  > /_.,~ k -- tk)( tk - - tk)  
k = l  k----1 

~LI +UI~ > f~ ( t k ,a2 ,~L2  +U2~ [] ~ ' ( tk ,oLl ,vk  ,Vk ] - -  Vk ,~k l 

R e m a r k :  The underestimators constructed over supersets of the current set are 
always less tight than the underestimator constructed over the current box con- 
straints for every point within the current box constraints. 

In summary, in this section we have proven that  L: is a convex, lower bounding 
function of V. Also, s matches V at all corner points of the box constraints 
inside which it has been defined. Its maximum separation from V is bounded and 
proportional to a and to the square of the diagonal of the box constraints. Finally, 
the values of different definitions of s at any point, if s is constructed over a tighter 
box of constraints each time, define a nondecreasing sequence. In Appendix C it is 
shown that  function s corresponds to a relaxed dual bound of the original function 
V [10, 30, 31, 11, 32]. In the next section, based on the aforementioned properties, 
a branch and bound type global optimization algorithm is introduced for solving 
the global minimization of V. 

5. G loba l  O p t i m i z a t i o n  A l g o r i t h m  

By utilizing the properties introduced in the previous section a global optimization 
algorithm is proposed for locating the global minimum potential energy V* by 
constructing converging lower and upper bounds on V*. It is clear that  the value of 
V at any point tk is an upper bound on V*. Lower bounds on V* within some box 
constraints are derived by utilizing Properties (1) and (3). s Property (1), s 
is a lower bounding function of V. Therefore, its global minimum within some box 
constraints will always underestimate the global minimum of V within the same 
box constraints. However, from Property (3) we know that,  unlike V, s is convex 
and therefore it involves a single global minimum which can be routinely found with 
any commercially available local optihlization algorithm (e.g. MINOS 5.3 [21]). An 
upper bound on V* can then be obtained by simply calculating V at the global 
minimum point of s From property (4) we know that the gap between the upper 
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bound and the lower bound will be at most, 

K 
1 ( W - v  L) _< ~ ( t f - ~ f )  2 

k---1 

where V U and V L a r e  the upper and lower bounds on the global minimum V* 
L U inside the current box constraints, Irk, t k ] , k = 1 , . . . ,  K.  

The next step, after establishing an upper and a lower bound on the global min- 
imum, is to tighten them by using Property (5). Property (5) implies that the 
value of 1: at every point, and therefore at its global minimum, is increased by 
restricting the box constraints within which it has been defined. Tighter box con- 
straints can be realized by partit ioning the rectangle that  the initial box constraints 
define into a number of smaller rectangles. One way of partit ioning is to succes- 
sively divide the current rectangle in two subrectangles by halving on the middle 
point of the longest side of the initial rectangle (bisection). Presumably, at each 
iteration the lower bound of V* is simply the minimum over all the minima of 1: 
in every subrectangle composing the initial rectangle. Therefore, a straightforward 
(bound improving) way of tightening the lower bound V L is to halve at each itera- 
tion, only the subrectangle responsible for the infenum of the minima of L: over all 
subrectangles, according to the rules discussed earlier, This procedure generates a 
nondecreasing sequence for the lower bound V L of V*. Furthermore, we construct 
a nonincreasing sequence for the upper bound V v by selecting it to be the infenum 
over all the previously recorded upper bounds. Clearly, if the global minimum of 
L: in any subrectangle is greater than the current upper bound V v we can safely 
ignore this subrectangle because the global minimum of V cannot be situated inside 
it (fathoming step). 

Property (4) answers the question of how small these subrectangles must become 
before the upper and lower bounds of V inside these subrectangles are within e. If 
5 is the diagonal of the subrectangle, 

= 2 

k = l  

and e is the convergence tolerance, from property (4) we have the following condition 
for convergence, 

K 
t 

k = l  

which means that  if the diagonal f of a subrectangle is, 

then e-convergence to the global minimum of V has been achieved. It is interesting 
to note that the required for convergence value of ~ is proportional to the square root 
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of ~. Therefore, if for example r is set to be 0.0001, 5 suffices to be proportional  to 
0.01. Note also, that  5 is inversely proportional to the squared root of the parameter  

reflecting the fact that  the smaller the value of a is, the faster the convergence 
rate becomes�9 

The basic steps of the proposed global optimization algorithm are summarized in 
the following section�9 

6. S t e p s  o f  t h e  G l o b a l  O p t i m i z a t i o n  A l g o r i t h m  

S T E P  1 - Initialization 

A convergence tolerance e is selected and the iteration counter Iter is set to 
one. Appropriate  global bounds ~LBD ~UBD ~k ,~ on tk are chosen and local bounds 
tL,lter ~U,Iter for the first i teration are set to be equal to the global ones. Lower k ,~k 
and upper bounds on the global min imum V LBD , V UBD are initialized and an 
initial current point ~r is selected�9 o k 

S T E P  2 - Update of Upper Bound V UBD 

V is calculated at the current point V ~,It~ and the upper bound V vBD is updated 
as follows, 

c,Iter 
= )) 

