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2 C.D. MARANAS, I.P. ANDROULAKIS, AND C.A. FLOUDASconcern. It is possible nowadays to produce proteins with a given amino acidsequence and therefore, knowledge of how the protein would fold would allowone to predict and �ne{tune its chemical and biological properties. This wouldgreatly simplify the tasks of interpreting data collected by the human genomeproject, understanding the mechanisms of hereditary and infectious diseases,designing drugs with speci�c therapeutical properties, and growing biologicalpolymers with speci�c material properties.From a chemical point of view, a protein is essentially a polymer chain com-posed by a sequence of various amino acid residues connected with peptide bonds.Proteins in living cells are composed of only 20 di�erent amino acid residues. Thegeneral form of these amino acid residues is shown in Figure 1. The form of theside chain R (e.g., methyl, butyl, benzoic, etc.) de�nes all di�erent amino acidresidues. The chemical structure of a protein is illustrated in Figure 2.
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Figure 1. Amino acid residue with side chain R.Note that, the side groups Rn vary from one residue to the other. AlsoEamino, Ecarboxyl are the amino and carboxyl end groups respectively. The re-peating unit -NC�C'- connected with peptide bonds de�nes the backbone of theprotein. Although, it appears linear in Figure 2, covalent bond angle require-ments and interatomic forces bend and twist the chain in a way characteristicfor each protein. The protein chain \curls up" into a unique three{dimensionalgeometric conformation called the folded state of the protein. It is exactly thiscon�guration which de�nes the shape of the protein surface as well as the partic-ular chemically active groups present on the surface which in turn determine thebiological function of the protein. Predicting this energetically most favorableconformation based solely on the atomic interactions is the objective of this work.
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amino carboxylFigure 2. Chemical structure of proteins.In other words, given the primary structure of a protein (i.e., residue sequenceand type) predict its tertiary structure (i.e., 3{D conformation). In the nextsection, a mathematical description of the protein folding problem is provided.2. Mathematical DescriptionThe geometry of a protein can be fully described by assigning a three{dimensionalcoordinate vector, ri = 0@ xiyizi 1A i = 1; : : : ; Nwhich speci�es the position of each atom i = 1; : : : ; N in the protein molecule.The bond vector between two atoms (i,j) connected with a covalent bond isde�ned as: rij = 0@ xj � xiyj � yizj � zi 1AThe corresponding bond length is then equal to the Euclidean distance betweenatoms i and j, jrijj = q(xj � xi)2 + (yj � yi)2 + (zj � zi)2:



4 C.D. MARANAS, I.P. ANDROULAKIS, AND C.A. FLOUDASThe covalent bond angle �ijk formed by the two adjacent bond vectors rij andrjk can be computed by the following formulae (See Figure 3).cos (�ijk) = rij � rjkjrijj jrjkj ; sin (�ijk) = rij � rjkjrijj jrjkj :Here rij � rjk is the dot product of the bond vectors rij and rjk,rij � rjk = (xj � xi) (xk � xj) + (yj � yi) (yk � yj) + (zj � zi) (zk � zj)and rij � rjk is the cross product,rij � rjk = 0@ (yj � yi) (zk � zj) � (zj � zi) (yk � yj)(zj � zi) (xk � xj) � (xj � xi) (zk � zj)(xj � xi) (yk � yj) � (yj � yi) (xk � xj) 1A :The dihedral angle !ijkl 2 [�180o; 180o] or the complementary torsion angle�ijkl = !ijkl � 180o measure the relative orientation of two adjacent covalentangles �ijk and �jkl (see Figure 3). It is de�ned as the angle between the normalsthrough the planes de�ned by atoms i; j; k and j; k; l respectively, and can becalculated from the following relations:cos (!ijkl) = (rij � rjk) � (rjk � rkl)jrij � rjkj jrjk � rklj ;sin (!ijkl) = (rkl � rij) � rjk jrjkjjrij � rjkj jrjk � rkljInstead of specifying the coordinate vector for all atoms in a protein molecule,one can specify all bond lengths, covalent bond angles and dihedral angles. Underbiological conditions, the bond lengths and bond angles are fairly rigid and thuscan be assumed to be �xed at their equilibrium values. Under this assumption,the dihedral angles along the backbone fully determine the geometric shape ofthe folded protein.The names of the dihedral angles of a folded protein chain follow a standardnomenclature. The dihedral angle between the normals of the planes formedby atoms C 0i�1NiC�;i and NiC�;iC0i respectively is called �i where i � 1 and iare two adjacent amino acid residues. The one de�ned by planes RiC�;iC0i andC�;iC0iNi+1 respectively is called  i where i and i + 1 are two adjacent aminoacid residues. Also !i is the dihedral angle de�ned by the planes C�;iC0iNi+1 andC0iNi+1C�;i+1. The letter � is utilized to denote the dihedral angles which areassociated with the side groups Ri. Also the letter � is used to name the dihedralangles associated with the two end groups. Figure 4 pictorially illustrates theseconventions.
