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A Deterministic Global Optimization Approach
for the Protein Folding Problem

C.D. MARANAS, I.LP. ANDROULAKIS, AND C.A. FLOUDAS*

ABSTRACT. A deterministic global optimization algorithm is proposed for
locating the global minimum potential energy conformations of oligopeptide
chains. The ECEPP/3 detailed potential energy model is utilized to model
the energetics of the atomic interactions. The minimization of the total
potential energy is formulated on the set of peptide dihedral angles. Based
on previous work on the microcluster and molecular structure determina-
tion, a procedure for deriving convex lower bounding functions for the total
potential energy function is utilized which involves a number of important
properties. The global optimization algorithm a BB which has been shown
to be e—convergent to the global minimum potential energy conformation
through the solution of a series of nonlinear convex optimization problems is
utilized. The ECEPP/3 potential model is interfaced with BB in the pro-
gram GLOFOLD, and provisions have been made to accommodate user
specified partitioning of the dihedral angles into three sets. The first one
(i.e., global variables), consists of dihedral angles where branching occurs.
The second set (i.e., local variables) includes the dihedral variables where
branching is not necessary. The third set, (i.e., fixed variables) includes the
dihedral angles which are kept fixed. The proposed deterministic global
optimization is applied on a number of oligopeptide folding problems.

1. Introduction

The protein folding problem is one of the most challenging problems in bio-
chemistry. Predicting how a protein would fold is of paramount academic and
industrial interest. Many products of the rapidly developing biotechnology in-
dustry are novel proteins. It is already possible to design genes to direct the
synthesis of such proteins. Yet failure to fold properly is a common production
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concern. It is possible nowadays to produce proteins with a given amino acid
sequence and therefore, knowledge of how the protein would fold would allow
one to predict and fine—tune its chemical and biological properties. This would
greatly simplify the tasks of interpreting data collected by the human genome
project, understanding the mechanisms of hereditary and infectious diseases,
designing drugs with specific therapeutical properties, and growing biological
polymers with specific material properties.

From a chemical point of view, a protein is essentially a polymer chain com-
posed by a sequence of various amino acid residues connected with peptide bonds.
Proteins in living cells are composed of only 20 different amino acid residues. The
general form of these amino acid residues is shown in Figure 1. The form of the
side chain R (e.g., methyl, butyl, benzoic, etc.) defines all different amino acid
residues. The chemical structure of a protein is illustrated in Figure 2.

H H O

¥

— N—C—C—

FIGURE 1. Amino acid residue with side chain R.

Note that, the side groups R, vary from one residue to the other. Also
Euminos Eearboryr are the amino and carboxyl end groups respectively. The re-
peating unit -NC,C’- connected with peptide bonds defines the backbone of the
protein. Although, it appears linear in Figure 2, covalent bond angle require-
ments and interatomic forces bend and twist the chain in a way characteristic
for each protein. The protein chain “curls up” into a unique three—dimensional
geometric conformation called the folded state of the protein. It is exactly this
configuration which defines the shape of the protein surface as well as the partic-
ular chemically active groups present on the surface which in turn determine the
biological function of the protein. Predicting this energetically most favorable
conformation based solely on the atomic interactions is the objective of this work.
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FiGURE 2. Chemical structure of proteins.

In other words, given the primary structure of a protein (i.e., residue sequence
and type) predict its tertiary structure (i.e., 3-D conformation). In the next
section, a mathematical description of the protein folding problem is provided.

2. Mathematical Description

The geometry of a protein can be fully described by assigning a three—dimensional
coordinate vector,

z;
Ty = Yi 1=1,...,N
2
which specifies the position of each atom ¢ = 1,..., N in the protein molecule.

The bond vector between two atoms (i,j) connected with a covalent bond is

defined as:

i — Ty
iy = Y — Y
Zi — %4

The corresponding bond length is then equal to the Euclidean distance between
atoms i and j,

rij| = \/(m]» — ) +(y —w) + (5 —2)
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The covalent bond angle 8;;; formed by the two adjacent bond vectors r;; and
;1 can be computed by the following formulae (See Figure 3).