S T E P  3 - Partitioning of CurrenL Rectangle 

[lL,iter U, Iter] The current rectangle [~k ,tk , k = 1 , . . . , K  is part i t ioned into the 

following two rectangles (r = 1, 2): 

tL,lter ~U, Iter 

L,It~r -(td~*~ + tu'z~d~*~ / ~L,Iter 
~ I~er 2 

tL,Iter +U,Iter 
K ~K 

tL,Iter ,tU,Iter 
1 ~1 

LjI~er  •lltcr "1- tU'I ter~ lX*~r ] tU,I~er 
2 ~ t e r  

tL,Iter ~,U, Iter 
K ~ 

where 11t*~ corresponds to the variable with the scaled longest side in the initial 
rectangle, 

L,Iter 

l = a gmax  ~ _ t BD) 
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S T E P  4 -  Solution o f  Convex Problems in two Subrectangles 

Update the parameter oL and solve the following convex nonlinear optimization 
problem in both subrectangles (r = 1, 2) by using a commercially available nonlinear 
solver (e.g. MINOS 5.3 [21]). 

K 

mins = f i  E v (r i~,~(tk))+~ E ( tL ' I~  - t ~ ) ( t ~  'I*~ - tk) 
t k  

j----4 (il ,...,ij)EISJ k----1 

If a solution [/,xt~,. is less than the current upper bound, ~$0[ 

Lr,  I t e r  ~ V UBD 
sol --  

§ then it is stored along with the value of the variable tk at the solution point ok,~oz . 

S T E P  5 - Update I terat ion Counter  I t e r  and Lower  Bound V L B D  

The iteration counter is increased by one, 

I t e r  ~ I t e r  + 1 

and the lower bound V LBD is updated to the minimum solution over the stored 
ones from previous iterations. Furthermore, the selected solution is erased from the 
stored set. 

v L B D  r r  ~,Iter' 

Lr ,  I where ~soZrr"lter' = min ~sol, r = l , 2 ,  I =  1 , . . . , I t e r - 1 .  
r,I  

t L , I t e r  tU , I ter  ~c,I~er and Current  Bounds ~k , ~k S T E P  6 - Update Current  Poin t  ~ on tk 

The current point is selected to be the solution point of the previously found 

minimum solution in S tep  5, 

t c , I t e r  § k : 1, K 
k : ~k,sol , " " �9 

and the current rectangle becomes the subrectangle containing the previously found 

U,Iter  [ k[tL'Iter'tk ] = 

solution, 

tL,Iter j tUl ,lter~ 
1 

($;L,[t~r'+ ?~u,.rt~r'~ 
t L , I t e r  j ~ d ~"r~ t[t.r t ] 
vlItert 2 

. 

tL , I~er  I tU , I t e r  ~ 
K ~K 

, i f  r I = 1 
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L, I ter  U,Iter 

tL,Iter ~ § ~ 
1 ~1 

(tL,It~r l tU, l~erl~ 
~z~r + t ~  ] tU, i te  r, 

2 1 [ t~ l  

tL , I t e r  ~ tU,I ter  ~ 
K ~K 

, i f  r / = 2 

S T E P  7 -  Check f o r  Convergence  
I F  ( V  UBD - V L B D )  > e, then return to S T E P  2 

Otherwise, e-convergence has been reached and the global minimum solution, and 
solution point are: 

V *  ( V U'I ter"  

t* k ~ t~ Jte~' ' ,  k =  1, . . . , K 

where I t e r "  = arg{V UJ = V UBD}, I = 1 , . . . , I t e r .  
I 

In the following section, a mathematical proof that the proposed global optimiza- 
tion algorithm converges to the the global minimum is given based on the analysis 
of standard global optimization algorithm presented in [15]. 

7. P r o o f  o f  C o n v e r g e n c e  to  t h e  G loba l  M i n i m u m  

Convergence properties of a global optimization algorithm depend on: 
(i) the limit behavior of the difference V v - V L for unfathomed successively 

refined partitions, 
(ii) the subdivision process of the current partitions, and 
(iii) the employed selection process of the partition(s) that  have to be further 

refined�9 
In the following, a In the employed global optimization algorithm for every parti- 

tion element (r, l t e r )  a lower bound vrLlt ,r  is obtained as the solution of the convex 
minimization o f / :  inside the box constraints of the current partition element and 
an upper bound Vr,~,~ as the valfle of V at the minimum point of s The partition 
element involving the minimum lower bound vrLIter is selected for further refining 
according to the bisection rule and partition elements whose lower bound v~LI,r is 
greater than the current upper bound v u ~  are fathomed. A sufficient condition 
for a global optimization algorithm to be convergent to the global minimum, stated 
in [15], requires that  the bounding operation must be cons i s t en t  and the selection 
operation bound improv ing .  
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D e f i n i t i o n  1: A bounding operation is called c o n s i s t e n t  if at every step any 
unfathomed partition can be further refined, and if any infinitely decreasing sequence 
of successively refined partition elements satisfies, 

lim (V~e r - v r L ,  te,) = 0, 
Iter---*oo 

where Y. L is lhe lower bound of V inside the (r, Iter) partition element and u V ] t e r  r , I t e r  
is the best upper bound at iteration Iter not necessarily occurring inside the (r, Iter) 
partition element. 

Clearly, any partition element (r ~ I ter ~ that is not fathomed eventually becomes 
the one involving the minimum current lower bound L V/r and is further refined 
according to the bisection rule. Property (5) implies that  the subdivisions (r, Iter) 
of this partition element (r ~ I ter ~ involve lower bounds Y. L which are at least r,Ii;er 

L as tight as Vr 

L 
m i n  Y. L > Y r o , i t e r o  r r , I t e r  --  

which implies that any infinitely refined partition sequence involves infinitely non- 
decreasing lower bounds. 

