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Abstract. A new approach is proposed for finding all e-feasible solutions for certain classes of 
nonlinearly constrained systems of equations. By introducing slack variables, the initial problem is 
transformed into a global optimization problem (P) whose multiple global minimum solutions with a 
zero objective value (ff any) correspond to all solutions of the initial constrained system of equalities. 
All e-globally optimal points of (P) are then localized within a set of arbitrarily small disjoint 
rectangles. This is based on a branch and bound type global optimization algorithm which attains 
finite e-convergence to each of the multiple global minima of (P) through the successive refinement of 
a convex relaxation of the feasible region and the subsequent solution of a series of nonlinear convex 
optimization problems. Based on the form of the participating functions, a number of techniques for 
constructing this convex relaxation are proposed. By taking advantage of the properties of products of 
univariate functions, customized convex lower bounding functions are introduced for a large number 
of expressions that are or can be transformed into products of univariate functions. Alternative convex 
relaxation procedures involve either the difference of two convex functions employed in aBB [23] or 
the exponential variable transformation based underestimators employed for generalized geometric 
programming problems [24]. The proposed approach is illustrated with several test problems. For 
some of these problems additional solutions are identified that existing methods failed to locate. 
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1. Introduction 

A fundamental task in applied mathematics, engineering and sciences is finding 
all solutions of a set of equations. This task is sometimes further complicated by 
requiring the simultaneous satisfaction of a number of inequality and/or variable 
bound constraints. Not only the problem of computing all solutions of nonlinearly 
constrained systems of equations is NP-hard, but it is also possible that there 
exists exponentially many such solutions [1]. In addition, simply checking if a 
solution exists is NP-hard [2]. There exists a large body of literature on methods for 
solving systems of equations. These methods fall within the following three broad 
classes: (i) Newton and quasi-Newton type methods; (ii) homotopy continuation 
type methods; and (iii) interval-Newton methods. 

Newton and quasi-Newton type methods and their modifications achieve super- 
linear convergence only when they are well within the neighborhood of the solution. 
However, these methods are likely to fail if the initial guess is poor, or if singu- 
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lar points are encountered. Modifications in an attempt to avoid singularities may 
incorporate trust-region techniques such as Powell's "dogleg" method [31 ], steep- 
est descent direction information [7], [10], [26] and alterations on the quasi-Newton 
Jacobian estimates [30]. This type of methods, although very computationally effi- 
cient, cannot provide guarantees for convergence. This is manifested in practice 
with their poor convergence characteristics. 

One of the most widely used method for locating solutions of nonlinear systems 
of equations belongs to the broad class of embedding methods. This class of methods 
are also known as continuation, homotopy continuation, or incremental loading, 
and are based on the pioneering work of [19, 20, 8, 18]. The basic idea of homotopy 
continuation methods is to create a family of a single parameter functions so that 
the solution for (t = 0) is known and then solve a sequence of problems with t 
steadily increasing from (t = 0) to (t = 1) using the solution of one problem 
as an estimate for the next. A popular variation is to use a system variable as the 
continuation parameter and integrate the resulting system of ordinary differential 
equations towards steady-state by utilizing AUTO [9]. A problem common to 
all homotopy variants is that variable bounds and inequality constraints cannot be 
handled directly. A comprehensive review of the extensive literature in this area can 
be found in [12]. While in practice homotopy continuation methods are frequently 
used in an attempt to locate all solutions of arbitrary nonlinear systems of equations, 
mathematical guarantees that all solutions will be found exist only in special cases 
(e.g. polynomial systems with no constraints). For polynomial systems of equations, 
however, Morgan [27] proposed a differential arclength continuation using a special 
homotopy that establishes a number of continuation paths guaranteed to converge 
to all possible real and complex roots. Two popular software packages, CONSOL 
[27] and POLSYS [34] have implemented this method. 

Interval-Newton methods can find rectangles containing all solutions of non- 
linear systems of equations within certain variable bounds with mathematical cer- 
tainty. They do so by applying the classical Newton-like iterative methods on 
interval variables rather than variables coupled with a generalized bisection strate- 
gy [29, 13]. A version of the basic Interval-Newton method has been implemented 
into the public domain software program INTBIS [17] which is coupled with a 
portable interval standard function library INTLIB [16]. The main attractive fea- 
ture of Interval-Newton methods is that they provide mathematical guarantees 
for convergence to all solutions of fairly arbitrary nonlinear systems of equations 
within certain variable bounds. However, this wide applicability to almost arbitrary 
nonlinear functions comes at an expense. Because no specific structure of individ- 
ual expressions is analyzed the obtained interval bounds can sometimes be fairly 
loose. 

The proposed approach is based on convex lower bounding coupled with a par- 
titioning strategy and like Interval-Newton methods, it can provide guarantees for 
convergence to all e-solutions. The fundamental difference, however, between our 
procedure and Interval-Newton methods is that while the former utilizes a single 
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value to lower bound functions within rectangular domains, we lower bound non- 
convex functions with convex functions. By exploiting the mathematical structure 
of the problem, this typically results in much tighter bounds. In the next section, a 
description of the problem is presented. 

2. Problem Description 

This paper addresses the problem of identifying all solutions of a nonlinear system 
of equations subject to inequality constraints and variable bounds and is formulated 
as: 

hj(x) = O, jEA/'E (S) 

gk(x) <o,  k~Xz 

X L < X < xU~ 

where AlE is the set of equalities, .Mz the set of inequality constraints, and x the 
vector of variables. Note that in formulation (S) the total number of variables is 
allowed to be different than the total number of equalities so as neither the existence 
nor the uniqueness of a solution of (S) is postulated. Therefore, both overspecified 
and underspecified systems are included in the present investigations. Note that a 
number of important problems naturally arise as special instances of formulation 
(S). On one hand, by omitting all inequality constraints, (S) corresponds to a system 
of nonlinear equations. On the other hand, by eliminating all equality constraints 
(S) checks the existence of feasible points for the given inequality constraint set 
(feasibility problem). 

Formulation (S) can be transformed into the following min-max optimization 
problem [15] 

min max Ihj(x)l  x j6A;E 

subject to gk(x) _< O, k 6A/) 

x L ~ x < x U. 

By introducing a single slack variable s, the min-max problem can be written as 
the following optimization problem (P0). 

min s (PO) 
x,s_>O 

subject to hj (x)  - s < O, j 6 ACE 

- h j ( x ) - s  < O, j e . M E  

gk(x) <o ,  keN1 

xL_< X _< X U 
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Clearly, there is a one to one correspondence between multiple global minima 
(x*, s*) of (P0) for which s* = 0 and solutions of (S). This means that if the 
global minimum of (P0) involves a nonzero slack variable s* then the original 
problem (S) has no solutions. Note that, unless the functions h i (x)  and gk(x) 
are linear and convex respectively, formulation (P) corresponds to a nonconvex 
optimization problem. This implies that if a local optimization approach is used to 
solve (P0), one might miss some of the multiple global minima of (P0) or even 
erroneously deduce that there are no solutions for (S). Therefore, an approach that 
is guaranteed to always locate all multiple global minima of (P0) appears to be 
necessary for solving (S) so that (i) the correct solution vector (x*, s*) is identified 
and (ii) all solutions (x*) of(S) with s* = 0 are found in all instances. In this work, 
a deterministic global optimization is proposed which is guaranteed to locate all 
e-global minima of (P0) through the successive refinement of converging lower 
and upper bounds on the solution based on the solution of convex optimization 
problems defined by a branch and bound approach. A lower bound on the solution 
of (P0) is found by first replacing each nonconvex constraint in (P0) with a convex 
underestimation of it and then finding the solution of the convex relaxation OR) of 
(P0) with commercially available solver such as MINOS5.4 [28] as shown in [22] 
and [23]. This approach naturally partitions the constraints of formulation (P0) 
into convex (for which no relaxation is required) and nonconvex constraints. This 
partitioning yields the following alternative formulation (P): 

subject to 

min s 
x,s>O 

none _ \ hj ( x ) - s  <_ O, j E.A/noncE 
nonc - h  i (x) - s < O, j E .A/noncE 

g~~ _<0, kEA/'noncI 

h~m(x) = O, j e J~nnE 

g~~ < O ,  jEA/'convl 

xL___ x _< x v 

(P) 

Here J~fnoncE,J~flinE a r e  the sets of nonconvex and linear equality constraints 
respectively, and Afnonc~, A/'convZ are the sets of nonconvex and convex inequality 
constraints, 

= A;.onc  u  mE, X1 =  Y.o.c  u X onv . 

A convex relaxation OR) of (P) of the form, 

min s (R) 
X,s>_O 

subject t o  ~,nonc{_ \ _ ,~+, j  ~ x )  - -  8 < O, j E .A/noncE 
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h n o n c  / x _ , j ( x ) - s  < 0, jEA/noncE 

tF~ < o, k ~ Nnona 

h~(x )  = O,j e A/naB 

g~onv(x) < 0, j e A/convz 

xL_< x _< x v 

can be obtained by replacing the original nonconvex functions hff~ - hy ~ (x), 
hnonc (X~ ]znonc (X ~ ,~noncr-..~ with some convex tight lower bounding functions +,J ~ J' - o ,  / '  Y k  k~J  

~nonc/. ~ +,j ~ /, _,j ,x), gk (x) must be k (x). These lower bounding functions hn~ ~ hn~ ~ -none . 