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Figure 3. Bond vectors, covalent bond angles and dihedral angle
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Figure 4. Dihedral angles in a protein



6 C.D. MARANAS, I.P. ANDROULAKIS, AND C.A. FLOUDAS3. Potential Energy ModelMolecular mechanics calculations employ an empirically derived set of po-tential energy contributions for approximating these atomic interactions. Thisset of potential energy contributions, called the force �eld, contains adjustableparameters that are selected in a such a way as to provide the best possibleagreement with experimental data. The main assumption introduced in molec-ular mechanics is that every parameter is associated with a speci�c interactionrather than a speci�c molecule (transferability assumption). These parametersare bond lengths; covalent bond angles; bond stretching, bending, or rotatingconstants; non{bonded atom interaction constants, etc. Thus, whenever a spe-ci�c interaction is present, the same value for the parameter can be used evenif this interaction occurs in di�erent molecules [4]. Note that experimental re-sults provide su�cient evidence that this is a reasonable assumption in mostcases. Many di�erent models have been proposed for approximating the force�eld, and some of the most popular ones are: ECEPP [10, 11, 12], MM2 [1],ECEPP/2 [15], CHARMM [3], AMBER [18], GROMOS87 [17], MM3 [2],and ECEPP/3 [14].In this work the ECEPP/3 potential model is utilized. In this potential model,it is assumed that the covalent bond lengths and angles are �xed at their equilib-rium values, and thus the protein conformation is only a function of the dihedralangles. This implies that ECEPP/3 accounts for only energy interaction termswhich depend on the dihedral angles. The conformational energy is treated asthe sum of electrostatic, nonbonded, hydrogen bond and torsional contributions,plus an additional loop closing potential if the polypeptide contains one or moreintramolecular disul�de bonds. Also the �xed internal conformational energy ofthe pyrolidine ring is added for each propyl or hydroxyprolyl residue containedin the polypeptide. The �rst three energy contributions are computed for eachatom pair (i,j) whose interatomic distance is a function of at least one dihedralangle. This set of atomic pairs is denoted as P and includes the atomic pairswhich are separated by at least two other atoms.The electrostatic energy UES is computed for each atomic pair (i; j) 2 ES = Pas a Coulomb potential interaction between two atom{centered monopole partialcharges qi and qj where D is the dielectric constant.UES = X(i;j)2ES qiqjD jrijjA modi�ed Lennard{Jones 12{6 potential is used to approximate the non-bonded interaction energies between atomic pairs (i; j) 2 NB [14]. The set NBcontains all atomic pairs P except for hydrogen bonding pairs.UNB = X(i;j)2NBF Ak(i)k(j)jrijj12 � Ck(i)k(j)jrijj6



GLOBAL OPTIMIZATION IN PROTEIN FOLDING 7Here k(i) returns the atom type of atom i in the protein chain. The coe�cientsAk(i)k(j); Ck(i);k(j) are assigned speci�c values for each combination of atom typesk(i) and k(j). F is assigned a value of 0.5 for 1{4 interactions and 1.0 for for1{5+ interactions. An atom pair interaction is de�ned as 1{4 when the distancebetween the interacting atoms is a function of only one intervening dihedralangle. Any other interactions (i; j) 2 P is considered to be 1{5+.Hydrogen{bond interactions are the ones between designated donor and ac-ceptor atoms. The donors (H) are amine, amide, hydroxyl or carboxyl acid hy-drogens and the acceptors (X) are uncharged ring nitrogens, amide nitrogens, orhydroxyl ester, carbonyl, or carboxylic acid oxygens. A 12{10 potential functionis used to model the hydrogen bond interactions.UHX = X(i;j)2HX F A0k(i);k(j)jrijj12 � B0k(i);k(j)jrijj10Note that P = NB [HX .Torsional energy terms are included in the potential energy model to bringthe experimental and computed rotational barrier into agreement. These termsare computed for all ! dihedral angles and for some designated side{chain � andend group � dihedral angles, but not for any � and  angles. Let T OR be theset