In practice, the requirement lim (vU~ - vrL/t~r) = 0 for any infinitely 
Iter---+c~ 

decreasing sequence of successively refined partition elements is difficult to verify 
because u V]ter is not necessarily attained at the partition element (r, Iter). There- 
fore, in view of the inequality V. v > U v L V~e~ > the following, at least equally r , I t e r  - -  - -  r , l~er  , 
strong condition, suffices to be shown: 

y. U E L lim ( ~,s~ - , , I ~ )  = 0. 
Iter--+oo 

From Property (4) we know that, 

V. U - y. L l o z ~ 2  >-- ( r , I t e r  r , I l e r )  > O. 

where 6 is the diagonal of the current partition element corresponding to a rectangle. 
Therefore, it suffices to show that 

lim 1 =c~6 2 = 0, 
lter---,oo Lk 

or equivalently that  

lim 6 = 0. 
Ir 

This says that the employed subdivision process for any unfathomed infinitely de- 
creasing sequence of successively refined partition elements is e x h a u s t i v e  [15]. 

D e f i n i t i o n  2: A subdivision process is e x h a u s t i v e  if lim 6 = 0 for all de- 
I~er--+oo 

creasing subsequences of partition elements generated by the subdivision. 
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T h e o r e m  1: The subdivision process of the employed global optimization algo- 
rithm is exhaus t ive .  

P roof :  The employed subdivision process is the biseclion where every partition 
element (r, Iter) is subdivided into two subrectangles r = 1, 2 of equal volume 
by halving at the midpoint of the longest scaled side. Because all the sides of 
any partition element are scaled with the sides of the rectangle that the initial 
global constraints define, the scaled sides of the initial rectangle are all equal to 
one. Therefore, the condition of always subdividing along the longest side can be 
satisfied by simply subdividing first along the side k = 1, then along the side k = 2, 
etc. until the last side k = K is encountered when the subdivision starts again from 
k = 1. By partitioning in this orderly manner each side of every successively re- 
fined partition element is halved exactly once every K subdivisions. Consequently, 
after K subdivisions the diagonal of the resulting partition elements is one half the 
diagonal of the original partition element. Therefore, as the number of successive 
subdivisions of a partition element goes to infinity, the diagonals of the resulting 
partition elements go to zero. This implies that the employed subdivision process 
is exhaustive. [] 

T h e o r e m  2: The bounding operation of the employed global opiimization algo- 
rithm is cons i s t en t .  

P roof :  We have shown that  the subdivision process is exhaustive and therefore, 

lim 5 = 0. 
lter--~cr 

Furthermore, we have, 

0 _< ~--.01im (v1tU~ - VrLiter) _< ,lim~_0 "(v~U*~' - V'~'L~*e~) -- < ~01im l a52  = 0. 

Consequently, for any infinitely decreasing sequence of successively refined partition 
elements 

lim ( V i ~ r -  vrLI~ ) = O, 
Iter---*oo 

meaning that the employed bounding operation is consistent. [] 

Def in i t i on  3: A selection operation is called b o u n d  i m p r o v i n g  if  at least one 
partition element where lhe actual lower bound is attained is selected for further 
partition after a finite number of refinements. 

T h e o r e m  3: The selection operation of the employed global optimization algo- 
rithm is b o u n d  improv ing .  

Proof." The employed selection operation is clearly bound improving because the 
partition element where the actual lower bound is attained is selected for further 
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parti t ion in the immediately following iteration. [] 

T h e o r e m  4: The employed global optimization algorithm is c o n v e r g e n t  1o the 
global minimum. 

Proof." We have shown that the bounding operation is consistent and that the 
selection operation is bound improving, therefore according to Theorem IV.3. in [15] 
the employed global optimization algorithm is convergent to the global minimum. [] 

In the next section, upper and lower bounds on the total number of iterations 
required for e-convergence are obtained by analyzing the structure of the branch 
and bound tree resulting from the subdivision process. 

8. B o u n d s  on  t h e  T o t a l  N u m b e r  o f  I t e r a t i o n s  

In the previous section mathematical  proof that  the proposed global optimiza- 
tion algorithm indeed converges to the global minimum was provided. In practice, 
however, not mere e-convergence to the global minimum, but  convergence in a fi- 
nite number of iterations is required. By analyzing the structure (sparsity) of the 
branch and bound tree resulting from the subdivision process, finite upper and 
lower bounds on the total number of required for e-convergence are obtained. A 
similar analysis on bounds on the total number of required iterations for a concave 
global optimization algorithm is given in [22]. 