Tij - Tik

_ Tij X Tk
|7ijl1mixl’

sin (gl]k) =

cos (6;51) = -
Y |rij |l

Here r;; - v, is the dot product of the bond vectors r;; and r;y,

rij vk = (25 — @) (2 — z) + (Y — i) (e — ;) + (25 — 20) (2 — 2)

and r;; x r;p, is the cross product,

(yj —wi) (2 — 2;) — (27 — 2:) (ye — yj)
rij X rin = | (2 — ) (&1 — 25) — (7 — 2:) (21 — )
(zj —zi) (v —y5) — (yj — ¥) (2 — ;)

The dihedral angle w;jr € [—180°,180°] or the complementary torsion angle
¢ijk1 = wijr — 180° measure the relative orientation of two adjacent covalent
angles 6;;; and 8;; (see Figure 3). It is defined as the angle between the normals
through the planes defined by atoms %, j, k and j, k,! respectively, and can be
calculated from the following relations:

(rij X mjn) - (rjg X 7r1)
rij < el Irje < rea|
(Tkl X 7'2']’) “Tik |7“jk|

Irij X Pikl [rje X rril

COs (wi]'kl)

sin (wi]'kl) =

Instead of specifying the coordinate vector for all atoms in a protein molecule,
one can specify all bond lengths, covalent bond angles and dihedral angles. Under
biological conditions, the bond lengths and bond angles are fairly rigid and thus
can be assumed to be fixed at their equilibrium values. Under this assumption,
the dihedral angles along the backbone fully determine the geometric shape of
the folded protein.

The names of the dihedral angles of a folded protein chain follow a standard
nomenclature. The dihedral angle between the normals of the planes formed
by atoms CJ_, N;C, ; and N;C, ;C] respectively is called ¢; where i — 1 and 4
are two adjacent amino acid residues. The one defined by planes R;C, ;C] and
C. iC/Ni;1 respectively is called ¥; where ¢ and i + 1 are two adjacent amino
acid residues. Also w; is the dihedral angle defined by the planes C, ;C/N;;; and
CIN;41Cq,it+1. The letter x is utilized to denote the dihedral angles which are
associated with the side groups R;. Also the letter 8 is used to name the dihedral
angles associated with the two end groups. Figure 4 pictorially illustrates these
conventions.



GLOBAL OPTIMIZATION IN PROTEIN FOLDING

F1GURE 3. Bond vectors, covalent bond angles and dihedral angle

FI1GURE 4. Dihedral angles in a protein
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3. Potential Energy Model

Molecular mechanics calculations employ an empirically derived set of po-
tential energy contributions for approximating these atomic interactions. This
set of potential energy contributions, called the force field, contains adjustable
parameters that are selected in a such a way as to provide the best possible
agreement with experimental data. The main assumption introduced in molec-
ular mechanics is that every parameter is associated with a specific interaction
rather than a specific molecule (transferability assumption). These parameters
are bond lengths; covalent bond angles; bond stretching, bending, or rotating
constants; non—-bonded atom interaction constants, etc. Thus, whenever a spe-
cific interaction is present, the same value for the parameter can be used even
if this interaction occurs in different molecules [4]. Note that experimental re-
sults provide sufficient evidence that this is a reasonable assumption in most
cases. Many different models have been proposed for approximating the force
field, and some of the most popular ones are: ECEPP [10, 11, 12], MM2 [1],
ECEPP/2 [15], CHARMM [3], AMBER [18], GROMOSS87 [17], MM3 [2],
and ECEPP/3 [14].

