
A GLOBAL OPTIMIZATION METHOD, �BB,FOR PROCESS DESIGNC.S. Adjiman, I.P. Androulakis, C.D. Maranas and C.A. Floudas1Department of Chemical EngineeringPrinceton UniversityPrinceton, N.J. 08544-5263AbstractA global optimization algorithm, �BB, for twice{di�erentiable NLPs is presented. It operateswithin a branch{and{bound framework and requires the construction of a convex lower bound-ing problem. A technique to generate such a valid convex underestimator for arbitrary twice{di�erentiable functions is described. The �BB has been applied to a variety of problems and asummary of the results obtained is provided.1 IntroductionIn their search to arrive at better designs for new or existing processes, chemical engineers oftenneed to solve nonconvex optimization problems. These problems arise in many areas, such ascomputational chemistry, phase equilibrium, process unit sequencing. Despite the importanceof identifying the global minimum solution, or valid bounds on that solution, this can rarely beachieved rigorously. Global optimization has therefore been the focus of much interest in recentyears (Floudas and Grossmann, 1995), (Floudas, 1995), (Floudas and Pardalos, 1996).The construction of a convex underestimating problem, which allows the generation of twoconverging sequences of upper and lower bounds, emerges as central theme in many of the methodsdeveloped to date. In particular, the GOP algorithm (Visweswaran and Floudas, 1995a) and thebranch{and{bound algorithm of Al-Khayyal and Falk (1983) rely on mathematical propertiesspeci�c to the problem solved in order to obtain the lower bounding problem. Maranas andFloudas (1994a,b) and Androulakis et al. (1995) suggested an approach which necessitates theidenti�cation of the minimum eigenvalues of the functions to be convexi�ed over the domain ofinterest. The �BB algorithm, based on this technique, converges with mathematical rigor to thedesired solution within some pre{set tolerance, and has been shown to be applicable to the broadclass of twice{di�erentiable nonconvex programs (Liu and Floudas, 1993a). However, the exactcalculation of the minimum eigenvalue of a general function over a given region of the variablespace poses tremendous di�culties. The generation of a valid lower bound on that eigenvaluepreserves the theoretical guarantees of global optimality while improving the tractability of theproblem.After an introduction to the basic concepts of the �BB algorithm, a technique for the calcula-tion of the eigenvalue lower bound is described. It exploits the properties of interval polynomialsto achieve its goal. Finally, a summary of results for a number of standard optimization problemsand some design problems is provided.2 The �BB algorithm2.1 Basic ConceptsThe �BB global optimization algorithm can rigorously address general twice{di�erentiable NLPs,as shown in equation (2.1).1Author to whom all correspondence should be addressed.



minx f(x)s:t: g(x) � 0h(x) = 0x 2 X � <n (2.1)where f , g and h belong to C2, the set of twice-di�erentiable functions, and x is a vector of sizen. The method is based on a branch{and{bound strategy, in which the design of a lower boundingscheme plays a crucial part. Convergence to the global optimum is achieved only if the lowerbounds generated are valid and they form a nondecreasing sequence. Yet, in order to ensuresatisfactory computational times, the underestimating problem should be constructed to be astight as possible. To meet these requirements, the functions in the problems are decomposed intoa sum of terms. Depending on its mathematical structure, each term is then assigned to one ofseveral pre{de�ned categories. The advantage of this method is that each class of terms can beunderestimated using a known and e�ective technique. The special classes of terms consideredhere are linear, convex, bilinear, and univariate concave terms. For the �rst two categories, nounderestimator is required, while for the third one, the convex envelope (Al-Khayyal and Falk,1983) is used. For the last class, a linearization is used. Any term that does not fall within oneof these classes is labelled as a general nonconvex term.A twice{di�erentiable nonconvex function f(x) can therefore be expressed asf(x) = LT (x) + CT (x) + btXi=1 bixi;1xi;2 + utXi=1 UTi(xi) + ntXi=1NTi(x)where LT (x) is a linear term, CT (x) is a convex term, bt is the number of bilinear terms, xi;1 andxi;2 denote the two variables that participate in the ith bilinear term, bi is the coe�cient of the ithbilinear term, ut is the number of univariate concave terms, UTi(xi) is the ith univariate concaveterm, xi denotes the variable that participates in UTi, nt is the number of general nonconvexterms, NTi(x) is the ith general nonconvex term.Its convex underestimator then takes the following form :L(x;w) = LT (x) + CT (x) + btPi=1 biwi+ utPi=1 �UTi(xi;L) + UTi(xi;U )�UTi(xi;L)xi;U�xi;L (x� xi;L)�+ ntPi=1 NTi(x) + nPj=1�ij(xj � xLj )(xj � xUj )! (2.2)where wi � maxf xi;1;Lxi;1 + xi;2;Lxi;2 � xi;1;Lxi;2;L;xi;1;Uxi;1 + xi;2;Uxi;2 � xi;1;Uxi;2;Ug; for i = 1; � � � ; bt:and �ij � maxf0;�12 mink;xL�x�xU �j;k(x)g; if NTj(x) is a function of xi or;�ij = 0 otherwise (see Maranas and Floudas; 1994a;b); (2.3)where the �j;k(x)'s are the eigenvalues of the term NTj(x) and the superscripts L and U denotethe lower and upper bounds on the variables, respectively.In the light of equations (2.2) and (2.3), the only remaining di�culty in the constructionof a valid convex underestimator is the determination of the parameter � or, equivalently, of abound on the minimum eigenvalue of a general nonconvex term. This problem is addressed inthe following section.2.2 Rigorous calculation of �The proposed technique for the calculation of a rigorous lower bound on the minimum eigenvalue�min of an arbitrary twice{di�erentiable function f(x) is based on the derivation of its intervalcharacteristic polynomial and the use of some properties of interval polynomials. Before themethodology is outlined and tested, several de�nitions and properties are introduced.