T h e o r e m  5: The maximum number of required iterations for e-convergence to 
the global minimum V* for the proposed global oplimization algorithm is, 

k_-i ]-1 
P r o o f :  The worst-case for convergence occurs when no parti t ion element is fath- 

omed until the last level of the branch and bound tree. In this case, the branch and 
bound tree is a complete binary tree whose end-nodes correspond to the parti t ion 
elements of the last iteration. Because e-convergence is achieved only in the last 
level of the branch and bound tree, the lower and upper bound of V in all these 
parti t ion elements are within e. Therefore, the diagonals of all these subrectangles 
are given by, 
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The number  of the part i t ion elements corresponding to end-nodes in the branch 
and bound tree will then be, 

I ] I m a m :  
Nrec = k=l 

5 

K K 

k = l  _ _  _ 

The number  of levels of the complete binary branch and bound tree is, 

E ( t g ' ~ - t ~ )  2 
# 1 e w l s  = log2 N;~; ~ = K log~  ~._1 

The total  number  of iterations I '~a~ is the total  number  of nodes in the complete 
binary tree excluding the end nodes. Therefore, 

# l e v e l s - 1  2 # l e v e l s  - -  1 

Irnax ~--" E 2 i -- -- 2 #u '~u  -- 1 
2 - - 1  

i-~0 

L B D  2 { ' U B D  _ t k ) 

-7- k - ~ l  - -  1. []  

By following the same line of reasoning we can find the min imum total  number  
of required iterations. 

T h e o r e m  6: The min imum number of required iterations for c-convergence to 
the global min imum V* for the proposed global optimization algorithm is, 

I rain = K l o g  2 k=l - 1 

Proof." The best case for the proposed algorithm, in terms of efficiency of parti- 
tioning, occurs when always one parti t ion element is fa thomed in every subdivision 
step. In this case, each non-end node in the branch and bound tree will spawn a 
single child node. The levels of this tree will still be, 

#leve l s  = K log 2 k=l _ _ _  
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but the total number of iterations is now, 

{tUBD § 2 ] 
I mi'~ = # l e v e l s - 1  = K log 2 ~=1 _ _ _  - 1 .  [] 

R e m a r k :  It is interesting to note that  although I ma~ is exponential in the total 
number of variables K ,  which is something that should have been expected since 
global optimization problems belong to the NP-complete [12], I mi~ is only linear 
in K.  In practice, the total number of iterations is much closer to I ~i~ rather than 
to I '~a~. In the next section the proposed global optimization algorithm is applied 
to a number of example problems. 

9. E x a m p l e s  

Two different examples of increasing difficulty are considered in this section. Based 
on the analysis presented on previous sections, the problem of minimizing the total 
potential energy of a molecule in the coordinate space of independent dihedral 
(torsion) angles tk is formulated as follows: 

min f i  E v ( r i l , i j )  
tk 

j-=4 (i  . . . . . .  i j )  e i35 

where ril,ij = ril,/j (r (i, j, k,l) E B4), 
�9 j = 4 , . . . , m  

and r = r k : l , .  . , K ) ,  V ( i , j , k , l )  E B 4 

t~ <_ tk <_ t U, k = l , . . , K .  

Note that  different expressions for the palrwise potential function v(r )  have been 
employed in the example problems. Also, the functionality between the non-bonded 
atomic Euclidean distances rij and the dihedral angles is given in Appendix A. 
Furthermore, the relations between the dihedral angles r and the independent 
dihedral angles tk are listed for every individual example. 

9.1. P s e u d o e t h a n e  

The first example is the one-dimensional conformational problem of the fully sub- 
stituted ethane molecule (see Figure 2) as shown in [23]. All three hydrogen atoms 
of both carbon atom are replaced with one C, one O,and one N atom. Clearly such 
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a molecule cannot exist; it simply corresponds to a prototype for testing methods 
that  predict molecular conformations based on the energetics of non-bonded a tom 
interactions. 

The pseudoethane molecule involves four C, two N, and two 0 atoms. The num- 
ber of non-bonded interactions is equal to the total number  of unique chains of 
covalently bonded a toms involving at least four atoms. The longest chain in the 
pseudoethane molecule involves four a toms (m = 4) and there are nine such chains. 
Two for each heteratomic pair (C-N, C-O,  and N-O),  and one for each C-C,  N -  
N, 0 - 0  interaction. The Lennard-Jones potential  function has been adopted for 
describing the non-bonded a tom interactions. 

v(rij) -- Bij Aii 
ri 12 r6j 

The values of the interaction parameters  Aij, Bij are given in Table 1 [14]. Fur- 
thermore, all covalent bond lengths have been assumed to be equal to 1.54 _~ and 
all covalent bond angles equal to 109.50 . For the current set of data, this problem 
has been reported [23] to have three local min ima with similar objective values. 

0 = 61.420 ) V,~i,~ = -0.79733156 kcal /mol  
0 = 296.120 ) V,~i~ = -1.03989551 kcal /mol  
0 = 183.45 ~ ) V,~i~ = -1.07111459 kcal /mol  

where 0 is the dihedral angle between the two C - C - C  planes. 
Based on the measure of the mat r ix  approach, the value of the parameter  a is 

found to be 9.042908. The single independent internal variable is selected to be 
the dihedral angle tl between the two C - C - C  planes. All dihedral angles are then 

27r equal to t l ,  tl + --g-, or tl -- - -  

r 
~C(1)-C( 4)-C(5)-N(7) 
r 4)-C(S)-0(8) 
r 
CN(2)-C(4)-C(5)-N(7) 
r 
r C(4)- C(5)- C(6) 
r C(4)- C(5)- N(7) 
r C(4)- C(5)- 0(8) 

27r 
3 " 