(i) convex in Ix L, x Uj ; (ii) valid underestimators of the original functions hnonc 

_/,nonc.~3 , ~k"n~ and (iii) for every point x e .Ix L, x U] the maximum separation 
between the original functions and the convex underestimators must become arbi- 
trarily e small by appropriately reducing the size of the rectangular domain [x l, x u] 
around the point x inside which the convex underestimators are defined�9 These 
requirements are expressed mathematically as follows: 

�9 hn~ ~ hn~ and znonc(va be convex VX E [xL,x U] PROPERTY 1 +,j ~ /, - , j  ~ /, vk ~ ' /  

PROPERTY 2. h~~ ">/Izn~ ~ none _ iZn~ and .noncr..~ > _ + , j ~  j,  - h i  ( x )  > - o ~  J' vk ~-'-J - 

ononcrv~ V x ~ [ x L ,  x U] k \""1 ~ 

an ,> 
...l II 1/2 

II x~' - 7 , ,  2 > 0 such that 

~ x m a X  (h~~ hn~ 
e[xZ,x~] - +'s ~ /J < e, 

max (-h~~ hn~ < e, 
xe[xl,x,,] - - J  ' ' /  

max (g~~ ~~ < e. 
x~[xl,x,,] 

Property 3 requires that the maximum separation between the nonconvex function 
and its tight convex lower bounding function, defined inside some rectangular 
region, must go to zero 

lim e = O .  
~---~0+ 
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as the size of the rectangular domain approaches zero (6 = 0). This is important for 
proving finite e-convergence. The order O (e) = 0(6 n) with which e approaches 
zero as 6 goes to zero is important because it determines the speed of convergence. 
Clearly, the largest possible value for n is desirable so as the maximum tolerance 
reaches an arbitrary value e for a not too small variable range 6. For example, if 
the maximum separation e goes as 62 then a value of just 6 = 0.01 suffices to meet 
a convergence tolerance of e = 0.0001. 

An efficient convex lower bounding of nonconvex functionals appearing in 
formulation (P) is clearly central to the design of the proposed global optimiza- 
tion approach for locating all solutions. Undoubtedly, the tighter the convex lower 
bounding is the better the quality of the obtained lower bounds will be, and conse- 
quently the faster the algorithm will converge. The tightest possible convex lower 
bounding function for any arbitrary nonconvex function f ( x )  inside some rectan- 
gular region P is called the convex envelope ~b(x) of f (x ) ,  and it must conform to 
the following properties [15]: 

(i) ~b(x) convex for all x E P .  
(ii) f ( x )  _> ~b(x) for all x E P.  

(iii) For all functions 9(x) that satisfy (i) and (ii), ~b(x) _> g(x) for all x E P .  

Unfortunately, in all but the simplest cases there exists no method for deriving 
the convex envelope for arbitrary functions defined inside arbitrary domains. As a 
result, the focus in this work is to identify the maximum possible function which 
satisfies properties (i) and (ii). There exists a number of techniques for obtaining 
functions that satisfy properties (i), (ii). In the following sections, a number of 
convex lower bounding procedures are discussed which can be of use not only for 
the problem of locating all multiple solutions but also for any deterministic branch 
and bound global optimization algorithm based on convex lower bounding. The 
first convex lower bounding technique is motivated by the fact that a large number 
of nonconvex terms appearing in different models are or can be transformed into 
the product of functions of a single variable (univariate functions). By exploiting 
the properties of products of univariate functions, tight convex lower bounding 
functions are derived in the next section. 

3. Products of  Univariate Functions 

A function f : T~ ~ R of a single variable z is called univariate function. Products 
of univariate functions fi, 

N 

: ( x )  = I-[ 
i=1 

are in general nonconvex functions even if the corresponding univariate func- 
tions are convex. By utilizing appropriate linear transformations, if necessary, a 
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large number of nonlinearities appearing in applied mathematics and engineering 
problems can be described as products of univariate functions. 

A1-Khayyal and Falk [3] showed that the nonconvex bilinear product of xy 
inside the rectangular domain ]xL,xUIx [yL, yU[ can be tightly convex lower 

r ~ P q 

I . . I  I . . I  

bounded by the following linear cut: 

max (xLy q- xy L -- xLy L, xUy + xy U -- xUy U) 

First, the conditions under which a similar result holds for the product of two 
arbitrary univariate functions f (x) and g(y) are investigated. 

THEOREM 1. If f, g are twice differentiable univariate functions f (x ) ,  g(y) 6 C 2 
definedinsidearectangle [(xL, xU) , (yL yU)] and 

l(x, y) = max{ r + r f(x) ) _ fLgL, 
r + r I(x) ) _ fUgU} 

where 

fL = inf f(x), 
xL<m<X U 

f u  = sup f(x), 
xL<x<Z U 

gL = inf g(x), 
xL<x<x U 

gU = sup g(x) 
xL<x<x U 

and r 1 6 2 1 6 2  r  are the convex 
envelopes of the univariate functions f L g(y ), gZ f ( x ) ' f i g ( y ) ,  andgV f ( x ) respec- 
tively then: 
(i) l(x,y)isconvex, V(x,y) 6 [xL,xU] • [yL, yU]. 

( g ~ f ( x ) )  - S ~g~ are convex as the sum of the convex envelopes of univ~iate 
functions. Since the maximum of two convex functions is a convex function as well, 
statement (i)is true and l(x, y)is convex for all (x, y) in [x L, xU] • [yL, yU] 

Because, 



150 

we have 

(f(x)-f~) (~(~)-~')_> 0,~(~,~)~ [x~,x~] x [~,~] 
After rearranging terms we obtain, 

f(x)g(y) )_fLg(y)+ f(x)gL-- fLgL, V(x,v) E [xL,xU] X [yL yU]. 

By the definition of the convex envelope we know that, 

fLg(y) >_ r E [yL, yU], 

gLf(x) )_ r [xL, xU]. 

Therefore, 

f(x)g(y) 

Furthermore, by following the same line of reasoning on the relation, 

( f ( x ) - f )  (~(~)-~)_> 0,~(~,~)~ [~,,x~] x [~,,~], 
we obtain: 

f(x)g(y) > 

Relations (1),(2) imply that statement (ii) is true. 

C. D. MARANAS AND C. A. FLOUDAS 

(1) 

THEOREM 2. If(i) the univariate functions, 

gLf(x),gUf(x) and fLg(y), lUg(y) 

areconcave in [x L, x U] and [yL yU] respectivelyand(ii)the functions f (x ) ,  9(Y) 
are monotonic, then l(x, y) is the convex envelope of f (z)g(v). 

Based on Theorem (1) function l(z, y) can be utilized as a tight convex lower 
bounding function of the product of two continuous and twice differentiable func- 
tions. It can also be shown that under certain conditions l(z, y) corresponds to the 
actual convex envelope of the product f(x)g(y). These conditions are stated in the 
following theorem: 

(2) 

[] 
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Proof. Theorem (1) proves that function l(x, y) conforms with Properties (i) 
and (ii) of Section 3. Therefore, it remains to show that it satisfies Property (iii) of 
Section 3. Because the convex envelope of a univariate concave function defined 
in an interval is the line segment connecting the the two end points we have: 

r ) gU If(x;) U -- f(xL) xUI(xL) --xLI(xU)} 
= ~L x + - Z - 7  J' 

i y~ 7 + y~ y~ ]' 

+(f g(,,)) : s<,  
g ( y u )  _ g(yL) x + 

yV _ yL 
y~ g(yL) _ ~,~ g (d..l) ] 

Y ' - 7  J" 
After substituting these expressions into the relation for l(x, y) we obtain: 

l(x, y) = max (/1 (x, y), /2(x, y)) 

where 

ll(X,y ) -~ 

+ 

gLI(X U) _ f(xL)" [ILU(yU) _ g(yL), 
- ~  xL X + L - ~ - ~  Y 

gLXUf(xL)_xLf (x  U) yUg(yL)_yLg(yU) 
"-~ = "~  ..[_ fL yV _ yL _ fLgL] 

r,<.,(,'--') -,(,'-.)1 7 7 J~+ [" 7e yL jY 

+ [ ~ ffy%(yr')-yLn(yU) zL + u U _ yL -- IUo U 

Because f(x),  g(y) are monotonic one of the following alternatives is true: 

(a) I ( x  L) = I L, i ( x  U) = I v ' g(xL) = gL, g(x U) = gU, 

@) f(x L)=.fL,  i ( z u ) = i  ~, g(x L)=gU, g(x ~ ) = g L ,  
(c) I ( x  L) = I U, i ( zU)  = is,,  g(zL) = gL, g(xt ')  = gU, 

(d) f (x  L) = i v ,  f ( x  U) = IL, g(x L) = gV, g(x U) = gL. 
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Fig. 1. 

(x~,#) R (x%y ~ 

% 

(xL#) (x~,y ~) 
Decomposition of rectangle R into two triangles T~, T2. 

Assuming that (a) is true we have: 

ll(xL, y L) = f(xL)g(yL),  

l l (xL,y U) = f(xL)g(yV),  and 

l l(xU,y L) -~- f(xU)g(yL). 