In this work the ECEPP/3 potential model is utilized. In this potential model,
it is assumed that the covalent bond lengths and angles are fixed at their equilib-
rium values, and thus the protein conformation is only a function of the dihedral
angles. This implies that ECEPP/3 accounts for only energy interaction terms
which depend on the dihedral angles. The conformational energy is treated as
the sum of electrostatic, nonbonded, hydrogen bond and torsional contributions,
plus an additional loop closing potential if the polypeptide contains one or more
intramolecular disulfide bonds. Also the fixed internal conformational energy of
the pyrolidine ring is added for each propyl or hydroxyprolyl residue contained
in the polypeptide. The first three energy contributions are computed for each
atom pair (i,j) whose interatomic distance is a function of at least one dihedral
angle. This set of atomic pairs is denoted as P and includes the atomic pairs
which are separated by at least two other atoms.

The electrostatic energy Ugys is computed for each atomic pair (4,5) € £S =P
as a Coulomb potential interaction between two atom—centered monopole partial
charges ¢q; and q; where D is the dielectric constant.

Ups = Z qi9q;
L D rij
(i,j)€€S

A modified Lennard—Jones 12-6 potential is used to approximate the non-
bonded interaction energies between atomic pairs (¢, ) € A'B [14]. The set N'B
contains all atomic pairs P except for hydrogen bonding pairs.

Uvs = Y 7 AEORG)  CrikG)

12 6
|7ij |7ij

(4,5)eNB
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Here k(%) returns the atom type of atom 1 in the protein chain. The coefficients
Ar(iyk(j)s Cr(i),k(;) are assigned specific values for each combination of atom types
k(z) and k(j). F is assigned a value of 0.5 for 1-4 interactions and 1.0 for for
1-5+ interactions. An atom pair interaction is defined as 1-4 when the distance
between the interacting atoms is a function of only one intervening dihedral
angle. Any other interactions (7, ) € P is considered to be 1-5+.

Hydrogen—bond interactions are the ones between designated donor and ac-
ceptor atoms. The donors (H) are amine, amide, hydroxyl or carboxyl acid hy-
drogens and the acceptors (X) are uncharged ring nitrogens, amide nitrogens, or
hydroxyl ester, carbonyl, or carboxylic acid oxygens. A 12-10 potential function
is used to model the hydrogen bond interactions.

Z FA;c(i),k(j) B Bllﬂ(i)yk(j)

Unx = 12 10
|7ij |Pij

(1,j)€EHX
Note that P = NBUHX.
Torsional energy terms are included in the potential energy model to bring
the experimental and computed rotational barrier into agreement. These terms
are computed for all w dihedral angles and for some designated side—chain x and
end group 8 dihedral angles, but not for any ¢ and ¥ angles. Let 7OR be the
set of dihedral angles for which a torsional term is calculated. The form of the
potential function used is:

U
Uror = Z ;k (1 + cj cos nyty)
kETOR

Here U, ;, is the difference between the experimental barrier and the one calcu-
lated from the electrostatic, nonbonded, and hydrogen—bond potential functions,
1 is the value of the k'” dihedral angle for which a torsional term is included,
ny gives the symmetry of the barrier, and ¢, € {—1, 1} defines the sign for the
cosine term.

The cystine loop—closing energy Uroop and torsional energy Ucy s7 are com-
puted as the sums of terms for all disulfide bonds in the peptide. The loop—closing
potential penalizes any deviation of the interatomic distances S;S;, C? S;, and
Cf S; from their experimentally observed values (see Figure 5). Let SS be the
set of all disulfide bonds in the peptide. Then U;pop is defined as:

2 2 2
Uroor = Z B (TS,Sj _Tg,sj) + (Ts,cf - 7"2,05) + (’"Sjcf —’“chf) ]
(i,§)€SS

Note that T%,Sj = 2.04A° is the experimentally observed disulfide bond distance
and rglcf = rgjclﬂ = 3.052A° are the distances between S;,; and C’f/i so as the
covalent bond angles GclﬂSlSj and GS,Sij assume the experimentally observed
value of 104°. B is a penalty parameter assigned the value B = 100 kcal/molA®.
Torsional contributions to Ucy s7 from the angles CZ»C“C?SZ' S; and §;S; C’]@C’jCY are
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calculated as mentioned above with U, = 1.5kcal/mol. The contribution from
the dihedral angle C’Z»ﬁSiSj C’f is computed as a penalty term on the interatomic
distance r.s s according to the relation:

]

2
J— 0
USS =A Z (Tclﬂcjﬂ _rclﬂcf)

(i.4)€SS

The penalty parameter A is set equal to 10 kcal/molA? and the experimentally

observed interatomic distance Tl tO 3.855A.
17y

Ficure 5. Disulfide bonding

Finally, the additional potential energy term Upgro is added to account for
the internal conformation energy of proline and hydroxyproline residues. This
internal conformation energy depends on whether the peptide bond is on cis
or trans configuration. The total potential energy of the peptide chain, in the
context of the potential model ECEPP/3, can then be written as the sum of a
number of different interaction and correction terms.

U =Ugs+Ung +Unx +Uror +Urocop +Ucyst +Upro

Note that all these terms are functions of the dihedral angles.

4. Problem Formulation

The potential energy minimization problem can be formulated as a nonconvex
nonlinear optimization problem. Let ¢ = 1,..., Nrrs be an indexed set describ-
ing the sequence of amino acid residues in the peptide chain. This implies that
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there are ¢;,v¥;,w;, 1 = 1,..., Nrggs dihedral angles along the backbone of the
peptide chain. Also let & = 1,..., K’ denote the dihedral angles of the side
group in the i'* residue and j = 1,...,J" the dihedral angles of the amino end
group and j = 1,...,J¢ of the carboxyl end group respectively. This defines the
side group dihedral angles x¥, i = 1,..., Nggs, k = 1,..., K’ and the amino
G;V, j=1,...,J"V and carboxyl GJ»C, j=1,...,J¢ end group dihedral angles
respectively. Based on these definitions the potential model minimization energy
problem can be formulated as follows:

min U(d’z:lpZ:wZ:Xf:ng:GJC)
subject to —7 < ¢; < mw, i=1,...,Ngrgs
-7 < ¢ <7 i=1,...,Nggs
-7 < w; <7 t=1,...,Ngps
—-n < Xf <@ i=1,...,Nggs, k:]-::KZ
-7 S 95\7 S T 1= 1: . :JN
C _
-7 S 9] S T )= 1: -:JC

Here U is the expression for the total potential energy as a function of the pep-
tide dihedral angles. The specific expressions comprising U have been described
in detail in the previous section. Note that U is a nonconvex function of these
dihedral angles involving numerous local minima even for small peptide systems.
These local minima correspond to metastable states of the polypeptide chain.
A single global minimum defines the energetically most favorable peptide con-
formation. A plethora of different methods has been proposed for finding this
conformation [16]. Most methods attempt to locate this point by tracing, de-
terministically or stochastically, single or multiple paths on the potential energy
surface conjecturing that some of them will converge to the global minimum
potential energy point. A review on these methods can be found in [8]. The key
limitation of these methods is that the obtained conformations depend heavily
on the supplied initial conformation expressing the bias of the researcher towards
which is the most appropriate conformation. This is why, in practice, many trial
geometries need to serve as initial points in an attempt to lessen the initial point
dependence. However, there is no guarantee that important conformations are
not overlooked. The need for a method that can guarantee convergence to the
global minimum potential energy conformation motivated our initial effort to
introduce such a method for microclusters [6, 7], and small acyclic molecules
[8, 9] allowing for nonbonded atomic pair interactions. The approach, «BB
has been extended to constrained optimization problems in [5]. In this paper,
the approach is extended to peptide systems interacting with realistic potential
energy models (i.e., ECEPP/3). In the next section, a brief description of BB
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customized for the protein folding problem, is provided.

5. Global Optimization

The deterministic branch and bound type global optimization algorithm « BB
[8, 5] is utilized which brackets the global minimum solution by constructing
converging lower and upper bounds. These bounds are successively refined by
iteratively partitioning the initial feasible region into many subregions. Upper
bounds to the global minimum can be obtained by local minimizations of U.
Lower bounds are obtained by minimizing a convex function L which is always
less than the original nonconvex function U. This function L can be constructed
by augmenting U through the addition of a convex separable quadratic term for
each dihedral angle.