= tl 
= tl + 2_~ 
= tl 23 
= t l +  23~ 

= tl 3 
-- tl 
= tl 27r 

3 

tl 
= t l + ~ g  ~ 

The global bounds on tl are [(r, cr + 2~r] where c~ is a positive parameter  between 
zero and 2~r which allows us to observe the performance of the proposed algorithm 
by solving iteratively the same problem for different randomly selected values of 
or. Three different choices for the parameter  a have been considered, (a  = 1, a = 
5, and c~ = 10) and the tolerance c was set to 10 -4. For each value of a the same 
problem was solved for 100 different values of ~. For a = 10 the global optimizat ion 
algorithm always converged to the global minimum, 

t T = 183.450 , V* = -1.07111459 kcM/mol 
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in about 20 iterations with an average CPU time of about 2.5 seconds on a H P -  
730 workstation. For a = 5 the algorithm still converged to the global minimum 
solution in all 100 runs in about 16 iterations and with an average CPU time of 
about 1.8 seconds. Note that for o~ as small as one, 75% of the times convergence 
to the global minimum was achieved for only a fraction of the previously mentioned 
computational requirements. 

9.2.  1 , 2 , 3 - t  r i c h l o r o - l , 4 - b i f l u o r o - b u t  a n e  

This second larger example addresses the problem of finding the global minimum to- 
tal potential energy conformation of 1,2,3-tr ichloro-l ,4-bifluoro-butane (CHC1F- 
CHC1-CHC1-CH2F), (see Figure 3). This molecule involves 27 different chains 
compoced of four covalently bonded atoms; 18 chains of five covalently bonded 
atoms; and 9 chains of six covalently bonded atoms. In this example all covalent 
bond angles are assumed to be tetrahedral (109.5~ The equilibrium bond lengths 
as well as the parameters Aij and Bij for the Lennard-Jones potential are listed in 
Table 2 and Table 3. 

Clearly, only three dihedral angles are required to fully describe the rotational 
conformation of the molecule, and one possible selection is the following. 

0 < tl *---- r  <~ 27P 

0 <_ t2 +---- r <__ 2 ~  

0 << t3 +---- r  <~ 27r 

The expressions for all 27 dihedral angles are then, 

r  -'~ t l  
2~ 

~F(1) -C(4) -C(5) -C(7)  = tl  "~- 

eF(1 ) -C(4 ) -C(5 ) -H(8 )  : tl 32 r 
r  = t l  3 
r = tl 

2_.K 
r  = t l  + 23 ~ 
r  tl -4- 2~  
~9H(3)-C(4)-C(5)-C(7) : t l  3 
eH(3 ) -C(4 ) -C(5 ) -H(8 )  : t l  

r = t2 
2~r 

r  = t2 + -~  

r  : t2 23 
r  = t2 3 
r  = t2 

2...K 
r  = t2 + 23 ~ 
eH(S)-C(S)-C(7)-Cl(9) = t2 + ~--- 
eH(S) -C(5) -C(7) -C(IO)  : t2 3 
e H ( 8 ) - C ( 5 ) - C ( 7 ) - H ( l l )  -= t2 

r 
r 
r 
r 
r 
r 
eH(ll )-C(7)-C(lO)- F(12) 
eH(ll )-C(7)-C(IO)-H(13) 
eH(ll)-C(7)-C(IO)-H(14) 

= t3  

= t 3 + ~ -  
: t3 27r 
: t3 23r 

3 
= t3 

2_.E 
= t 3 - 4 - 2 3  r 
= t3 + - -  

= t3 ~ 3 
= t 3 
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Table 1. Data for parameters Aij and Bij  in the pseudoethane example 

a tom-atom B (104 kcal .7i12/moi} A (kcal ~t6 /mol) 

C(sp~)-C(sp ~) 28.58 372.5 
N(sp 3 )-N(sp 3 ) 17.82 344.7 
O(sp 2)-O(sp 2) 14.49 367.2 
C(sp 3)-N(sp 3) 16.82 348.7 
C(sp3)-O(sp 2) 20.52 367.2 
N(sp 3)-O (sp 2) 15.75 349.5 

Table 2. Covalent bond lengths ro in the 1,2,3-trichloro-l,4-bifluoro-butane 
example 

a tom-a tom ro ( ~ ) 

C-C 1.54 
C-H 1 .O6 
C-C1 1.77 
C-F 1.39 

Table 3. Data for parameters Aij ,Bi j  in the 1,2,3-trichloro-l,4-bifluoro- 
butane example 

a tom-atom A (kcal ]46/mol) B (10 -4 kcal ~12/mol) 

F-C1 457.6 29.6700 
F-H 79.8 0.9361 
F-C 223.2 10.0700 
H-H 76.0 0.7220 
H-C 127.4 3.7430 
H-C1 272.8 8.0740 
C1-C1 1562.0 200.5000 
CI-C 759.3 64.6400 