of dihedral angles for which a torsional term is calculated. The form of thepotential function used is:UTOR = Xk2T OR Uo;k2 (1 + ck cosnktk)Here Uo;k is the di�erence between the experimental barrier and the one calcu-lated from the electrostatic, nonbonded, and hydrogen{bond potential functions,tk is the value of the kth dihedral angle for which a torsional term is included,nk gives the symmetry of the barrier, and ck 2 f�1; 1g de�nes the sign for thecosine term.The cystine loop{closing energy ULOOP and torsional energy UCY ST are com-puted as the sums of terms for all disul�de bonds in the peptide. The loop{closingpotential penalizes any deviation of the interatomic distances SiSj , C�i Sj , andC�j Si from their experimentally observed values (see Figure 5). Let SS be theset of all disul�de bonds in the peptide. Then ULOOP is de�ned as:ULOOP = X(i;j)2SSB "�rSiSj � roSiSj�2 + �rSiC�j � roSiC�j �2 + �rSjC�i � roSjC�i �2#Note that roSiSj = 2:04Ao is the experimentally observed disul�de bond distanceand roSiC�j = roSjC�i = 3:052Ao are the distances between Si=j and C�j=i so as thecovalent bond angles �C�i SiSj and �SiSjC�j assume the experimentally observedvalue of 104o. B is a penalty parameter assigned the value B = 100 kcal=mol�A2.Torsional contributions to UCY ST from the angles C�i C�i SiSj and SiSjC�j C�j are



8 C.D. MARANAS, I.P. ANDROULAKIS, AND C.A. FLOUDAScalculated as mentioned above with Uo = 1:5kcal=mol. The contribution fromthe dihedral angle C�i SiSjC�j is computed as a penalty term on the interatomicdistance rC�i C�j according to the relation:USS = A X(i;j)2SS�rC�i C�j � roC�i C�j �2The penalty parameter A is set equal to 10 kcal=mol�A2 and the experimentallyobserved interatomic distance roC�i C�j to 3:855�A.
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jFigure 5. Disul�de bondingFinally, the additional potential energy term UPRO is added to account forthe internal conformation energy of proline and hydroxyproline residues. Thisinternal conformation energy depends on whether the peptide bond is on cisor trans con�guration. The total potential energy of the peptide chain, in thecontext of the potential model ECEPP/3, can then be written as the sum of anumber of di�erent interaction and correction terms.U = UES + UNB + UHX + UTOR + ULOOP + UCY ST + UPRONote that all these terms are functions of the dihedral angles.4. Problem FormulationThe potential energy minimization problem can be formulated as a nonconvexnonlinear optimization problem. Let i = 1; : : : ; NRES be an indexed set describ-ing the sequence of amino acid residues in the peptide chain. This implies that



GLOBAL OPTIMIZATION IN PROTEIN FOLDING 9there are �i;  i; !i; i = 1; : : : ; NRES dihedral angles along the backbone of thepeptide chain. Also let k = 1; : : : ;Ki denote the dihedral angles of the sidegroup in the ith residue and j = 1; : : : ; JN the dihedral angles of the amino endgroup and j = 1; : : : ; JC of the carboxyl end group respectively. This de�nes theside group dihedral angles �ki ; i = 1; : : : ; NRES ; k = 1; : : : ;Ki and the amino�Nj ; j = 1; : : : ; JN and carboxyl �Cj ; j = 1; : : : ; JC end group dihedral anglesrespectively. Based on these de�nitions the potential model minimization energyproblem can be formulated as follows:min U (�i;  i; !i; �ki ; �Nj ; �Cj )subject to � � � �i � �; i = 1; : : : ; NRES�� �  i � �; i = 1; : : : ; NRES�� � !i � �; i = 1; : : : ; NRES�� � �ki � �; i = 1; : : : ; NRES ; k = 1; : : : ;Ki�� � �Nj � �; j = 1; : : : ; JN�� � �Cj � �; j = 1; : : : ; JCHere U is the expression for the total potential energy as a function of the pep-tide dihedral angles. The speci�c expressions comprising U have been describedin detail in the previous section. Note that U is a nonconvex function of thesedihedral angles involving numerous local minima even for small peptide systems.These local minima correspond to metastable states of the polypeptide chain.A single global minimum de�nes the energetically most favorable peptide con-formation. A plethora of di�erent methods has been proposed for �nding thisconformation [16]. Most methods attempt to locate this point by tracing, de-terministically