This implies that one can partition the original rectangle 

into the following two disjoint triangles, 

T1 = [(xL, yL) , (xL, yU) , (xU,yL)] , and 

12(xU, y U) = f(xU)g(yU), 
12(x L,yU) = f(xL)g(yU), 
12(x v ,yL)  = f(xV)g(yL).  

at whose vertices the linear functions ll (x, y), 12(x, y) match the original product 
of univariate functions f (z)g(y) respectively (See Figure 1). 

If l (z, y) were not the convex envelope of f (z) g (y) over the rectangular domain 
T~ then, there would be a third convex function 13 (x, y) underestimating f (x)g(y)  
over T~ and a point (2, if) E R such that: 

l ( : ,  ~7) < 13(2, ~). 

Suppose that (2, y) E ~ .  Then (2, ~) is a unique convex combination of the three 
extreme points v 1 , v 2, v 3 of T1. Hence, for the affine function l, there exists unique 

~ i = l  Ai = 1 such that positive A1, )~2,/~3 satisfying 3 

l(2, ff) = 1 /~iV i = )~il(vi). 
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Because 13 is the convex envelope of f (x )g(y)  inside T~, (i) 13 is convex and (ii) it 
matches f (x )g(y)  at all vertex points like l(x, y) does which implies: 

t3(s:,~) = 13 : ~  < :~d3(~ ~) = ~ , x d ( r  = l(s:,~). 
i=1 i=1 

This contradicts the initial hypothesis l(:~, ~7) < /3(x, Y) and therefore, l(x, y) is 
indeed the convex envelope of f (x )g(y)  in ~ .  Note that a similar argument holds 
if (:L 77) E T~. Moreover, depending on which monotonicity combination (a), (b) 
,(c) or (d) is true it is always possible to partition ~ into two triangles T1, T2 
by halving along one of the diagonals. Therefore, by following the same line of 
thought for combinations (b), (c) and (d) it is straightforward to extent this proof 
for all monotonicity combinations. [] 

The analysis for the convex lower bounding of products of two univariate functions 
can be extended to accommodate the product of N univariate functions. This is 
accomplished by successively convex lower bounding pairs of univariate functions 
in a recursive manner until no pairs are left. One of the possible alternatives of 
combining pairs is to start with convex lower bounding the last two functions of the 
product and work your way to the front of the expression. Theorem (3) states that 
this procedure yields a convex lower bounding function for the initial product. 

THEOREM 3. I f f i  E c= [x ,xy I --, r +,i = 1 , . . . , N  and 

L(x) = Yo 

where 

= L (Y j+l f j+ l (X j+l ) )  L L max{+(fj+lyj+l)_l_ + L - -  Y j + l f j + l ,  

+(fY-I-lYJ-i-1)"i-+(YY'-I-lfj-t-I(ZJ"Pl)) -- Yj'-P-lfj+l, } U  U , 

j = 0 , . . . , N - 3  

and 

YN-2 max {+(fD_lfN(XN)) -i- +(fDfN-I(XN-1)) L L 
q~(fNU_lfN(ZN)) "-'l- +(fUNfN-I(XN-1) ) -- fNU_lfN U} 

L 
-- Yj+lfj+l, xj+I,Yj+I 

+ + <' <' 
- -  Y j + I ~ - I - 1 ,  } , 

j = 0 , . . . , N - 3  
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L/U N-2 

we have, 

i n f  s u p  L X L L 
XN,XN_I(r N))-}-~)( fLfN-I(XN-1))-  fN-lf~r 

then 
(i) L(x) is convex, Vx E [xL,xU] �9 

N 
(ii) 11 fi(xi) )_ L(x),Vx E [xL, xU] . 

i----1 

Proof. Starting from the beginning of the recursive definition of L(x),  
YN-2 is a convex function of (XN-I,XN) as the max of two convex func- 
tions. For the same reason YN-3 is a convex function of (XN-2, YN-2) or 
otherwise of (XN-2, XN-I,XN). By recursively substituting yj into the expres- 
sion for Yj-1 we deduce that for every j = 0 , . . . ,  N - 2, yj is a convex function 
of (xj+l,xj+2,. . . ,XN). Therefore, L(x) = Y0 is a convex function of 
(Xl, x2, �9 �9 �9 XN) which proves part (ii) of  Theorem (3). 

From Theorem (1) and the statement of Theorem (3) we have, 

fN_t(XN_I)fN(XN) ~> -- fN- l fN '  m a x  ( r -}- ~)(fL fN-I(XN-1)) L L 

YN-2 

and 

~+I(Xj+I)Yj+I > max (r + r (yL+lfj+I(Xj+I)) L L -- Yj+lfj+l, 

= yj, 
j = 0 , . . . , N -  3. 

By combining these last two sets of inequalities we have, 

N 

I I  s,(x,/>_ -- 
i=1 

which proves part (ii) of  Theorem (3). []  

Theorem (3) describes one possible way of recursively combining pairs of univari- 
ate functions. Theorem (4) states who many of  these alternative sequences exist 
for convex lower bounding the product of  N univariate functions. 
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THEOREM 4. There are, 

(N!) 2 

N2N-1 ,  

ways of  combining pairs of univariate functions in a product of  N univariate 
functions. 

Proof. Clearly, there exists ( g )  = g(g-1)2 ways of selecting the first pair of 

univariate functions to be convex lower bound. After this action, we are left with 
g - 1 functions which implies that there are ( Y21 ) ~-- (N-1)(N-2)2 alternatives 

for picking the next pair of functions. This recursive convex lower bounding 
is continued until we are left with only a pair of functions involving a single 
convex lower bounding alternative. Because every convex lower bounding stage 
is independent of the previous one, the total number of ways of combining pairs 
the N univariate functions in pairs of two is: 

I I  2 = I I  i ( i -  1) N ! ( N -  1)! (N!) 2 
i=2 i=2 2 - 2 g -1  - N2N_------ ~ . O 

Examples of convex lower bounding of products of Nunivariate functions are given 
in Appendix A. Furthermore, conditions for convexity/concavity are provided for 
generalized polynomial terms, which are a special case of products of univariate 
functions, in appendix B. From the analysis in the previous sections it is clear that 
in order to convex lower bound the product of univariate functions it is necessary 
to be able to obtain the convex envelope, or at least a tight convex lower bounding 
function, of arbitrary univariate functions. To this end, guidelines for constructing 
the convex envelope of arbitrary functions of a single variable inside a certain 
interval are presented in the following section. 

3.1. CONVEX ENVELOPES OF UNIVARIATE FUNCTIONS 

Computing the convex envelopes of arbitrary twice differentiable functions in 
a single variable appears frequently as a task in many complex convex lower 
bounding situations. In some cases, this is a straightforward task, for example if 
f E C 2" [a, b] ---+ R is convex then its convex envelope coincides with the original 
function: 

r  = f ( x ) , V x  E [a,b] if and only if f (x ) i sconvexin[a ,b] .  

If now f (x) is concave, then its convex envelope is a line segment connecting the 
end points of the graph of the function: 

r  = f(b) - r ~j,aJ x + bf(a) - a f ( b ) , v x  E [a,b].  
b - a  b - a  
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Original function 
. . . . . .  C o n v e x  E n v e l o p e  

/ ul i 

xi 

Fig. 2. Convex envelope of univariate function. 

Constructing the convex envelope of an arbitrary nonconvex function, however, 
is a much more demanding task because its graph alternates between convex 
and concave portions. In general, the convex envelope of nonconvex univariate 
functions is composed by different representations in different subintervals. More 
specifically, the convex envelope curve alternates between the original function 
(convex portions of the curve) and line segments (concave portions) (See Figure 2). 

l r The challenge here is to locate the exact points %, %k = 1 , . . . ,  K where the 
convex envelope changes representation from a line segment to trace the curve 
of the original function and vice-versa. The number of these "switch-over" points 
depends on the frequency that f l l (x)  changes sign in the interval [a, b]. The actual 
locations of these points depend not only on the shape of the function but also on 
the location of the end points. 

Locating the exact location and number of points c~, c~k = 1 , . . . ,  K requires 
knowledge of global information about the univariate function f (x) in the interval 
[a, b]. More specifically, the location of all unconstrained local minima li, local 
maxima ui, and inflection points dli, dui is needed: 

li : f l ( l i )  = 0, f" ( l i )  > 0, 

ui:  f f (u i )  = 0 ,  f f l(ui)  < 0, 

dli : flt(dli) = O, f ' (dl i)  < O, 

dui : f " (du i )  = O, f ' (dui )  > O. 

These points can be obtained by utilizing a robust solver guaranteed to locate 
all solutions of univariate functions in an interval [13]. Due to the alternating of 
convex and concave portions of the nonconvex function f ,  there is a specific order 
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with which these points appear in the graph of the univariate function f ( x )  which 
is: 

�9 . .[dl  - l - d u -  u ] i ' " .  

This naturally provides a partitioning of the initial interval [a, b] into convex 
subintervals [ dli , dui ] and concave ones [ dui , dli]. 