For  t h e  cu r r en t  d a t a  a l a rge  n u m b e r  o f  so lu t i ons  have  b e e n  f o u n d  which  are  

s u m m a r i z e d  in T a b l e  4. T h e  p r o p o s e d  g l o b a l  o p t i m i z a t i o n  a l g o r i t h m  for a = 5.0 

and  ~ = 10 - 4  in al l  100 runs  c o n v e r g e d  to  t he  g l o b a l  m i n i m u m ,  

t 1 = 2 9 1 . 9 5 0  , t ~ =  o * = 1 8 2 . 8 6 0  ) V* 180.42 , t 3 = - 5 . 2 7 1 0 0 2  k c a l / m o l  

in a b o u t  1000 i t e r a t i o n s  w i t h  an  ave rage  C P U  t i m e  of  1400 seconds  on  a H P - 7 3 0  
w o r k s t a t i o n .  For  a = 1 c o n v e r g e n c e  to t h e  g loba l  m i n i m u m  is ach ieved  70 % of  t he  

t i m e s  for  o n l y  a f r a c t i o n  of  t he  p r e v i o u s  c o m p u t a t i o n a l  r e q u i r e m e n t s .  
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Tab le 4. Solutions for the 1 , 2 , 3 - t r i c h l o r o - l , 4 - b i f l u o r o - b u t a n e  example 

o V ~~ kcal/mol 

291.95 180.42 182.86 -5.271002 
291.95 180.49 290.97 -5.159241 
291.94 180.06 64.59 -5.127455 
194.32 179.85 182.85 -4.975758 
291.08 292.43 184.17 -4.944256 
194.33 179.91 290.95 -4.865099 
291.07 292.13 65.12 -4.861028 
289.02 67.06 183.21 -4.841873 
194.30 179.49 64.62 -4.830295 
289.03 67.09 290.93 -4.697346 
289.04 67.06 65.54 -4.691369 
194.30 67.43 183.17 -4.603630 
194.61 292.47 184.16 -4.565333 
194.60 292.17 65.20 -4.485494 
194.60 292.21 291.12 -4.473805 
194.29 67.46 290.93 -4.461059 
194.29 67.44 65.53 -4.452745 

56.17 181.51 182.86 -4.451375 
56.16 181.58 290.87 -4.334131 
55.61 68.03 183.30 -4.296107 
56.18 181.14 64.58 -4.290602 
55.14 292.50 184.16 -4.192450 
55.60 68.02 290.99 -4.160552 
55.61 67.98 65.47 -4.153306 
55.16 292.27 65.15 -4.116179 
55.14 292.28 291.13 -4.102804 

10. S u m m a r y  a n d  C o n c l u s i o n s  

In this paper a global opt imizat ion algorithm was proposed for finding the global 
min imum potential energy conformation of small  molecules based on the energetics 
of  non-bonded  interactions. First, explicit relations for the non-bonded  atom Eu- 
clidean distances as function of bond lengths, covalent bond angles, and dihedral 
(torsion) angles were derived. Then, the problem was formulated us an uncon- 
strained nonconvex opt imizat ion problem on a set of  independent dihedral angles. 
Based on an eigenvalue analysis, a convex lower bounding funct ion/~  of the total 
potential  energy function V was defined and various methods  for estimating the 
required parameter a were also discussed. The special properties of  the function 
E coupled with an efficient partitioning scheme enabled us to construct a global 
opt imizat ion algorithm which was then proved to always converge to the global 
mi n imum conformation through the solution of a series of  convex nonlinear op- 
t imizat ion problems. Lower and upper bounds on the total number of required 
iterations were also derived. Finally, the proposed approach was applied success- 
fully to a number of example problems of which two are included in this paper. It 
should be emphasized that the global opt imizat ion algorithm is not restricted to 
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the specifics of the problem at hand. It  can and has been applied to other classes 
of  problems. Also, the presented analysis can be extended to more  realistic interac- 
tion fields involving complex potent ia l  interaction terms (e.g. bending,  stretching, 
torsion, bending-s t re tching,  and ou t -o f -p l ane  distortion).  Work in this direction 
is currently in progress. 
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A p p e n d i x  

A . 1 .  A n a l y t i c a l  E x p r e s s i o n s  fo r  r i j ' s  

Based on the analysis  presented in section (3), the following general  expressions 
for the Eucl idean  distances between the end a toms  in m - a t o m  (m < 6) chains a r e  
ob ta ined:  
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r~ = "~ + "h + "~, 
-- 2 cos(~?i jk)r i j r j~  -- 2 cos(Oj~z)rj~rk~ 

- 2 [s i~(0~) ~ in(0~)  r 1 6 2  - r  r  ~ r ~ ,  

( i , / , ~ , 0  E ~ 

r ~  

2 cos(Oi jk)r i j r j~:  -- 2 cos(Ojk l ) r jkrk~  -- 2 COS(~klrn)rklrlm 

[ s i . (0~)  ~ in(0~)  r 1 6 2  - r r  ~'~ ~ 

2 [sin(0j~)sin(0~,.,) cos(r  - cos(Oj~) COS(0~,~)] ri~r~.~ 

[r r  r 
- sin(~ij~) sin(O/~) cos(0~:~.~) cos(r  
- s in (0~)  r  sin(e~.~) r 1 6 2  r162 
- cos(Oij~) sin(Oj~) sin(O~.~) cos(r  

- sin(Oij~) sin(O~t.~) sin(r sin(r r i j r t .~ ,  

( i , j , k , l , m )  ~ B 5 

r~ = r~ + r~  + r~, + r L  + r ~ ~ n  

-- 2 c o s ( ~ i j k ) r i j r j k  -- 2 COS(Ojkl)rjkrkl  

- 2 r --  2 r 

- 2 [sin(Oijk) sin(~jkl) COS(r -- COS(Oijk) COS(Ojkl)] r i j r k l  

-- 2 [sin(Ojkl) sin(O~im) cos(r -- cos(Ojkl) COS(~klm)] r j k r l .~  

-- 2 [sin(Oklm) sin(01.~,~) COS(r -- COS(~klm) COS(Olmn)] r k z r . ~  

- 2 [r ~os(0~k~) ~os(0~m) 
- sin(Oijk) sin(Ojkl) cos(O~lm) cos(r 
- si~(o~jk) r ~in(ok~.~) ~ o ~ ( r  r162 
- cos(~ijk)sin(Ojkz) sin(Oklm) COS(r 