By de�nition, the characteristic polynomial of a function f(x) is obtained by deriving theHessian matrix H(x) of f(x) and then taking the determinant of H(x) � �I where I is theidentity matrix. The general form of the characteristic polynomial is therefore expressed asPf (x; �) = a0(x) + a1(x)�+ � � �+ an�1(x)�n�1 + �n (2.4)De�nition 1 Pf (x; �) as de�ned in (2.4) describes a family of polynomials : for each combinationof the values of the coe�cients, a polynomial Pf (�) is formed.De�nition 2 If the real parts of all the roots of the polynomials in a family lie in the right{halfplane, then this polynomial family is said to be anti{stable.Property 1 The function f(x) is convex over the domain X if and only if the polynomial familyPf (x; �) is anti{stable over X.In order to simplify the problem of determining the stability characteristics of Pf (x; �), thefollowing de�nition is introduced.De�nition 3 An interval polynomial family is a family represented by a polynomial whosecoe�cients are not scalars but intervals.Using the fundamental concepts of interval analysis as presented in Ratschek and Rokne (1988)and Neumaier (1990), the characteristic polynomial Pf (x; �) of a function f(x) over the regionX = [xL;xU ] can be transformed into an interval polynomial family Pf;X(�).Pf;X(�) = [aL0 ; aU0 ]�+ [aL1 ; aU1 ]�+ � � �+ [aLn�1; aUn�1]�n�1 + �n (2.5)where aLi � ai(x) � aUi ; 8i; x 2 [xL;xU ]:Pf;X(�) speci�es a family of polynomials that contains the set of polynomials Pf (x; �). Note thatif the coe�cients of Pf (x; �) are independent, then Pf (x; �) = Pf;X(x).Property 2 Pf;X(�) anti{stable ) f(x) convex over X.Although Property 2 allows to test the convexity of the function f over a speci�c domain, it doesnot provide an estimate of the smallest eigenvalue. The concept of margin of anti{stability isborrowed from control theory in order to obtain the desired lower bound.Property 3 Let �min be the smallest root of Pf;X(�). Then �� = �min is the smallest value forwhich Pf;X(�� ��) is anti{stable. Thus the margin of anti{stability of Pf;X(�) is �min.Finding �min can then be expressed as the following optimization problem :�min = ( min�;�� ��s:t: Pf;X(�� ��) anti� stable ) (2.6)Problem (2.6) can be reduced to a simpler form if the Kharitonov theorem is used (Kharitonov,1979). The stability of an interval polynomial family can be determined by testing the stabilityof only four of the polynomials in the family. Based on the relationship between stability andanti{stability, the Kharitonov polynomials can also be used to test anti{stability of an intervalpolynomial family.Property 4 If the polynomialsK1(f;X; �) = aL0 + aL1 �+ aU2 �2 + aU3 �3 + aL4 �4 + aL5 �5 + aU6 �6 + � � �K2(f;X; �) = aU0 + aU1 �+ aL2 �2 + aL3 �3 + aU4 �4 + aU5 �5 + aL6 �6 + � � �K3(f;X; �) = aU0 + aL1 �+ aL2 �2 + aU3 �3 + aU4 �4 + aL5 �5 + aL6 �6 + � � �K4(f;X; �) = aL0 + aU1 �+ aU2 �2 + aL3 �3 + aL4 �4 + aU5 �5 + aU6 �6 + � � � (2.7)are anti{stable then the polynomial family Pf;X(�) is anti{stable.