The procedure for locating the first point where the convex envelope changes 
representation depends on whether f ( x )  is convex or concave at x = a. If f is 
concave at x = a then the initial segment of the convex envelope is a line. The 
next segment of the convex envelope is the function itseff starting at the point x 
where the slope f~ of f equals the slope of the line connecting a with x. 

f(x)-f(a) = f'(x). 
x--a 

Note that x belongs to one of the convex subintervals [dli, dui] since f must be 
convex at x. This implies that the task of locating x corresponds to drawing a tangent 

from the fixed point (a, f(a)) to each one of the convex function representations 
defined in the subintervals [dli, dui]. Because there exists a single tangent to a 
convex function drawn from a point outside the a convex function [21 ] any standard 
bisection algorithm can be utilized to locate x. The correct subinterval [dli, dui] is 
then the one which provides a line that does not cut-off any portion of the curve 

f(x). 
If f is convex at x = a, then the initial segment of the convex envelope 

can be either a line or the function itself. If there exists a convex subinterval 

[ dli , dui ] , i = 2,... where the equation f ( x ) - f ( a ) = f' ( x ) ( x - a) has a solution 
x which defines a line that does not cut-off any portion of the curve f(x) then the 
initial segment of the convex envelope is a line connecting the points (a, f (a ) )  and 
(x, f ( x ) ) .  Otherwise, the initial segment of the convex envelope is the function 
f itself. The last point of this segment Xl is found by locating the end points 
Xl, x2 of the next subinterval where the convex envelope becomes a line segment. 
This corresponds to drawing a common tangent to f inside the intervals [d/l, dull  
and [dli, dui],  i = 2, . . . .  and is the solution of the following system of two 
equations: 

f ( x 2 )  - f ( z l )  = f ' ( x l )  = : ' ( x 2 ) ,  
X 2  - -  X l  

where Xl E [dll, dull  and x2 E [dli, dul l ,  i = 2, . . . .  Again, the correct subinterval 
[dli, dui], i = 2 , . . .  is then the one for which the line connecting the points 
(Xl, f ( x l  )) and (x2, f (x2))  does not cut-off any portion of the curve f ( x ) .  The 
next line segment is then found by iteratively solving the system of two equations 
for locating the new points xl, x2. This time however, Xl E [dli, dui] and x2 E 
[dlj, duj] ,  j = i+ 1, . . . .  This is continued until the end point x = b is met. Based on 
this analysis an iterative procedure is defined for constructing the convex envelope 
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of arbitrary univariate nonconvex functions. In the next section, an alternative 
convex lower bounding method is discussed for problems involving only signomial 
terms. 

4. Convex Lower Bounding of Signomial Problems 

A large number of systems of nonlinear equalities subject to nonlinear inequalities 
have or can assume a generalized geometric problem formulation [24]: 

min s 
t , s  

where 

subject to G J ( t ) -  G ~ ( t ) -  s < 0, j e A r S  

-- G J ( t ) + G ~ ( t ) - s < 0 ,  j E A r E  

G ) ( t ) -  G~( t )<  0, j e A r I  

t i > 0 ,  i = l , . . . , N ,  

N 

vT( t )  = cjk 1-i i , j 6 .AlE,m= 1,2,3,4. 
kEK'~ i=1 

Here t = ( t l , . . . ,  tN) is the positive variable vector; G~ n, m = 1,2, 3, 4, j E ArE (3 
Ar/are positive posynomial functions in t; aijk are arbitrary real constant expo- 
nents; whereas cjk are given positive coefficients. Finally, sets K~,  m = 1,2, 3, 4 
count how many positively/negatively signed monomials form the posynomials 
G~, m = 1,2, 3, 4 respectively. Clearly, the above formulation corresponds to a 
highly nonlinear optimization problem with a nonconvex constraint set and possi- 
bly disjoint feasible region. However, after applying the transformation, 

t i=expx i ,  i =  1 , . . . , N  

to the original formulation we obtain the following optimization problem which 
involves constraints that are the difference of two convex functions. 

min s 
X~S 

subject to Gl(x) - G2(x) - s _~ 0, j e AlE 

- G } ( x ) + G ~ ( x ) - s _ ~ 0 ,  j e A r E  

G~(x) -G~(x)  <0 ,  j e A r x  

x L <_ xi<_x U, i = l , . . . , N  
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where 

G~(x)  = ~ cjkexp aijkzi  , j E A : E , m =  1,2,3,4.  
kEKj m k i = l  

A convex lower bounding formulation can be obtained by underestimating every 
separable concave function with a linear function. An analysis on the convex 
lower bounding procedure as well as on a number of techniques that improve the 
computational efficiency of the approach are described in detail in [24]. 

5. Convex Lower Bounding Using aBB 

For arbitrary nonconvex functions f E C 2 " [X L, X U] ~ ~]'~, a convex lower 

bounding function/2 of f can be defined by augmenting f with the addition of a 
separable convex quadratic function of x as proposed in [23] and generalized to 
include equality and inequality constraints in [4]. 

where 

_ -  :<x/§ -x)" (x. -x) 

(1 } 
min Ak(x) �9 a _> max 0 , - ~  k 

xL<x<x U 

Note that a is a nonnegative parameter which must be greate r or equal to the 
negative one half of the minimum eigenvalue of f over x L < x < x v. The 
parameter a can be estimated either through the solution of an optimization problem 
or by using the concept of the measure of a matrix. The effect of adding the 
extra separable quadratic term to S is to make L convex by overpowering the 
nonconvexity characteristics of f with the addition of the term 2a  to the diagonal 
elements of its Hessian matrix. This function s defined over the rectangular domain 

x L, xV[, a of properties us use as a tight convex involves number which enable to 

lower bounding function of f .  These properties, whose proof is given in [23], are 
as follows: 

PROPERTY 1. s is a valid underestimator of f .  

[xL, x"], c(x) _< :(x). Vx 

PROPERTY 2. /3 matches f at all comer points. 

PROPERTY 3. s is convex in [x L, xU]. 
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PROPERTY 4. The maximum separation between s and f is bounded and 
proportional to a and to the square of the diagonal of the current box con- 
straints. 

max ( f ( x ) -  Z:(x)) = �88 xU - xLl] 2. 
x L < x < x  tr 

PROPERTY 5. The underestimators constructed over supersets of the current 
set are always less tight than the underestimator constructed over the current box 
constraints for every point within the current box constraints. 

PROPERTY 6. E corresponds to a relaxed dual bound of the original function 

f. 

This type of convex lower bounding is utilized for arbitrary nonconvex functions 
which lack any specific structure that might enable the construction of a more 
customized convex lower bounding function. 

6. Procedure for Locating All Solutions 

6.1. DESCRIPTION 

A deterministic global optimization approach is proposed for locating all e-solutions 
of nonlinear systems of equalities subject to nonlinear inequality constraints (S). 
By introducing a slack variable, the initial problem (S) is transformed into a global 
optimization problem (P) whose multiple global minima (if any) correspond to the 
multiple solutions of (S). A zero objective function value denotes the existence of 
a solution whereas a strictly positive objective function value implies that (S) has 
no solutions. This defines a one-to-one correspondence between solutions of the 
constrained system of equations (S) and multiple global minima with an objective 
value of zero for problem (P). However, it has been shown [14] that no algorithm 
can exactly locate all multiple global minima of (P) with a finite number of func- 
tion evaluations. A corrolary of this result [14] is that no algorithm can always 
localize, with a finite number of function evaluations, all globally optimal points 
by compact subrectangles in one-to-one correspondence with them. Therefore, a 
more tractable target, than finding all exact global minima of (P), is to find arbi- 
trarily small disjoint subrectangles containing all globally optimal points of (P), 
possibly not in a one-to-one correspondence. 

These multiple e-global minima of (P), (if any) can then be localized based 
on a branch and bound procedure involving the successive refinement of convex 
relaxations (R) of the initial problem (P). Formulation (R) is obtained by replacing 
the nonconvex functions '~3fin'~ --hn'~176 , vk"n~ with tight, convex lower bounding 

functions ~nonc ~znone p, none by following some of the techniques discussed in 
+ , J  ~ - - ,3  ~ k  ' 

the previous section. Because (R) is convex, its global minimum within some 
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box constraints can be routinely found with any commercially available local 
optimization algorithm and will always underestimate the global minimum of (P) 
within the same box constraints. Therefore, if the solution of (R) inside some 
rectangular region is strictly positive, then the solution of (P) inside the same 
rectangular domain will also be strictly positive. A strictly positive solution for (P) 
implies that the slack variable s cannot be driven to zero, and thus (S) is guaranteed 
not to have any solutions inside the rectangular region at hand. This provides 
a mechanism for fathoming (eliminating) parts of the target region which are 
guaranteed not to contain any solutions. If on the other hand, the global minimum of 
01) is negative then (P) may or may not involve a solution with a zero slack variable 
and therefore no deduction can be drawn regarding the existence or not of solutions 
for (S) inside the current rectangular domain. In this case, further partitioning of 
the current rectangular region is required until the global minimum of (R) becomes 
positive (fathoming) or a feasible point for (P) is found (convergence). 