- -  sin(Oij k) sin(Oklm) sin(r sin(Cintra)] r i j  r~.~ 

- ~ [ ~ o s ( O ~ )  ~o~(O~,.~) ~o~(O~m,~) 
- s i n ( O ~ ) ~ i n ( O ~ )  r  ~o~(r 
- ~in(O~) r ~in(O~m,~) ~o~(r r162 
- ~os(~) si~(O~m) ~i~(O~,~) r162 
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+ 
- sin(0jkt) sin(Otmn ) sin(r sin(r rjkr.~n 
2 [cos(e,~) cos(0j~,) cos(e~,m) cos(0,m.) 
- sin(0ijk) sin(Ojkt) cos(0k~m) cos(0lm~ ) cos(r 

-- sin(0ijk) cos(0jkl) sin(0klm) cos(01m,~) cos(r cos(r 
- cos(e~)  sin(e~,) sin(e~,~) cos(e ,~)  cos(r 
- sin(0ijk) cos(t?jkl) COS(t?klm) sin(0tm,~) cos(r cos(r COS(r 
- cos(e~k) sin(0j~,) cos(0kz~) sin(e,~.) cos(r c o s ( r  
- cos(0~ ~) cos(O~,) sin(e~,~) sin(e,m,~) cos(r 
+ sin(0ij~) sin(0j~) sin(0~m) sin(t?~mn) cos(r cos(r 
- sin(0i~) sin(0~tm) cos(0~m,~ ) sin(r sin(r 

- sin(~ij~) cos(0~,~) sin(0~m~ ) sin(r sin(r cos(r 

+ sin(0~j~) sin(0~.~,~ ) sin(r cos(Cintra) sin(r 
- sin(t?ij ~) cos(0j~t) sin(0~m,~ ) cos(r162162 

- cos(0ij~) sin(Oil,) sin(0tm,~ ) sin(Cintra) s in(r  rijr .~ 
( i , j , k , l ,m ,n )  ~ B 6 

A.2.  E s t i m a t i o n  of  t h e  P a r a m e t e r  ot 

As it has been shown in section (4), a is a nonnegative parameter which controls by 
how much the eigenvalues o f s  will be greater than the eigenvalues of V. I f s  is to be 
a convex function then ol must be at least equal to minus one half of the minimum 
eigenvalue of V. Clearly, the smaller the value of c~, the more tightly the function 

will underestimate the original function V, and presumably the smaller the total 
number of iterations required for convergence. Therefore, ideally one would want 
the parameter o~ to be exactly equal to minus one half of the minimum eigenvalue 
of V. 

a = max{O,  ~<_~k_<,~maxk ( - - l ~ k ( t k ) ) }  

However, explicit expressions for the eigenvalues Ak as functions of tk, in general, 
can not be derived. Therefore, the minimum dgenvalue ~k(tk) both over k and tk 
can implicitly be obtained with the solution of the following optimization problem, 

min A 
t L < t k < t  U 

subject to d e t [ H e ( t k ) -  A I ] =  0 
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where He(tk) is the Hessian matr ix of V as ~a function of tk, and I the identity 
matrix.  The equality constraint in the above formulation involves K solutions for 
A. Each solution A(tk) must then be minimized over t L <_ tk <_ t U, and the negative 
one half of this solution is the parameter a. Because the lengthy expansion of the 
determinant corresponds to a nonconvex equality constraint, solutions of the above 
problem can be guaranteed to correspond to only local minima. However, by repet- 
itively solving this problem from different initial points one increases the chances of 
locating the global minimum. Even if a mere local minimum is obtained, a safety 
margin can be used to compensate for the difference from the global minimum. In 
principle, however, only lower bounds on the required value of the parameter c~ can 
be obtained with this formulation. 

Upper bounds on ~ can be derived by using the concept of a measure of a matrix. 
The measure p(A) of a square matr ix  A is a mapping from ]~g• into R [6, 4, 8, 17], 

#(A) = lim [ [ I + e A [ I - 1  
~---*0+ ~? 

defined as the directional derivative of the induced norm II I + ~Z II at the point I 
in the direction of A. By definition, the induced norm of a matr ix  A corresponds 
to the largest amount  by which any vector in R K is amplified when multiplied by 
A. Different induced norms give rise to different expressions for the measure of a 
matr ix  A. 

HAll1 = max~laij[J i /~l(Z) = max lajj q- ~ laij, j#i 

[]A[]= = maxAi [(A'A) 1/2] /~2(A) = m/ax)q ( ~ )  

,,AI, : m a x ~ l a i j , ,  J #~ (A )  : m a x [ a i i + ~ i  ic j la i / I ]  

The measure of a matr ix  has been shown [6, 4, 8, 17] to satisfy a number of impor- 
tant properties. Among these properties are the following three: 

P r o p e r t y  1. The measure #(A) of a square matr ix  A always exists. 
P r o p e r t y  2. I~(aA + (1 - a)B) <_ ate(A) + (1 - a)t~(B), Va ~ [0, 1], 
P r o p e r t y  3 . /~ ( - A)  <_ Real{~k} _</~(A), k = 1 , . . . K .  

