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Abstract

A global optimization algorithm, aBB, for twice differentiable NLPs is presented. It operates
within a branch-and-bound framework and requires the construction of a convex lower bound-
ing problem. A technique to generate such a valid convex underestimator for arbitrary twice—
differentiable functions is described. The BB has been applied to a variety of problems and a
summary of the results obtained is provided.

1 Introduction

In their search to arrive at better designs for new or existing processes, chemical engineers often
need to solve nonconvex optimization problems. These problems arise in many areas, such as
computational chemistry, phase equilibrium, process unit sequencing. Despite the importance
of identifying the global minimum solution, or valid bounds on that solution, this can rarely be
achieved rigorously. Global optimization has therefore been the focus of much interest in recent
years (Floudas and Grossmann, 1995), (Floudas, 1995), (Floudas and Pardalos, 1996).

The construction of a convex underestimating problem, which allows the generation of two
converging sequences of upper and lower bounds, emerges as central theme in many of the methods
developed to date. In particular, the GOP algorithm (Visweswaran and Floudas, 1995a) and the
branch and bound algorithm of Al-Khayyal and Falk (1983) rely on mathematical properties
specific to the problem solved in order to obtain the lower bounding problem. Maranas and
Floudas (1994a,b) and Androulakis et al. (1995) suggested an approach which necessitates the
identification of the minimum eigenvalues of the functions to be convexified over the domain of
interest. The BB algorithm, based on this technique, converges with mathematical rigor to the
desired solution within some pre set tolerance, and has been shown to be applicable to the broad
class of twice differentiable nonconvex programs (Liu and Floudas, 1993a). However, the exact
calculation of the minimum eigenvalue of a general function over a given region of the variable
space poses tremendous difficulties. The generation of a wvalid lower bound on that eigenvalue
preserves the theoretical guarantees of global optimality while improving the tractability of the
problem.

After an introduction to the basic concepts of the aBB algorithm, a technique for the calcula-
tion of the eigenvalue lower bound is described. It exploits the properties of interval polynomials
to achieve its goal. Finally, a summary of results for a number of standard optimization problems
and some design problems is provided.

2 The aBB algorithm
2.1 Basic Concepts

The aBB global optimization algorithm can rigorously address general twice differentiable NLPs,
as shown in equation (2.1).
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where f, g and h belong to C2, the set of twice-differentiable functions, and x is a vector of size
n.

The method is based on a branch and bound strategy, in which the design of a lower bounding
scheme plays a crucial part. Convergence to the global optimum is achieved only if the lower
bounds generated are wvalid and they form a nondecreasing sequence. Yet, in order to ensure
satisfactory computational times, the underestimating problem should be constructed to be as
tight as possible. To meet these requirements, the functions in the problems are decomposed into
a sum of terms. Depending on its mathematical structure, each term is then assigned to one of
several pre defined categories. The advantage of this method is that each class of terms can be
underestimated using a known and effective technique. The special classes of terms considered
here are linear, convex, bilinear, and univariate concave terms. For the first two categories, no
underestimator is required, while for the third one, the convex envelope (Al-Khayyal and Falk,
1983) is used. For the last class, a linearization is used. Any term that does not fall within one
of these classes is labelled as a general nonconvex term.

A twice—differentiable nonconvex function f(x) can therefore be expressed as

bt ut nt
f(x)=LT(x)+ CT(x)+ Z bizttah? + Z UT;(z") + Z NT;(x)
=1 =1 i=1

where LT (x) is a linear term, C'T'(x) is a convex term, bt is the number of bilinear terms, z*! and
z"? denote the two variables that participate in the ith bilinear term, b; is the coefficient of the ith
bilinear term, ¢ is the number of univariate concave terms, UT;(z") is the ith univariate concave

term, z° denotes the variable that participates in UTj, nt is the number of general nonconvex
terms, NT;(x) is the ith general nonconvex term.
Its convex underestimator then takes the following form :

L(x,w)= LT(x)+ CT(x)+ g: bjw;
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a;j = 0 otherwise (see Maranas and Floudas, 1994a,b),

where the ); ;(x)’s are the eigenvalues of the term NT)(x) and the superscripts L and U denote
the lower and upper bounds on the variables, respectively.