Nres

L =U+af Z(¢ZL_¢Z)(¢ZU_¢Z)+
Nazs
> WF =) (v — i) +

i=1

S (o) (5 -a7)

L L L kL gNL aCL U U U kU aNU aCU
Note that ¢, Wi, X; ,9]» ,9]» and ¢;, Wy, X; ,9]» ,9]» are lower

2! 32
and upper bounds respectively on the dihedral angles ¢;, ¥;, w;, x7, G;V, GJ»C. Also
« is a nonnegative parameter which must be greater or equal to the negative one
half of the minimum eigenvalue of U inside the current dihedral angles rectangle.
Qualitatively, the effect of adding this extra term to U is to make L convex by
overpowering the nonconvexity characteristics of U with the addition of the term
2a to all of its eigenvalues. This function L, defined inside some rectangular
region, involves a number of important properties which enable us to construct
a global optimization algorithm for finding the global minimum of U in the
space defined by the dihedral angles. These properties, whose proof is given
in [8], demonstrate that (i) L is always a valid underestimator of U; (ii) L

matches U at all corner points of the box constraints; (iii) L is convex; (iv)
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the maximum separation between L and V is bounded and proportional to «

and to the square of the diagonal of the current box constraints; and (v) the

underestimators L constructed over supersets of the current set are always less
tight than the underestimator U constructed over the current box constraints for
every point within the current box constraints.

Based on these properties a deterministic branch and bound type global opti-
mization algorithm is proposed for locating the global minimum potential energy
of U by constructing converging lower and upper bounds. The approach is im-
plemented in the GLOFOLD package. Qualitatively, the steps of the approach
are as follows:

Step 1 An upper bound on the global minimum solution of U is obtained by
minimizing U with a local solver (i.e., MINOS [13]). The current best
upper bound is updated to be the minimum over the stored ones.

Step 2 The current rectangle is partitioned in two by bisecting along the longest
side.

Step 3 The convex function L is minimized inside both resulting subrectangles.
If the solutions are less than the current best upper bound they are
stored, otherwise they are discarded (fathoming).

Step 4 The rectangle involving the minimum solution for min L is selected for
further partitioning and the corresponding solution is erased from the
lower bounds stack.

Step 5 If the current best upper and lower bounds are within e then terminate,
otherwise continue with Step 1.

The approach is shown in [8] to terminate in a finite number of iterations to an

e—global minimum solution.

6. Implementation: GLOFOLD

The proposed approach has been interfaced with ECEPP/3 and implemented
in C, in the program GLOFOLD. A schematic diagram of the interface between
ECEPP/3 and BB is shown in Figure 6.

The peptide dihedral angles are partitioned into three sets. The first one (i.e.,
global variables), consists of dihedral angles where branching occurs. The second
set (i.e., local variables) includes the dihedral variables where branching is not
performed. The third set, (i.e., fixed variables) includes the dihedral angles for
which there exists sufficient (experimental) evidence for keeping them fixed.

The information required by the user, in the current implementation of GLO-
FOLD, is provided in two files. The first one, required by ECEPP/3, contains
information about the sequence and number of the amino acid residues and the
type of the end groups. Also dihedral angles are initialized and output file num-
bers are assigned. The second file contains information related with the global
optimization phase. In particular, (i) number of dihedral angles, (ii) convergence
tolerances, (iii) type of starting point, (iv) lower/upper bounds on dihedral vari-
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o BB

9[ Upper Bound Problem }%

[NLP Solver }ee f, f
ECEPP/3
—=| Lower Bound Problem

u J

FIGURE 6. Interface between ECEPP/3 and BB

ables, (v) values for @ parameter, and (vi) variables where branching occurs are
required. In addition to the ability of GLOFOLD to locate the global minimum
total potential energy oligopeptide conformation, low energy protein conforma-
tions close to the global minimum one can be obtained with multi-start local
optimizations initiated from the obtained solutions for the lower bounding prob-
lems. Furthermore, PDB format files are created for all solutions which can be
readily interfaced with graphics programs.