or stochastically, single or multiple paths on the potential energysurface conjecturing that some of them will converge to the global minimumpotential energy point. A review on these methods can be found in [8]. The keylimitation of these methods is that the obtained conformations depend heavilyon the supplied initial conformation expressing the bias of the researcher towardswhich is the most appropriate conformation. This is why, in practice, many trialgeometries need to serve as initial points in an attempt to lessen the initial pointdependence. However, there is no guarantee that important conformations arenot overlooked. The need for a method that can guarantee convergence to theglobal minimum potential energy conformation motivated our initial e�ort tointroduce such a method for microclusters [6, 7], and small acyclic molecules[8, 9] allowing for nonbonded atomic pair interactions. The approach, �BBhas been extended to constrained optimization problems in [5]. In this paper,the approach is extended to peptide systems interacting with realistic potentialenergy models (i.e., ECEPP/3). In the next section, a brief description of �BB



10 C.D. MARANAS, I.P. ANDROULAKIS, AND C.A. FLOUDAScustomized for the protein folding problem, is provided.5. Global OptimizationThe deterministic branch and bound type global optimization algorithm�BB[8, 5] is utilized which brackets the global minimum solution by constructingconverging lower and upper bounds. These bounds are successively re�ned byiteratively partitioning the initial feasible region into many subregions. Upperbounds to the global minimum can be obtained by local minimizations of U.Lower bounds are obtained by minimizing a convex function L which is alwaysless than the original nonconvex function U. This function L can be constructedby augmenting U through the addition of a convex separable quadratic term foreach dihedral angle.L = U + �f NRESXi=1 ��Li � �i� ��Ui � �i�+NRESXi=1 � Li �  i� � Ui �  i� +NRESXi=1 �!Li � !i� �!Ui � !i�+NRESXi=1 KiXk=1��k;Li � �ki ���k;Ui � �ki �+JNXj=1 ��N;Lj � �Nj ���N;Uj � �Nj �+JCXj=1 ��C;Lj � �Cj ���C;Uj � �Cj � gNote that �Li ;  Li ; !Li ; �k;Li ; �N;Lj ; �C;Lj and �Ui ;  Ui ; !Ui ; �k;Ui ; �N;Uj ; �C;Uj are lowerand upper bounds respectively on the dihedral angles �i;  i; !i; �ki ; �Nj ; �Cj . Also� is a nonnegative parameter which must be greater or equal to the negative onehalf of the minimumeigenvalue of U inside the current dihedral angles rectangle.Qualitatively, the e�ect of adding this extra term to U is to make L convex byoverpowering the nonconvexity characteristics of U with the addition of the term2� to all of its eigenvalues. This function L, de�ned inside some rectangularregion, involves a number of important properties which enable us to constructa global optimization algorithm for �nding the global minimum of U in thespace de�ned by the dihedral angles. These properties, whose proof is givenin [8], demonstrate that (i) L is always a valid underestimator of U ; (ii) Lmatches U at all corner points of the box constraints; (iii) L is convex; (iv)



GLOBAL OPTIMIZATION IN PROTEIN FOLDING 11the maximum separation between L and V is bounded and proportional to �and to the square of the diagonal of the current box constraints; and (v) theunderestimators L constructed over supersets of the current set are always lesstight than the underestimator U constructed over the current box constraints forevery point within the current box constraints.Based on these properties a deterministic branch and bound type global opti-mization algorithm is proposed for locating the global minimumpotential energyof U by constructing converging lower and upper bounds. The approach is im-plemented in the GLOFOLD package. Qualitatively, the steps of the approachare as follows:Step 1 An upper bound on the global minimum solution of U is obtained byminimizing U with a local solver (i.e., MINOS [13]). The current bestupper bound is updated to be the minimum over the stored ones.Step 2 The current rectangle is partitioned in two by bisecting along the longestside.Step 3 The convex function L is minimized inside both