In the light of equations (2.2) and (2.3), the only remaining difficulty in the construction
of a valid convex underestimator is the determination of the parameter « or, equivalently, of a
bound on the minimum eigenvalue of a general nonconvex term. This problem is addressed in
the following section.

2.2 Rigorous calculation of o

The proposed technique for the calculation of a rigorous lower bound on the minimum eigenvalue
Amin Of an arbitrary twice—differentiable function f(x) is based on the derivation of its interval
characteristic polynomial and the use of some properties of interval polynomials. Before the
methodology is outlined and tested, several definitions and properties are introduced.



By definition, the characteristic polynomial of a function f(x) is obtained by deriving the
Hessian matrix H(x) of f(x) and then taking the determinant of H(x) — AI where I is the
identity matrix. The general form of the characteristic polynomial is therefore expressed as

Pr(x,A) = ag(x) + a1 (X)X + -+ + ap_y (K)A" ! 4 A" (2.4)

Definition 1 Pf(x, A) as defined in (2.4) describes a family of polynomials : for each combination
of the values of the coefficients, a polynomial P () is formed.

Definition 2 If the real parts of all the roots of the polynomials in a family lie in the right—half
plane, then this polynomial family is said to be anti—stable.

Property 1 The function f(x) is convex over the domain X if and only if the polynomial family
Pr(x,A) is anti stable over X.

In order to simplify the problem of determining the stability characteristics of Pr(x,A), the
following definition is introduced.

Definition 3 An interval polynomial family is a family represented by a polynomial whose
coefficients are not scalars but intervals.

Using the fundamental concepts of interval analysis as presented in Ratschek and Rokne (1988)
and Neumaier (1990), the characteristic polynomial Py(x, A) of a function f(x) over the region
X = [x",xY] can be transformed into an interval polynomial family Py x(}).

Prx(N) =[af,af A+ [al oI+ + o)y, al_ A"+ A" (2.5)

where al < a;(x) < dY, Vi, x € [x,xY].
P x (A) specifies a family of polynomials that contains the set of polynomials Py (x, A). Note that
if the coefficients of Pf(x, ) are independent, then Pr(x,\) = Pr x(x).

Property 2 P; x()) anti stable = f(x) convex over X.

Although Property 2 allows to test the convexity of the function f over a specific domain, it does
not provide an estimate of the smallest eigenvalue. The concept of margin of anti-stability is
borrowed from control theory in order to obtain the desired lower bound.

Property 3 Let \in be the smallest root of Py x(N). Then X* = Xpp is the smallest value for
which Py x (A — X*) is anti-stable. Thus the margin of anti-stability of Py x (X) i Amin-

Finding Ajin can then be expressed as the following optimization problem :

min  \*
Amin = & M ) (2.6)
s.t. Prx(A—A*) anti — stable

Problem (2.6) can be reduced to a simpler form if the Kharitonov theorem is used (Kharitonov,
1979). The stability of an interval polynomial family can be determined by testing the stability
of only four of the polynomials in the family. Based on the relationship between stability and
anti stability, the Kharitonov polynomials can also be used to test anti stability of an interval
polynomial family.

Property 4 If the polynomials
Ki(f, X,\) = al + af X+ af X2 + af 23 + af At + ab X5 +a X0 + -
Ko(f, X, ) =all +a X+ abX2+ab X3 + a2 +al N +ab X6 + - -
K3(f, X, \) =af +alX+aiX? +af X3 + a2\ +al X + a0 + -
Ki(f, X,\) = af +a¥ X+ af 22+ afX3 +afdt +al N +al A6 + -+

are anti stable then the polynomial family Py x (X) is anti stable.



Combining properties 3 and 4, Problem (2.6) can now be solved by the following procedure :

e Construct the four Kharitonov polynomials K1 (f, X, ), Ko(f, X, ), K3(f, X, ) and
Ka(f, X, ).

e Calculate all the roots of these polynomials. The smallest root is Aj,in.

The above procedure yields a valid lower bound on the minimum eigenvalue of f(x) for x € X.
Note that the only dependence on the number of independent variables arises during the stability
check : the number of roots of each Kharitonov polynomial is equal to the number of variables.
The roots can be obtained efficiently since the Kharitonov polynomials involve a single variable.