Based on Property (3) which demands that the convex lower bounding func- 
tions h~  he, ~nonc ~,nonc must be tight, the maximum separation between the original 

, J  , o _ , j  , :tk 

functions and the convex underestimators can become arbitrarily e-small by appro- 
priately reducing the size of the rectangular domain. This implies that as the current 
box constraints [x L, x U] collapse into a point the maximum difference e between 
the original constraint set and its convex relaxation goes to zero. Therefore, any 
feasible point of problem (R) becomes at least e-feasible for problem (P) by suf- 
ficiently tightening the bounds around this point. Tighter box constraints can be 
realized by partitioning the current rectangular domain into a number of smaller 
ones. Note that subdivision is required only for the variables which participate in 
nonlinear terms appearing in (P). 

One way of partitioning is to successively divide the current rectangle in two 
subrectangles by halving on the middle point of the longest side of the initial 
rectangle (bisection). At each iteration the lower bound of (P) is simply the infimum 
over all the minima of problem (R) in every subrectangle composing the initial 
rectangle. Therefore, a straightforward (bound improving) way of tightening the 
lower bound is to halve at each iteration, only the subrectangle responsible for 
the infimum of the minima of (R) over all subrectangles, according to the rules 
discussed earlier. Clearly, if the global minimum of (R) in any subrectangle is 
strictly greater than zero we can safely ignore this subrectangle because the global 
minimum of (P) cannot be situated inside it (fathoming step). This procedure 
generates a nondecreasing sequence for the lower bound of (P) yielding a set of 
candidate rectangles for containing a solution of (S). Convergence is reached when 
none of the rectangles involve a negative lower bound (no solutions), or when all 
of the remaining rectangles with negative lower bounds are within the prespecified 
size tolerance er. The basic steps of the proposed algorithm are summarized in the 
following subsection. 
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6.2. ALGORITHMIC STEPS 

STEP 0 - Initialization 
A size tolerance e, and a feasibility tolerance e are selected and the iteration 

counter I ter  is set to one. Appropriate global bounJs X LBD ~ X UBD on x are chosen 
and local bounds X L'I ter ,  X U'Iter for the first iteration are set to be equal to the global 
ones. Finally, select an initial point X c'Iter that satisfies the linear equalities and 
convex inequalities of (P). 

STEP 1 - Feasib~ity and Convergence Check 
If the maximum vi~ation of all nonconvex constraints of (P) calculated at the 

current point x c'Ite~ for (s = 0) is less than e f,  

m a x [  max h~~ m a x  g~~  
[j~H.o.r ' keX.o.oi -- 

then the point x r is a ey-solution of (S). Fathom current rectangle if its diagonal 

is less than e~, 

IIxU, Iter _ xL,Iterll < ,~. 

and GO TO Step 4. Otherwise, continue with STEP 2. 

STEP 2 - Partitioning of Current Rectangle 
Ix L,Iter, x U,Ite~] is partitioned into the following two The current rectangle 

rectangles (r = 1,2): 

" L,Iter 
X 1 

L,Iter 
XlIter 

xU1 ,Iter 

L,iter__xU,Iter,~ 
Xllte r T life r 

2 

L,Iter U, I ter 
X N X N  

L,Iter xUl,Iter 
X 1 

L'Itev--xU'Iter ~ 
Xlite r "t- life r ) U, l ter  

2 XIIter 
: 

X ~  Iter X ~  I ter  

where l Iter corresponds to the variable with the longest side in the initial 

rectangle, 

liter = argmax (x~, zter _ z L ,  Iter) 

STEP 3 - Solution of Convex Problems Inside Subrectangles 
Solve the following convex optimization problem (R) in both subrectangles 

(r = 1,2) by using any convex nonlinear solver (e.g. MINOS 5.4 [28]). If the 
r,lter is negative then, it is stored along with the value of the variables x solution S so l 
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r,rter .r  r,Iter is strictly positive then the element (r, I t e r )  at the solution point Xso t . xi S so t 
is fathomed. 

STEP 4 - Update Iteration Counter I t e r  and Lower Bound 8 LBD 
The iteration counter is increased by one, 

I t e r  ~ I t e r  + 1 

and the lower bound 8 L B D  is updated to be the minimum solution over the stored 
ones from previous iterations. Furthermore, the selected solution is erased from the 
stored set. 

8 L B D  r l , I t e r  t 
= 8 s o  l 

r ' , I t e r  I �9 r , I  
where Sso I = mmSsoz, r =  l , 2 ,  I : l , . . . , I t e r - 1 .  

STEP 5 - Update Current Point X c'Iter and Current Bounds X L'Iter, xU, Iter 

The current point is selected to be the solution point of the previously found 
minimum solution in STEP 4, 

x C , I t e r  r t , I t e r  I 
: X s o  l 

and the current rectangle becomes the subrectangle containing the previously found 
solution, 

" xlL,I ter t  xUl,Itert 

x L , I t e r  ' 
l i ter!  

L , I t e r  I 
X N 

L , I t e r  I 
X 1 

xL , I  ter t .l.xU, I ter t 
l i ter!  ~ l i t e r  t ] 

2 

U, I t e r  I 
X N 

Ix L , I t e r r _  U,I~er I 
l i ter!  -I-Xllter! 

2 

L , I t e r  I 
X N 

xU,  Iterl  

xU,  I ter  ' 
IItert  

U, I ter  I 
X N 

, if r' = 1, 

, if  r l = 2 .  

STEP 6 - Check for  Convergence 

I F  8 L B D  < O, then return to STEP 1. 
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Otherwise, terminate. 

Mathematical proof that the proposed procedure is guaranteed to converge to a 
set of disjoint rectangles containing all global minimum solutions of (P) is given 
based on the analysis of a standard deterministic global optimization algorithm 
presented in [15]. Because the employed branch and bound technique fathoms 
only rectangles guaranteed not to contain any global minima of  (P) no solutions 
of (P) which are at least er apart are missed. By following the proof in [23], a 
sufficient condition for the proposed branch and bound algorithm to be convergent 
to the global minima, requires that the bounding operation must be consistent and 
the selection operation bound improving. 

A bounding operation is called consistent if (i) at every step any unfathomed 
partition can be further refined, and (ii) for any infinitely decreasing sequence 
of successively refined partition elements the gap between the lower and upper 
bounds goes to zero as the iterations go to infinity. Due to properties (1),(2),(3) of 
Section 2 the gap between the lower and upper bound for any partition element 
goes to zero as the size of the partition element goes to zero as well. Furthermore, 
the employed bisection subdivision process (bisection along the longest side) is 
exhaustive because the size of an infinitely partitioned element goes to zero. There- 
fore, the bounding operation is consistent. Also, the employed selection operation 
is bound improving because the partition element where the actual lower bound 
is attained is selected for further partition in the immediately following iteration. 
Therefore according to Theorem IV.3. in [15] the employed global optimization 
algorithm is convergent to the global minima of (P). In the next section the proposed 
global optimization algorithm is applied to a number of example problems. 

7. Computational Results 

In this section, a number of test problems are addressed which are aimed at deter- 
mining the ability of the approach to find all solutions of constrained systems of 
equations with reasonable computational requirements. The proposed branch and 
bound convex lower bounding algorithm has been implemented in GAMS [5] and 
computational times are reported for all examples on a HP-730 workstation with 
size and feasibility tolerances of 10 -4 . 

EXAMPLE 1. The first example involves the location of all the stationary points 
of the Himmelblau function as described in [33]. 

4x 3 + 4XlX2 + 2x~ - 42xl - 14 = 0 

4x32 + 2x 2 + 4xlx2 - 26x2 - 22 = 0 

-5 .0  < Xl < 5.0 

-5 .0  < x2 < 5.0. 
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First, the change of variables 

9 9 
Y l = l . 0 + ~ ( X l + 5 . 0 ) ,  Y E = I . 0 +  (x2+5 .0)  

is performed which ensures that all variable are positive. This results in the follow- 
ing system of equations: 

2 3 30 2 20 2 1 2 17 
- - +  Vly2 + 7 v2 + E y l  - 1 = o 

2 y ~ _  30 2 2 127 1 2 20 
121 ]-~Y2 + i -~YlY2 + "i-~Y2 + - ~ Y l  -- T ~ Y l  - 1 = o 

1.0 _< yl ~ 10.0 

1.0 < Y2 _< 10.0 

Then the exponential variable transformation, as described in section 4, is applied. 
The resulting problem is solved in 197 iterations and 10.89 seconds of CPU time. 
All nine solutions are found and shown in Table I. 

TABLE I. Nine solutions of 
Example 1 

# S o l  x 1 x 2 

1 -0.2709 -0.9230 

2 -0.1279 - 1.9538 
3 3.5844 -1.8481 

4 3.3852 0.0739 
5 3.0000 2.0000 

6 0.0867 2.8843 
7 -2.8051 3.1313 
8 -3.0730 -0.0814 
9 -3.7793 -3.2832 

EXAMPLE 2. This example addresses the equilibrium of the products of a hydro- 
carbon combustion process [25]. The problem is reformulated in the 'element 
variables' space. 