7. Computational Studies

GLOFOLD has been tested on two classes of oligopeptide folding problems.
The selected relative convergence tolerance is 10~% and computational require-
ments in seconds are reported for an HP-730 workstation. First, the method was
applied on all 20 naturally occurring amino acids. The amino end group used
was acetyl, and the carboxyl end group was methyl. Note that all dihedral angles
were treated as global variables except for the three 8 angles in the end groups
which were treated as local variables. The results are summarized in Table 1.
The CPU time required is presented for each residue, as well as the average
< CPU > time needed for residues of the same size. The computational effort
compares favorably with that reported in [19] employing a simulated annealing
implementation and fewer dihedral angles. The computational effort increases,
as expected, as a function of the number of global variables n, but it stays under
the n? curve (see Figure 7). Even though in [19] a different potential model (i.e.
AMBER) was utilized the large differences in computational requirements are
quite suggestive about the relative computational efficiencies.
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Amino acid | # Dihedrals | Energy | Tter | CPU | < CPU >
Pro 5 -19.81 28 6 6
Gly 6 -6.33 67 14 14
Ala 7 -5.18 | 141 55
Cys 7 -5.84 | 142 45 50
His 8 -8.92 | 298 | 173
Phe 8 -8.43 | 298 | 169
Ser 8 -7.86 | 184 | 102
Trp 8 -9.56 | 306 | 227 167
Asn 9 -22.95 | 345 | 220
Asp 9 -20.05 | 452 | 239
Thr 9 -9.59 | 285 | 208
Tyr 9 -8.48 | 753 | 506
Val 9 -4.19 | 644 | 387 312
Gln 10 -18.99 | 601 | 460
Glu 10 -15.87 | 640 | 386
Ile 10 -2.54 | 388 | 352
Leu 10 -5.72 |1 1123 | 613
Met 10 -6.91 | 1284 | 641 480
Lys 11 -7.98 | 922 | 1070 1070
Arg 13 -31.84 | 1000 | 1660 1660

TABLE 1.

Naturally occurring amino acids

13
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nunber of dihedral angles

Ficure 7. CPU times as a function of the number of global
dihedral angles.

FicUure 8. NaN’m-arginine.
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No. Name
1 | NaN’m — L-Alanyl-L-proline(D)
2 | NaN’m — L-Alanyl-L-proline(U)
3 | NaN’m — L-Prolyl(D)-L-proline(D)
4 | NaN’m - L-Prolyl(D)-L-proline(U)
5 | NaN’m — L-Prolyl(U)-L-proline(D)
6 | NaN’m — L-Prolyl(U)-L-proline(U)

TABLE 2. Oligopeptide names

Residue | 6 87 $1 1w ox1 x2 1 Y1 wi o1 | U*
1known | 180.0 180 -149.0 67 177 180 - -68.8 79 180 180 |-17.39
1found | g0.0 -180 -149.0 67 177 178 - -68.8 T9 179 60 |-17.39
oknown 1180 180 -150.0 77 178 180 -— -53.0 -38 180 180 |-17.08
ofound | _180 180 -150.0 77 178 -61 - -53.0 -38 -180 -180 |-17.08
gknown [ 180 180 -68.8 162 176 - — -68.8 81 178 180.0|-32.33
3found 60 180 -68.8 162 176 - — -68.8 80 178 60.0 |-32.34
gknown 1 180 176 -53.0 157 177 - - -68.8 81 178 180 |-31.38
4found 55 176 -53.0 157 -179 - — -68.8 81 178 180 |-31.38
gkrown 1 180 179 -68.8 169 181 - — -53.0 -38 179 180 |-31.30
5found -63 179 -68.8 169 177 - - -53.0 -38 179 180 |-31.30
gknown | 180 174 -53.0 167 179 - — -53.0 -37 179 180 |-30.22
gfound -53 174 -53.0 167 -179 - - -53.0 -37 -179 60 |-30.22