Finally, the accuracy of the lower bound obtained can be increased if the interdependence of
the coeflicients of the characteristic polynomials is taken into account, as proposed by Bartlett
et al. (1987) for the case of linearly dependent coefficients. However, such a technique greatly
increases computational expense and a compromise must be achieved between efficiency and
accuracy.

3

Small Example Consider f(z1,73) = 23 — 2123 with (z1,22) € X = [0,1]?. Its characteristic
polynomial is —12z22 — 423 — 421\ + A2 = 0. Its interval characteristic polynomial over X is
[-16,0] + [~4,0]A + A2 = 0 The four Kharitonov polynomials are then :

Ki(f,X,\) = 16 —4x+ 22 Ky(f,X,)\) = \?
K3(f, X,\) = —4X+ \? Ki(f, X, ) = —16 + A2

The set of the roots of these polynomials is {—4,2 — 2v/5,0,4,2 + 2v/5}. Thus the computed
lower bound on the minimum eigenvalue of f(x1,22) over X is -4. The exact value of A,,;;, was
found to be -2.5 using GAMS.

Illustrative Example The potential energy function for the pseudoethane molecule is espe-
cially interesting since it is highly nonlinear and is expressed in terms of only one variable,
the dihedral angle (equation (2.2)). It is used to present a visual interpretation of the proposed
method. Underestimators of the potential function were built for different domains of the variable
space, using the calculated lower bound on the minimum eigenvalue. For each level of partition,
the resulting convex piecewise underestimator was drawn, as shown in Figure (1). It can be seen
that, although the initial lower bounds are very loose, they improve rapidly to provide a good
approximation of the original function.
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where g is the covalent bond length (1.54A4),  is the covalent bond angle (109.5°), and # is the
dihedral angle (0 <t < 2m).

3 Summary of Computational Results

The aBB algorithm has been implemented in a flexible and user friendly format and it has
been used to successfully solve a large number of examples. Table (1) summarizes the results
obtained for a sample of literature and design problems. The HP (Haverly pooling) problems are
a set of bilinearly constrained problems, while the LCP problems are linearly constrained concave
programs. NLP is a small yet highly nonconvex test problem. The remaining formulations
represent chemical engineering design problems. RN1 corresponds to the optimization of a small
reactor problem, while RN2 is a more complex reactor network synthesis for the Van der Vusse
reaction. HEN corresponds to the design of a network of three heat exchanger. Finally, SEP is a
superstructure optimization problem for a separation system with two units.



4 Conclusion

A sufficient condition for the generation of a lower bound on the minimum eigenvalue of a twice—
differentiable function was presented. Using the Kharitonov theorem and the interval character-
istic polynomial of the function, an iterative scheme has been devised to calculate the desired
value. The aBB global optimization algorithm has been implemented and used effectively to
solve problems from the very broad class of twice—differentiable NLPs.
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Figure 1: Function and underestimator at different levels of the branch—and-bound tree using
calculated « values

Problem Reference Number of | Number of | N; | N, CPU
Name variables | constraints time (s)
HP1 Floudas and Pardalos (1990) 9 6 13 ] 27 1.31
HP2 Floudas and Pardalos (1990) 9 6 17 | 35 1.56
HP3 Floudas and Pardalos (1990) 9 6 9 19 1.08
LCP1 Floudas and Pardalos (1990) 20 10 30 | 61 7.03
LCP2 Floudas and Pardalos (1990) 20 10 25 | 51 6.07
LCP3 Floudas and Pardalos (1990) 20 10 30 | 61 6.66
LCP4 Floudas and Pardalos (1990) 20 10 26 | 53 6.38
LCP5 Floudas and Pardalos (1990) 20 10 82 | 165 16.5
NLP Murtagh and Saunders (1988) 5 3 232 | 465 99.6
RNI1 Ryoo and Sahinidis (1995) 6 o 48 | 97 13.8
RN2 Floudas and Pardalos (1990) 29 45 154 | 308 1988
HEN Floudas and Pardalos (1990) 8 6 133 | 267 23.4
SEP Floudas and Aggarwal (1990) 38 49 101 | 203 494

Table 1: Summary of computational results (N;, number of iterations, NNV,,, number of expanded
nodes)