resulting subrectangles.If the solutions are less than the current best upper bound they arestored, otherwise they are discarded (fathoming).Step 4 The rectangle involving the minimum solution for minL is selected forfurther partitioning and the corresponding solution is erased from thelower bounds stack.Step 5 If the current best upper and lower bounds are within � then terminate,otherwise continue with Step 1.The approach is shown in [8] to terminate in a �nite number of iterations to an�{global minimum solution.6. Implementation: GLOFOLDThe proposed approach has been interfaced with ECEPP/3 and implementedin C, in the programGLOFOLD. A schematic diagram of the interface betweenECEPP/3 and �BB is shown in Figure 6.The peptide dihedral angles are partitioned into three sets. The �rst one (i.e.,global variables), consists of dihedral angles where branching occurs. The secondset (i.e., local variables) includes the dihedral variables where branching is notperformed. The third set, (i.e., �xed variables) includes the dihedral angles forwhich there exists su�cient (experimental) evidence for keeping them �xed.The information required by the user, in the current implementation ofGLO-FOLD, is provided in two �les. The �rst one, required by ECEPP/3, containsinformation about the sequence and number of the amino acid residues and thetype of the end groups. Also dihedral angles are initialized and output �le num-bers are assigned. The second �le contains information related with the globaloptimization phase. In particular, (i) number of dihedral angles, (ii) convergencetolerances, (iii) type of starting point, (iv) lower/upper bounds on dihedral vari-
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Lower Bound Problem Figure 6. Interface between ECEPP/3 and �BBables, (v) values for � parameter, and (vi) variables where branching occurs arerequired. In addition to the ability ofGLOFOLD to locate the global minimumtotal potential energy oligopeptide conformation, low energy protein conforma-tions close to the global minimum one can be obtained with multi-start localoptimizations initiated from the obtained solutions for the lower bounding prob-lems. Furthermore, PDB format �les are created for all solutions which can bereadily interfaced with graphics programs.7. Computational StudiesGLOFOLD has been tested on two classes of oligopeptide folding problems.The selected relative convergence tolerance is 10�2 and computational require-ments in seconds are reported for an HP{730 workstation. First, the method wasapplied on all 20 naturally occurring amino acids. The amino end group usedwas acetyl, and the carboxyl end group was methyl. Note that all dihedral angleswere treated as global variables except for the three � angles in the end groupswhich were treated as local variables. The results are summarized in Table 1.The CPU time required is presented for each residue, as well as the average< CPU > time needed for residues of the same size. The computational e�ortcompares favorably with that reported in [19] employing a simulated annealingimplementation and fewer dihedral angles. The computational e�ort increases,as expected, as a function of the number of global variables n, but it stays underthe n3 curve (see Figure 7). Even though in [19] a di�erent potential model (i.e.AMBER) was utilized the large di�erences in computational requirements arequite suggestive about the relative computational e�ciencies.
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Amino acid # Dihedrals Energy Iter CPU < CPU >Pro 5 -19.81 28 6 6Gly 6 -6.33 67 14 14Ala 7 -5.18 141 55Cys 7 -5.84 142 45 50His 8 -8.92 298 173Phe 8 -8.43 298 169Ser 8 -7.86 184 102Trp 8 -9.56 306 227 167Asn 9 -22.95 345 220Asp 9 -20.05 452 239Thr 9 -9.59 285 208Tyr 9 -8.48 753 506Val 9 -4.19 644 387 312Gln 10 -18.99 601 460Glu 10 -15.87 640 386Ile 10 -2.54 388 352Leu 10 -5.72 1123 613Met 10 -6.91 1284 641 480Lys 11 -7.98 922 1070 1070Arg 13 -31.84 1000 1660 1660Table 1. Naturally occurring amino acids
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Figure 7. CPU times as a function of the number of globaldihedral angles.
Figure 8. NaN'm{arginine.