YlY2 + Yl -- 3y5 = 0 

2ylY2 + Yl + 3R10Y22 + Y2y23 + RTY2Y3 + R9Y2Y4 + RsY2 - Ry5 = 0 

2y2y 2 + R7Y2Y3 + 2Rsy  2 + R6y3 - 8y5 = 0 

R9Y2Y4 + 2y 2 - 4Ry5 = 0 

YlY2 + Yl + Rloy 2 + Y2Y~ + R7Y2Y3 + R9Y2Y4 

+Rays + Rsy~ + R6Y3 + y~ - 1 = 0 
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0.0001 < yi < 100.0, i = 1 , . . . , 5  

The values of the parameters R, Ri, i = 5 , . . . ,  10 are shown in Table II. 

TABLE II. Parameters of Example 2 

R R5 R6 /~7 /% /% R10 

10 1.930 10 -1 4.106 10 -4 5.451 10 -4 4.497 10 -7 3.407 10 -5 9.615 10 -7 

Using the exponential variable transformation described in Section 4, the single 
solution of the problem is found after 631 iterations and 31.7 seconds of CPU time 
(see Table III). 

TABLE III. Solution of Example 2 

X 1 X~ ~3 X4 ~5 

0.00311410 34.59792453 0.06504178 0.85937805 0.03695186 

EXAMPLE 3. This example [6] addresses a badly scaled systems of equations: 

104XlX2- 1 = 0 

e x p ( - x l )  + exp ( -x2 )  - 1.001 = 0 

5.49010 -6 <_ Xl < 4.553 

2.19610 -3 < x2 < 18.210 

The bilinear terms X l X 2 , - x l x 2  are underestimated based on the analysis in 
Section 3, and the terms exp ( -Xl) ,  exp ( - x 2 )  are convex, however, - exp ( -Xl ) ,  
- exp ( -x2 )  are univariate concave terms and are convex lower bounded with a 
line segment. 

After 32 iterations and 1.5 seconds of CPU time, it is shown that 

(x~, x~) = (0.0000145067, 6.89335287) 

is a unique solution to the problem. Note that, the second solution (Xl, x2) = 
(0.00001098, 9.106) reported in [6] does not satisfy the nonlinear equations. 

EXAMPLE 4. This test example [11], involves a blend of trigonometric and 
exponential terms. 

0.5 sin (XlX2) - 0.25x2/Tr - 0.5Xl = 0 

(1 - 0 . 2 5 / - )  (exp (2Xl) - e) + ez21  - 2e 1 = 0 
0 . 2 5 < x l  < 1 

1.5 < x2 < 6.28. 
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The o~-based underestimation, described in Section 5, was chosen to address the 
convex lower bounding of the term sin(xlx2). The eigenvalues of this term are 
equal to: 

�9 ~1,2 = _1  (Xl 2 + x 2) sin(XlX2 ) 

q - l ~ 4 - 8 X l X 2 s i n ( x l x 2 ) c o s ( x l x 2 , + [ ( x 2 + x 2 ) 2 - - 4 ] s i n ( X l X 2 ) 2 2 .  

A lower bound on this expression is then: 

Amin > - m a x  [(xL)2, (xlU) 2] -- max [(xL)2, (xU)2]. 

Therefore, 

max [(xL)2, (xV) 2] + max [(xL)2, (xU) 2] 

2 

Two solutions are found for this problem in 45 iterations and 2.0 seconds of CPU 
time (see Table IV). Note that, both solutions were missed in [6]. 

TABLE IV. Solutions of Example 4 

#Sol z~ z~ 

1 0.29944869 2.83692777 
2 0.50000000 3.14159265 

EXAMPLE 5. This test problem is Brown's almost linear system [17]. 

2Xl +x2+x3+x4--]-z5-6 = 0, 

x l + 2 x 2 + x 3 + x 4 + x s - 6  = 0, 

X l + X 2 + 2 x 3 + x 4 + x 5 - 6  = 0, 

Xl + x2 + x3 + 2x4 + x5 - 6 = 0, 

XlX2X3X4X5 - 1 = 0 

- 2 < x i  < 2, i = 1 , . . . , 5 .  

TABLE V. Solutions of Example 5 

Sot# zl z2 z~ z4 zs 

1 1.000 1.000 1.000 1.000 1.000 

2 0.916 0 .916  0 .916  0.916 1.418 
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TABLE VI. Computational require- 
ments for Example 5 

a Iterations CPU (sec) 

1000 352 22.16 
100 112 7.42 
10 37 2.26 

5 12 0.69 
1 7 0.35 

This system exhibits two solutions: shown in Table V. The o~ parameter was used 
to convex lower bound the last and only nonconvex constraint. The computational 
requirements for different values of c~ are shown in Table VI. 
Note that the total number of iterations remains relatively small even for very large 
values of c~. Moreover, a value of o~ of as small as one appears to be sufficient. 

EXAMPLE 6. This example addressesarobotkinematicsproblem[17]. 

4.73110-3xlx3 - 0.3578x2x3 - 0.1238xl + x7 

-1.63710-3x2 - 0.9338x4 - 0.3571 = 0 

0.2238XlX3 + 0.7623x2x3 + 0.2638xl - x7 

-0.07745x2 - 0.6734x4 - 0.6022 = 0 

x6x8 + 0.3578Xl + 4.73110-3x2 = 0 

-0 .7623x - 1 + 0.2238x2 + 0.3461 = 0 

Xl 2 + x ~ -  1 = 0 

+ l = 0 

x 2 + x ~ -  1 = 0 

x72 + x82 - 1 = 0 

- l _ < x i  < 1, i = 1 , . . . , 8  

The only nonconvex terms in the formulation are the bilinear terms xxx3, x2x3,  x6x8 

and are convex lower bounded based on the analysis of Section 3. All distinct 16 
solutions of this problem are found in 2188 iterations and 109.58 seconds of CPU 
time. 

EXAMPLE 7. This example involves the solution of a circuit design problem with 
extraordinary sensitivities to small perturbations [32] leading to the following set 
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ofequations. 

(1 - XlX2)X3 {exp [x5 ( g l k -  g3/ex710 - 3 -  g5kx810-3)] - 1 }  

--g5k+g4kx2=O, k =  1 , . . . , 4  

( 1 -  XlX2) X4 (exp Ix 6 ( g l k -  g 2 k -  g3kX710-3 --k g4kx910-3)] --1 } 

-g5kxl +g4k = 0, k = 1 , . . . , 4  

XlX 3 -- X2X 4 ~ 0 

O < x i < l O ,  i = 1 , . . . , 9  

where 

k = 1 k = 2 k = 3 k = 4 
glk 0.4850 0.7520 0.8690 0.9820 
g2k 0.3690 1.2540 0.7030 1.4550 
g3k 5.2095 10.0677 22.9274 20.2153 
g4k 23.3037 101.7790 111.4610 191.2670 
gsk 28.5132 111.8467 134.3884 211.4823 

The a parameter was utilized to convex lower bound the various nonlinear terms. 
The single solution of the problem, 

( x~ = 0.899999, x~ = 7.999693 / 
x~ = 0.449987, x~ = 5.000031 

* = 1.000006, x~ = 0.999988 x 3 
x~ = 2.000069, x~ = 2.000052 
x~ = 7.999971, 

was first reported in reference [32]. Computational requirements for various values 
of a are shown in Table VII. Note that these CPU requirements are only a small 
fraction of the ones reported in [32]. 

TABLE VII. Computational require- 
ments for Example 7 

a Iterations CPU (see) 

0.1 1645 987.91 
0.01 212 143.41 

Furthermore, after relaxing the variable bounds to 

- 1 0  _< xi _< 10, i = 1 , . . . , 9  
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a second solution was found 

/ a:~ = 0.823226, x~ = -2.765092'~ 
x~ = -0.553286, x~ = 6.046646 ] 
x~ = 0.671878, x~ = 0.975940|  
x~ = -0.999677, x~ = -1.708489 ] 
x~ = 8.854525. / 

which was missed in all previous attempts at solving this problem. 

8. Summary and Conclusions 

In this paper a deterministic branch and bound type algorithm was proposed for 
locating all e-global solutions of certain classes of constrained systems of nonlinear 
equations. The approach is based on the one-to-one correspondence between the 
multiple solutions of the nonlinear systems and the multiple global minima with a 
zero objective value for the resulting nonconvex optimization problem. All mul- 
tiple e-global minima of the nonconvex optimization problem are localized based 
on a construction of upper bounds with function evaluations and lower bound 
on the global minimum solution through the convex relaxation of the constraint 
set and the solution of convex minimization problems. Based on the form of the 
participating functions, a number of alternative techniques for constructing this 
convex relaxation are proposed. In particular, by taking advantage of the properties 
of products of univariate functions, customized convex lower bounding functions 
are introduced for a large number of expressions that are or can be transformed 
into products of univariate functions. The utility of these convex lower bounding 
functions transcends the specifics of the root finding problem because they can be 
incorporated in any convex lower bounding algorithm. Alternative convex relax- 
ation procedures involve either the difference of two convex functions employed 
in o~BB [23] or the exponential variable transformation based underestimators 
employed for generalized geometric programming problems [24]. The proposed 
branch and bound approach is guaranteed to localize all e-solutions of (S) within 
arbitrarily small rectangles in a finite number of iterations. A number of exam- 
ple problems from many areas of research have been addressed and in all cases, 
convergence to all multiple solutions was achieved with reasonable computational 
effort. Furthermore, in certain cases new solutions were identified. 