These properties imply that the measure /~(A) of a matr ix  A is always uniquely 
defined, is convex, and can be used for deriving lower and upper bounds on the 
eigenvalues of matr ix  A. Based on these properties, an upper bound for the param- 
eter a can be obtained by solving the following optimization problem. 

1 1 
a -- min - - # ( - - H e ( t k ) )  = - max #(--He(tk))  

2 ~<~<t~_ _ . 2~L<~k<~_ _ 
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where He(tk) is the Hessian matr ix  of V as a function of tk. The next step is to 
select which measure #(1, 2 or oc) will be employed in the optimization problem. 
Clearly, #1 and # ~  are more suitable because the maximizat ion terms that  they 
involve can be easily reduced to a set of inequality constraints. Furthermore,  it 
is quite straightforward to show that  because He(t~) is a symmetr ic  matr ix,  the 
expressions for Pl,  #c~ are identical and that  the eigenvalues of He(tk ) are all real. 
Based on the definition of the measure of a matr ix  an upper bound on o~ is given 
by the following formulation, 

m 
o~ = min 

~_~_<,~ 2 
m_>o 

subject to 

m 

K 

>_ hkk + ~ Ihkk,(tk)l, k= 1, . . . ,K 
k l m l  
kl~lzk 

where hkk,(tk) is the (k, U) element of the Hessian matr ix,  

02V 
hkk, -- OtkOtk, 

which can explicitly be written as, 

(0: V ( ~  1 ..... ~j) 
h~k,=~ ~_, atkOtk, 

j----4 ( i l , . . . , i j )  E /3:/ 

The partial  derivative of v in terms of t~ and tk, can be simplified to, 

02v(ril ..... ij) d2v(ril ..... ii) 0ril ij 0ril ,ij dv(ril ..... i)) a2v(rii ..... ij) 

0tk0tk, dr21,...,ij 0tk 0tk, drix ..... ij) 0tk0tk, 

where the first and second derivative of v in terms of r as well as the derivatives of 
r with respect to tk and /or  tk, can easily be calculated based on expressions given 
in earlier sections. 

Based on the implicit  minimization of the min imum eigenvalue of V(tk) and the 
maximizat ion of the measure of the negative Hessian mat r ix  of V(tk) respectively, 
lower and upper  bounds on the parameter  a can be obtained. 

Alternatively, under certain conditions, one can derive a tight upper bound on a 
by analyzing possible special structure of the expression for the pairwise potential  
interaction v(r) [19, 20]. Furthermore,  in practice heuristic rules for the selection 
of c~ can be derived and tested by applying the global optimization algorithm on 
problems where the solution is known. In fact, computat ional  experience indicates 
that  even if the value of o~ is not large enough to mainta in  convexity of /2  over 
the entire box region, the employed local optimization algorithm will most  likely 
converge to the global min imum of the nearly convex function s  
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A.3 .  D e r i v a t i o n  o f  D u a l  L o w e r  B o u n d  s 

It is quite interesting that  the convex lower bounding function E can alternatively 
be obtained from the relaxed dual formulation [10, 30, 31, 11, 32] of a transformed 
problem equivalent with the minimization of V, as it has has been performed earlier 
[19, 20]. 

With the introduction of a new set of variables Tk the minimization of V(tk) over 
the box constraints defined by the bounds t L, t U can equivalently be reformulated 
as follows: 

K 

min V(Tk)+~E( t~- t kT~  ) 
tL<--tk'Tk<--tU k=l 

subject to tk = Tk, k = 1 , . . . , K  

where tk, Tk correspond to the x - type ,y - type  variables as presented in [10, 30, 31, 
11]. The exact dual of the above problem will then be, 

K 

sup min V ( T k ) + a E  (t~-tkTk + Ak(tk--T~)) 
~.k t~<--tk,Tk<-- tU k = l  

The exact dual can be relaxed by dropping the maximization over Ak and substi- 
tuting Ak's with the value derived from the KKT conditions, 

Ak = T~, k = l , . . . , K  

where T~ is the current point. The formulation for the relaxed dual then becomes, 

K 

min V(Tk) + c~ E (tk - Tk) (Tf~ - Tk) 
t~<tk,Tk<_t~ k = l  

The minimization over t~ is accounted by considering all different combinations of 
signs for the qualifying constraints T~ - Tk, k = 1 , . . . ,  K which are multiplied by 
tk. More specifically, 

tk = t L if V Tk, Tf - Tk >_ 0, ~ T~ = t U, k = 1 , . . . , K  

tk = t~ if V Tk, T ~ - T k  <_ 0, ~ T~ = t L, k = l , . . . , K  

Note that both cases collapse to the following minimization problem over Tk, 

K 

min V ( T k ) + ~ ( t L - T k ) ( t ~ - T k )  
tL~--Tk~--tU k = l  

which is identical with the minimization of E. 
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Figure A 1. Coordinate set of atomic chain. 
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Figure A2. Pseudoethane molecule. 
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Figure A3. 1,2,3-trictfloro-l ,4-bifluoro-butane molecule 