GLOBAL OPTIMIZATION IN PROTEIN FOLDING 15No. Name1 NaN'm { L-Alanyl-L-proline(D)2 NaN'm { L-Alanyl-L-proline(U)3 NaN'm { L-Prolyl(D)-L-proline(D)4 NaN'm { L-Prolyl(D)-L-proline(U)5 NaN'm { L-Prolyl(U)-L-proline(D)6 NaN'm { L-Prolyl(U)-L-proline(U)Table 2. Oligopeptide namesResidue �11 �21 �1  1 !1 �1 �2 �1  1 !1 �12 U�1known 180.0 180 -149.0 67 177 180 { -68.8 79 180 180 -17.391found 60.0 -180 -149.0 67 177 178 { -68.8 79 179 60 -17.392known 180 180 -150.0 77 178 180 { -53.0 -38 180 180 -17.082found -180 180 -150.0 77 178 -61 { -53.0 -38 -180 -180 -17.083known 180 180 -68.8 162 176 { { -68.8 81 178 180.0 -32.333found 60 180 -68.8 162 176 { { -68.8 80 178 60.0 -32.344known 180 176 -53.0 157 177 { { -68.8 81 178 180 -31.384found 55 176 -53.0 157 -179 { { -68.8 81 178 180 -31.385known 180 179 -68.8 169 181 { { -53.0 -38 179 180 -31.305found -63 179 -68.8 169 177 { { -53.0 -38 179 180 -31.306known 180 174 -53.0 167 179 { { -53.0 -37 179 180 -30.226found -53 174 -53.0 167 -179 { { -53.0 -37 -179 60 -30.22Table 3. Oligopeptide resultsThe second set of examples involves a number of oligopeptides listed in Ta-ble 2. The results are summarized in Table 3. Dihedral angle and energy valuesare reported at the global minimum solution. Note that in all cases theobtained solution is at least as good as the best over the ones reported in theliterature. In case (3) a slightly improved solution is found, over the best knownso far. The computational performance and e�ciency of a simulated anneal-ing implementation was next studied on the oligopeptide examples of Table 3.The parameters employed in the simulated annealing implementation follow thesuggestions of [19] and are shown in Table 4. Nine di�erent combinations ofMarkov chain lengths and number of successive annealing steps are considered(see Table 4). Note that MC is the Markov chain length and NT the number ofsuccessive annealing steps. Furthermore, the initial temperature was T0 = 5:0,the maximum allowable step was set to � = 90o and the cooling schedule factorwas � = 0:9. The results in Table 5 indicate that the �BB algorithm alwayslocates the global minimum conformation and requires less CPU time than thesimulated annealing implementation. On top of that, the failure rate (numbersin parentheses) for the simulated annealing is very high. Notably, in certain



16 C.D. MARANAS, I.P. ANDROULAKIS, AND C.A. FLOUDASMC NT25 50 100100 1 2 3250 4 5 6500 7 8 9Table 4. Parameters used in di�erent simulated annealing runs
�BB Simulated AnnealingExample D.A. 1 2 3 4 5 6 7 8 9cpu cpu cpu cpu cpu cpu cpu cpu cpu cpu(%F) (%F) (%F) (%F) (%F) (%F) (%F) (%F) (%F)1 4 29.8 s 8.26 s 16.6 s 33.0 s 20.7 s 41.3 s 82.5 s 41.2 s 82.5 s 165. s(100) (100) (100) (100) (100) (90) (90) (90) (90)2 4 40.6 s 8.20 s 16.6 s 33.0 s 20.6 s 41.5 s 82.7 s 41.3 s 84.4 s 164. s(90) (100) (90) (100) (90) (90) (90) (70) (90)3 5 60.5 s 9.60 s 19.4 s 39.1 s 24.2 s 48.6 s 97.1 s 49.0 s 97.4 s 193. s(100) (60) (80) (90) (100) (90) (60) (100) (100)4 5 62.2 s 9.60 s 19.2 s 39.1 s 24.2 s 48.7 s 39.1 s 48.9 s 97.1 s 195. s(70) (80) (80) (80) (90) (80) (100) (100) (90)5 5 140. s 9.70 s 19.3 s 39.1 s 24.3 s 48.8 s 96.7 s 48.5 s 96.9 s 194. s(90) (100) (90) (90) (100) (90) (90) (80) (90)6 5 138. s 9.70 s 19.4 s 38.7 s 24.2 s 48.9 s 96.5 s 48.6 s 96.7 s 193. s(100) (100) (100) (100) (90) (80) (90) (90) (70)88 85 83 87 81 82 84 81 79Table 5. Comparison of �BB and simulated annealing



GLOBAL OPTIMIZATION IN PROTEIN FOLDING 17cases this failure rate reaches 100 %.8. ConclusionsA deterministic global optimization method was described for locating theglobal minimum potential energy conformations of oligopeptide chains based on�BB. The ECEPP/3 detailed potential energy model was selected to model theenergetics of the atomic interactions and the minimization of the total potentialenergy was formulated on the set of polypeptide dihedral angles. The proposedapproach was implemented in C, in the program GLOFOLD and provisionswere made to accommodate user speci�ed partitioning of the dihedral angles intothree sets. The �rst one (i.e., global variables), consisted of dihedral angles wherebranching occurs. The second set (i.e., local variables) included the dihedralvariables where branching was not necessary. The third set, (i.e., �xed variables)included the dihedral angles which were kept �xed. GLOFOLDwas applied to anumber of oligopeptide folding problems. Computational performance comparedfavorably with a simulated annealing implementation.
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