Appendix A 
Convex Lower Bounding Examples of Univariate Functions 

In this appendix a number of convex lower bounding situations are examined. 

(1) Bilinear terms 
The convex underestimation of bilinear terms xy inside the rectangular region 
[xL, xU]x [yL, yU]can be handled by invoking Theorem (1)and setting f(x) =x 
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and g(y) = y: 

xy >_ max {xLy + yLx -- xLy L, 

xVy + yVx - xVy U} . 

Note that, the lower bounding procedure can be applied to a negatively-signed 
bilinear term - x y  by setting f (x) = - x  and g(y) = y: 

- x y  >_ max {-xVy - yLx + xUy L, 

--xL y -- yV x + xLyU}. 

Because in this case f(x),  g(y) are linear and therefore concave functions, we have 
from Theorem (2) that the obtained convex lower bounding functions are identical 
to the convex envelopes as were first derived by [3]. 

(2) Fractional terms 
Convex lower bounding of the linear fractional term x/g  inside the rectangular 
region [xL ,xUJx  [yL, yU] can also be accomplished based on Theorem (1)by 

selecting f ( x )  = x and g(y) - 1. 

x > m a x { r 1 6 2  
Y 

r x 

Note that, r =xy-r, r x =  y-tr and 

r 
f i ( Y ~ + v ~ - g  ifz s < o ' yLyU 

r = x~b(YL+Y~-v) ifx s < O. yLyU 

Therefore, 

7 - 7  - x > max -V + ifxL > 0 
-- x ~ x L Y y-~-- -k-~7~ ifxL < 0  

[. :]} T + 7 - 7 i f z v  > 

x ~_~ x U 
7 -  + 7  i fxU< 
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The same approach can be used for negatively-signed linear fractional terms. In 
this case, however, we have f (x)  = x, g(y) = -1/y .  After following the same 
analysis we obtain: 

�9 Oo] _ x  > max Y Y~ + ~ ifxL <- 
y -- _y__~+ y ~ _  ~ i f x L >  

y ~ + ~ ifz g <_ 0 

--~r + ~-@ - ~-~ ifx g > 0  " 

(3) Trilinear terms 
From Theorem (3) we know that a possible convex lower bounding function of xyz 
inside the rectangular region [x L, xU] x [yL yU] x [z L, z U] with x L, yL, Z L >0 
is: 

x y z > s  0 = m a x { x L s l + x s L - - x L s L , x U s l + X S f  - - xUsT} ,  

where Sl = max {yLz + yz L -- yLzL, yU z + yz U -- yU zU } 

and s L = yLzL, s~=yUzU. 

However, Theorem (4) states that there exist three different convex lower bounding 
schemes for trilinear terms. These other two alternatives are: 

xyz >__ so = max {yLsl +ysL--yLsLI ,yUsl +ysU--yUsU} , 

where Sl = max{xLz+xzL- - xLzL ,  xUz+xzU- -xUz  U} 

and sL1 = x L z L, 8~ = x v z ~ ,  

xy~ _> ~0 : max { z ~ ,  + ~ 4 -  z ~ 4 ,  ~1 + ~ 7  - Z~l~} ,  

where Sl = max {xLy + xy L -- xLy L, xUy + xy U -- xUy U} 

and s~=xZy z, s~=xVy v. 

After eliminating so, sl and substituting for s L, s~ we obtain for the three different 
convex lower bounding schemes: 

xyz > m a x  {xyLz L -t- xLyz L + xLyLz -- 2xLyLz L, 

xyUz U + xUyz L + xUyLz _ xUyLz L _ xUyUzU 
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xyLz L + xLyz U + xLyUz -- xLyUz U _ xLyLz L, 

xyVz v + xVyz U + xVyUz _ 2xVyUzU}, 
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xyz  > max{xyLz  L + xLyz L + xLyLz -- 2xLyLz L, 

xyUz L + xUyz U + xLyUz -- xLyUz L _ xUyUzU ' 

xyLz U + xLyz L + xUyLz -- xUyLz U _ xLyLzL  

xyUz v + xVyz v + xVyVz -- 2xVyVzV} ,  

xyz  > max{xyLz  L + xLyz L + xLyLz -- 2xLyLzL, 

xyLz U + xLyz U + xUyUz -- xLyLz U _ xUyUzU ~ 

xyUz L + xUyz L + xLyLz -- xUyUz U _ xLyLzL ' 

xyUz v + xVyz v + xUyUz -- 2xVyVzV} .  

The combination of ~1 three convex low~ bounding alternatives ymlds the fol- 
lowing eight linear functions in x, y, z whose maximum is a tig~ convex low~ 
bounding ~nction ~ r  xyz: 

xyz  > max{xyLz  L + xLyz L + xLyLz -- 2xL yL z L, 

xyUz U + xUyz L + xUyLz _ xUyLzL _ xUyUzU 

xyLz L + xLyz U + xLyUz _ xLyUz U _ xLyLzL  

xyUz L + xUyz U + xLyUz -- xLyUz L _ xUyUzU ' 

xyLz U + xLyz L + xUyLz -- xUyLzU -- xLyLzL, 

xyLz U + xLyz U + xUyUz _ xLyLz U _ xUyUzU 

xyUz L + xUyz L + xLyLz _ xUyUzU _ xLyLzL ' 

xyUz U + xUyz U + xUyUz -- 2xUyUzU}. 

(4) Fractional trilinear terms 
From Theorems (3), (4) we have that the three convex lower bounding alterna- 

tives for ~ inside the rectangular region [xL ,xU]x  [yL, y U ] x  [zL, z g] with 

X L, yL Z L ~ 0 are: 

x y  > so 
z 

= max {x  L81 --~ x s f  - x Lsf ,  x U81 + x8 U - x  U87} , 

{ yL z y yL yU y yU } 
+ Z L Z L where sl max + z U z v ' z 
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and 
yL S U yU 

8 L = Z-'-ff~ = Z"--~ 

x y  > so = max { yL sl + y s  L -- yL sL, yU 81 + y8 U __ yU 8 U } ,  
z 

where 81 = max 
{ xL z x x L X U x X U } 

+ Z U Z U~ Z + Z L Z L 

x L x U 

4 = = 7 

_ _  f z L z z L z U z z U 
xy  > so = max + + 
z -  ~ - ~  s U s U ' s l  s L s L ! 

where Sl = max { x L y  + xyL -- xLyL,  xUy  + xyU -- xUy  U}  

and sl  L = xLy  L, s v = xUy U. 

Again,  after eliminating so, 81 and replacing s L, s ~  we obtain: 

xy  L xLy xLy L xLy L Xyz - > max ~ + 7 - + - - z  2 - ~  , 

xy  L xLy xLy U xLy U xLy L 

z u + - - J - +  z - z - - - T - -  z - - - ~ ' '  
xy  U xUy xUy L xUy L xUy U 

Z L + - ~  + - -  zU Z L Z 
xy U xUy xVy v xVy v 
ZL + -  z - + - T  - 2 - ~ ,  

xy  L xLy xLy L xy > max + + -  2 xLyL 
z -  7 - -7  ~ ~u ,  

xy  U xUy xLy U xLy U xUy U 

z-'--U- "}- - ~  + - z  z v z L ' 
xy  L xLy xUy L xUy L xLy L 

Z U "}- ~ + --Z Z L Z U 
xy U xUy xUy U xUy U 

7 + - T + - - - i -  2 7 ~ , 
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z y  

Z 
f xy L xLy 

max [ - ~ - -  + -)-6- + - -  

xy L xLy 

zL + - - - ~ - + - -  

xy U 

z U + 
xy U 

z L + 

xLy L 2 xLy L 

Z Z U 

x U y  U x L y  L x U y  U 

Z Z L Z L 
x U y  x L y  L x U y  U x L y  L 

+ - - z  zU z U 

xVy xVy v xgy v ] 
- ~  + - - ; -  2 -  7 -  ] �9 

After combining all three convex lower bounding altematives, we obtain the fol- 
lowing eight convex functions in x, y, z whose maximum is a tight convex lower 
bounding function for xyz: 

~xy L xLy xLy L xLy L 
x y  > max + + - -  2 ~ , z -  [-iv-- -;v- 

xy L xLy xLy U xLy U xLy L 

zU q - " ~ ' 4 -  --Z Z n Z U ' 
xy U xVy xUy L xVy L xVy v 

z L + - - F  + - - z  z v z L ' 
xy U xUy xLy U xLy U xUy U 

z U -'[- - ' ~  "l- - -Z  Z U Z L ' 
xy L xLy xUy L xUy L xLy L 

Z ----~ "{" ~ "{- --Z Z L Z v ' 
xy U xUy xLy U xLy g xUy U 

z v + - - Z - + - -  Z Z U Z L 
xy L xLy xUy L xUy L xLy L 

Z u -[" - - ~  "4- --Z Z L Z U ' 
xy u xVy xUy U xUy U ] 

~L + --;z- + ----;- - 2 - - 7 ~  ~ �9 

Appendix B 
Convexity/Concavity Identification of Generalized Polynomial Terms 

In this appendix, necessary and sufficient conditions are provided for convexi- 
ty/concavity of generalized polynomial terms of the form: 

zdl i , d iEN,  i = l , . . . , N .  