TABLE 3. Oligopeptide results

The second set of examples involves a number of oligopeptides listed in Ta-
ble 2. The results are summarized in Table 3. Dihedral angle and energy values
are reported at the global minimum solution. Note that in all cases the
obtained solution is at least as good as the best over the ones reported in the
literature. In case (3) a slightly improved solution is found, over the best known
so far. The computational performance and efficiency of a simulated anneal-
ing implementation was next studied on the oligopeptide examples of Table 3.
The parameters employed in the simulated annealing implementation follow the
suggestions of [19] and are shown in Table 4. Nine different combinations of
Markov chain lengths and number of successive annealing steps are considered
(see Table 4). Note that MC is the Markov chain length and NT the number of
successive annealing steps. Furthermore, the initial temperature was 7, = 5.0,
the maximum allowable step was set to 6 = 90° and the cooling schedule factor
was # = 0.9.  The results in Table 5 indicate that the BB algorithm always
locates the global minimum conformation and requires less CPU time than the
simulated annealing implementation. On top of that, the failure rate (numbers
in parentheses) for the simulated annealing is very high. Notably, in certain
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MC NT
25 | 50 | 100
wo ) 12]| 3
250 || 4 | 5| 6
500 | 7| 8| 9
TABLE 4. Parameters used in different simulated annealing runs
aBB Simulated Annealing
Example D.A. 1 2 3 4 5 6 7 8 9
cpu cpu cpu cpu cpu cpu cpu cpu cpu cpu
(%F) (WF) (%F) (%F) (%F) (%F) (%F) (%F) (%F)
1 4 208s | 826s 166s 33.0s 20.7s 41.3s 825s 41.2s 825s 165.s
(100) (100) (100) (100) (100) (90)  (90)  (90)  (90)
2 4 40.6s | 8.20s 16.6s 33.0s 20.6s 41.5s 82.7s 41.3s 84.4s 164.s
(90)  (100) (90) (100) (90)  (90)  (90)  (70)  (90)
3 5 60.5s | 9.60s 19.4s 39.1s 24.2s 486s 97.1s 49.0s 97.4s 193.s
(100) (60)  (80)  (90) (100) (90)  (80)  (100) (100)
4 5 62.2s | 9.60s 19.2s 39.1s 24.2s 487s 39.1s 489s 97.1s 195. s
(70)  (80)  (80)  (80)  (90)  (80) (100) (100)  (90)
5 5 140.s | 9.70s 193s 39.1s 243s 488s 96.7s 48.5s 96.9s 194.s
(90)  (100) (90)  (90) (100) (90)  (90)  (80)  (90)
6 5 138.s | 9.70s 19.4s 38.7s 24.2s 489s 96.5s 48.6s 96.7s 193.s
(100) (100) (100) (100) (90)  (80)  (90)  (90)  (70)
88 85 83 87 81 82 84 81 79
TABLE 5. Comparison of BB and simulated annealing
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cases this failure rate reaches 100 %.

8. Conclusions

A deterministic global optimization method was described for locating the
global minimum potential energy conformations of oligopeptide chains based on
aBB. The ECEPP/3 detailed potential energy model was selected to model the
energetics of the atomic interactions and the minimization of the total potential
energy was formulated on the set of polypeptide dihedral angles. The proposed
approach was implemented in C, in the program GLOFOLD and provisions
were made to accommodate user specified partitioning of the dihedral angles into
three sets. The first one (i.e., global variables), consisted of dihedral angles where
branching occurs. The second set (i.e., local variables) included the dihedral
variables where branching was not necessary. The third set, (i.e., fixed variables)
included the dihedral angles which were kept fixed. GLOFOLD was applied to a
number of oligopeptide folding problems. Computational performance compared
favorably with a simulated annealing implementation.
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