Combining properties 3 and 4, Problem (2.6) can now be solved by the following procedure :� Construct the four Kharitonov polynomials K1(f;X; �), K2(f;X; �), K3(f;X; �) andK4(f;X; �).� Calculate all the roots of these polynomials. The smallest root is �min.The above procedure yields a valid lower bound on the minimum eigenvalue of f(x) for x 2 X.Note that the only dependence on the number of independent variables arises during the stabilitycheck : the number of roots of each Kharitonov polynomial is equal to the number of variables.The roots can be obtained e�ciently since the Kharitonov polynomials involve a single variable.Finally, the accuracy of the lower bound obtained can be increased if the interdependence ofthe coe�cients of the characteristic polynomials is taken into account, as proposed by Bartlettet al. (1987) for the case of linearly dependent coe�cients. However, such a technique greatlyincreases computational expense and a compromise must be achieved between e�ciency andaccuracy.Small Example Consider f(x1; x2) = x31 � x1x22 with (x1; x2) 2 X = [0; 1]2. Its characteristicpolynomial is �12x21 � 4x22 � 4x1� + �2 = 0. Its interval characteristic polynomial over X is[�16; 0] + [�4; 0]� + �2 = 0 The four Kharitonov polynomials are then :K1(f;X; �) = �16� 4�+ �2 K2(f;X; �) = �2K3(f;X; �) = �4�+ �2 K4(f;X; �) = �16 + �2The set of the roots of these polynomials is f�4; 2� 2p5; 0; 4; 2 + 2p5g. Thus the computedlower bound on the minimum eigenvalue of f(x1; x2) over X is -4. The exact value of �min wasfound to be -2.5 using GAMS.Illustrative Example The potential energy function for the pseudoethane molecule is espe-cially interesting since it is highly nonlinear and is expressed in terms of only one variable,the dihedral angle (equation (2.2)). It is used to present a visual interpretation of the proposedmethod. Underestimators of the potential function were built for di�erent domains of the variablespace, using the calculated lower bound on the minimum eigenvalue. For each level of partition,the resulting convex piecewise underestimator was drawn, as shown in Figure (1). It can be seenthat, although the initial lower bounds are very loose, they improve rapidly to provide a goodapproximation of the original function.f(t) = 588600(3 r20�4 cos �r20�2 (sin2 � cos(t� 2�3 )�cos2 �)r20)6 � 1079:1(3 r20�4 cos �r20�2 (sin2 � cos(t� 2�3 )�cos2 �)r20)3+ 600800(3 r20�4 cos �r20�2 (sin2 � cos(t)�cos2 �)r20)6 � 1071:5(3 r20�4 cos �r20�2 (sin2 � cos(t)�cos2 �)r20)3+ 481300(3 r20�4 cos �r20�2 (sin2 � cos(t+ 2�3 )�cos2 �)r20)6 � 1064:6(3 r20�4 cos �r20�2 (sin2 � cos(t+ 2�3 )�cos2 �)r20)3where r0 is the covalent bond length (1:54�A), � is the covalent bond angle (109:5o), and t is thedihedral angle (0 � t � 2�).3 Summary of Computational ResultsThe �BB algorithm has been implemented in a 
exible and user{friendly format and it hasbeen used to successfully solve a large number of examples. Table (1) summarizes the resultsobtained for a sample of literature and design problems. The HP (Haverly pooling) problems area set of bilinearly constrained problems, while the LCP problems are linearly constrained concaveprograms. NLP is a small yet highly nonconvex test problem. The remaining formulationsrepresent chemical engineering design problems. RN1 corresponds to the optimization of a smallreactor problem, while RN2 is a more complex reactor network synthesis for the Van der Vussereaction. HEN corresponds to the design of a network of three heat exchanger. Finally, SEP is asuperstructure optimization problem for a separation system with two units.
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Figure 1: Function and underestimator at di�erent levels of the branch{and{bound tree usingcalculated � values
Problem Reference Number of Number of Ni Nn CPUName variables constraints time (s)HP1 Floudas and Pardalos (1990) 9 6 13 27 1.31HP2 Floudas and Pardalos (1990) 9 6 17 35 1.56HP3 Floudas and Pardalos (1990) 9 6 9 19 1.08LCP1 Floudas and Pardalos (1990) 20 10 30 61 7.03LCP2 Floudas and Pardalos (1990) 20 10 25 51 6.07LCP3 Floudas and Pardalos (1990) 20 10 30 61 6.66LCP4 Floudas and Pardalos (1990) 20 10 26 53 6.38LCP5 Floudas and Pardalos (1990) 20 10 82 165 16.5NLP Murtagh and Saunders (1988) 5 3 232 465 99.6RN1 Ryoo and Sahinidis (1995) 6 5 48 97 13.8RN2 Floudas and Pardalos (1990) 29 45 154 308 1988HEN Floudas and Pardalos (1990) 8 6 133 267 23.4SEP Floudas and Aggarwal (1990) 38 49 101 203 494Table 1: Summary of computational results (Ni, number of iterations, Nn, number of expandednodes)