Generalized polynomial terms are a special case of products of univariate functions 
by selecting fi(xi) = x~ ~. First, the two variable case f = x'~y b is considered. 
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THEOREM 5. I f  one of the following conditions holds, 

(1) x, y > 0. 
(2) a, bare even integers. 
(3) a, bare odd integers, andxy > O. 
(4) a, bare integers,ais odd, bis even, andx > O. 
(5) a, bare integers,ais even,bis odd, andy > 0 

then (a) f = xay b is convex in (x, y) if  one of the following is true: 

(i) a < 0 ,  b < 0 .  
(ii) a g 0 , 1 - a - b < 0 .  
(iii) b _ < 0 , 1 - a - b < 0 .  

and (b) f = xay b is concave in (x, y) if  

(i) a >_ O,b >_ O,a + b  <_ 1. 

Proof. The function f = xay b is convex in (x, y) only if all the eigenvalues of 
the Hessian matrix H of f are positive. The Hessian matrix H includes the second 
order derivatives of f with respect to x and y. 

:~x ~ 
= Ox 2 = a (a - 1) xa-2y b 

-~u where fxy = OxOy OyOx - 

fyu = 02f  = b (b - 1) xay b-2. 
Oy 2 

The eigenvalues A of H are the roots of the characteristic equation: 

:- + + = 0, 

This equation accepts only positive roots if and only if: 

f x x + f y y  >_ O, 

f ~ f y y -  f~  > o. 
After substituting the expressions for fzx, fyv, f~y we have, 

x~ b-2 [aea - 1)y 2 + beb - 1 ) : ]  > 0, 

yZb-2x2a-2 [ab (1 - a - b)] >_ O. 

Note that x2a-2y 2b-2 is always positive and furthermore xa-2y b-2 iS also positive 
if one of the conditions (1)-(5) is true. In this case, the conditions for positivity of 
eigenvalues can be rewritten as: 

a ( a -  1)y 2 + b ( b -  1)x 2 > 0, 

a b ( 1 - a - b )  > O. 
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These conditions are satisfied for every x, y E ~ only if all the following inequal- 
ities are satisfied: 

(i) a ( a -  1) _> O, 
(ii) b(b - 1) > O, 

(iii) ab(1 - a - b) > 0 

These inequalities decompose into the following three disjoint sufficient conditions 
for convexity of f = xay b assuming that one of the requirements (1)--(5) is true. 

(i) a < O , b < O .  
(ii) a g O ,  l - a - b _ < O .  

(iii) bgO,  l - a - b _ < O .  

Note that the requirements b > 1 in (ii) and a > 1 in (iii) are implied by the other 
two inequalities, and therefore are not included. 

The same analysis applies for checking concavity of f = xay b. The character- 
istic equation accepts only negative roots if and only if 

f x x q - f y y  <_ O, 

f xx fyy -  >_ o. 

After some algebra we obtain the following set of conditions for concavity of f .  

(i) a ( a - 1 ) ~ O ,  
(ii) b ( b -  1) ~ O, 

(iii) ab (1 - a - b) 

which alternatively 

(i) a _> O, b _> 

> 0  

can be written as 

0, a + b  < 1 [] 

Note that if the t e rm xa-2y b-2 is always negative, the conditions for convexi- 
ty/concavity are reversed. 

THEOREM 6. I f  one of  the following conditions holds, 

(1) a, bare odd integers, andxy < O. 
(2) a, bare integers,ais odd, his even, andx < O. 
(3) a, bare integers,ais even,his odd, andy < 0 

then (a) f = xay b is concave in (x, y) i f  one o f  the following is true: 

(i) a<O,b_<O. 
(ii) a _ < O , l - a - b < O .  
(iii) b _ < O , l - a - b < O .  
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and (b) f = xay b is convex in (x, y) i f  

(i) a >_ 0, b > O, a + b < 1 

The proof of Theorem 6 is completely equivalent with that of Theorem 5 and 
therefore it is omitted. 

A similar set of conditions for convexity/concavity can be obtained for the 
general n-dimensional case. For the sake of simplicity, we assume that xi > 0, i = 
1 , . . . ,  N, which can always be achieved with simple rescaling of variables. 

di THEOREM7. The function f "  ~N  __, ~+, f (x)  = I~N=I  x i is (a) is convex in 
x E ~N if  one o f  the following conditions is true: 

(i) di _< 0,Vi = 1 , . . . ,N ,  
(ii) 3jsuchthatdj  > 1 - ~.ig#jdi,and di < 0,Vi # j , i  = 1, . . .  , N  

and (b) is concave in x E ~N if  

(i) di > O, Vi = 1,. . .  ,N ,  and)~N=l di < 1 

di Proof. The second order derivatives of f = IIN=I x i are equal to: 

{ 
i # J 

f i j  = OxiOxj ~ f ,  i = j "  
x i 

The expansion of the Hessian matrix of f yields the following characteristic equa- 
tion: 

/~N + C N _ I ( d , x ) / ~ N - 1  + . . .  + Cl(d, x)A + Co(d, x) = 0 ,  

where 

N di (1 - di)f 
CN-l (d ,x )  = ~ x/2 

i=1  

N - 1  N 

Cy-2(d ,x)  = E E 
i=1  j-----i+ 1 

: __ : 

k 

1-[ dij 
C N - k ( d , x )  = ~ J=l 

didj (1 - d i - d j )  f2  
2 2 X i Xj 

1 - ~ dij 

k j=l fk 
rI 

j= l  
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1I di 1 -  ~ di 
Co(d,x)  = i=1 i = l  f N .  

N 

11,4 
i=1 

Note that the sets ~Pk, k = 1 , . . . ,  N contain all possible ways that k elements of 
the set N can be selected. 

{i:  1 < i  < N } ,  

{( i l , . . . , h r  : ij EAf, j = 1 , . . . , k  

il < i2 < . . .  < i k } , k =  l , . . . , N .  

and 

A sufficient condition for the characteristic equation not to accept any negative roots 
is that all terms C N - k ( d ,  x)A N-k, k = 1 , . . . ,  N maintain constant sign for every 
A < 0 and for every x E ~N. More specifically, all terms C N _ k ( d , x ) A  N-k ,  k = 
1 , . . . ,  N must be positive when N is even and negative if N is odd. This is satisfied 
if, 

_< 0, if k is odd Vx 
Vk = 1 . . . , N ,  CN-k(d, k) _> O, if k is even E ~N. 

These relations must be satisfied for every positive x, therefore they can be written 
equivalently as: 

Vk = 1 . . . ,  N ,  dij 1 - ~ dij > O, if k is even 
j = l  

for all ( i l , . . . ,  ik) E Pk. Note that if di <_ O, i = 1 , . . . ,  N then 

Vk = 1 . . . ,  N ,  1 - Z di~ >_ 0 and dij > 0, if k is even 
j = l  =1 -- 

for all ( i l , . . . ,  ia) E 7:'k, which implies that the characteristic equation accepts 
only positive roots for all x E !}r N when dl _< 0, i = 1 , . . . ,  N.  

If we now allow only one exponent to he positive di I _> 0, and di s <_ O, Vj  = 
2 , . . . ,  N then we have 

Vk = 1 . . . ,  N ,  dis < 0, if k is even "' 
j = l  

which means that the characteristic equation accepts only positive roots for all 
x E ~+N only if 

Vk = 1 . . . , N ,  1 - ~ di~ < 0, V ( i l , . . . , i k )  E 7:'k. 
j = l  
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Or equivalently, 

k 
dil >_ l - ~ dij. 

j=2 

Finally, it will be shown that these requirements cannot be satisfied if more than 
one di , i  = 1 , . . .  , N  is positive. Let di~,di2 > 0, then because ( i l , i : )  E Pl  we 
have:- 

d i l ( 1 - d , ~ )  < 0  and d , , ( 1 - d ~ )  < 0 .  

However, dil, di2 > O, therefore 

dia_>l and di 2_>1. 

Furthermore, (il, i2) E P2 so 

(di~ di: ) (1 - d i l  - d i 2 )  ~ 0 

or 

( 1 - d i l - d i 2 )  >_0 

which is in contradiction with dil, d!~ _> 1. Therefore, assuming conditions (i) or 
(ii) then f is convex in for all x E ~+ .  

By following the same line of thought, f is concave if all terms CN-k (d ,  x)/~N-k, 
k = 1 , . . . ,  N maintain constant sign for every A > 0 and for every x E ~N. This 
is true if, 

V k = I . . . , N ,  C N - k ( d , k ) > 0 ,  V x E ~ N .  

This can be written equivalently as, 

Vk = 1 . . . , N,  di~ 1 - E di~ >_ 0, 
j=l j=l 

For (k = 1 ) we deduce that, 

d i ( 1 - d i ) > _ O  or 0 < d i <  1, 

This implies that, 

Vk = 2 . . . , N ,  

which simplifies into 

N 
~ d i  < 1. 
i=l 

k 
1 - ~ dij >_ 0, 

j=l  

'x/(il , . . .  , ik) E Pk. 

Vi = 1 , . . . , N .  

V ( i l , . . .  , iD  E Pk, 
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Therefore, if condition (iii) is true then f is concave in for all x E N+N. [] 
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