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Optimal Computer-Aided Molecular Design: A Polymer Design Case

Study

1. Introduction and Background

Costas D. Maranas

Department of Chemical Engineering, The Pennsylvania State University, 112A Fenske Laboratory, University
Park, Pennsylvania 16802

This paper addresses the problem of optimally designing molecular products. A systematic
analysis framework is presented for transforming a class of optimal computer-aided molecular
design problems with nonlinear structure—property functionalities into equivalent mixed-integer
linear (MILP) problems. While, in general, it is not possible to solve the original problem
formulation for the best molecular design with mathematical certainty, the equivalent (MILP)
reformulation can be solved efficiently with existing solvers and identify not only the best, but
also the second, third, etc., best molecular designs. Two alternative design objectives are
considered: (i) minimization of the scaled deviation of design properties from some target values,
property matching, and (ii) minimization/maximization of a single property subject to lower and
upper bounds on the rest of the properties, property optimization. The framework is applied to
the design of polymers where thermophysical and mechanical properties are estimated using
group contribution methods. Three case studies, including comparisons with existing methods,
illustrate the computational efficiency and feasibility of the proposed methodology.

designs. Instead, by utilizing group contribution meth-

The search for new molecular products with optimal
levels of thermophysical, mechanical, and optical prop-
erties is a primary objective in the chemical industries.
It encompasses the design of a wide range of products
including (a) polymeric materials (Allcock, 1992; Halpin,
1994; Judas et al., 1991); (b) extractants and solvents
(Gani et al., 1991; Joback, 1989; Naser and Fournier,
1991; Odele and Macchietto, 1993); (c) optical multilayer
filters (Epstein, 1952; Thelen, 1989; Dobrowolski, 1994);
(d) refrigerants (Joback and Stephanopoulos, 1989;
Kopko, 1990; Duvedi and Achenie, 1995); (e) lubricants
(Ichiro, 1991; Dare-Edwards, 1991); (f) ceramics (Gian-
nelis, 1989; Mehrotra, 1992; Babonneau, 1993), and
many more. Traditional molecular design involves a
protracted and costly series of experiments for synthe-
sizing each product candidate and evaluating its desir-
ability. Computer-aided molecular design (CAMD)
methods expedite the design process by forecasting
promising molecular designs. Product properties are
typically estimated with group contribution methods
(van Krevelen, 1990; Gani et al., 1989; Joback, 1984;
Joback and Reid, 1987) establishing input—output rela-
tions between the type and number of molecular groups
in a molecule or polymer repeat unit and various
macroscopic properties.

Optimal molecular design (OMD) involves the iden-
tification of a single or mixture of compounds that
optimizes one or multiple objectives while satisfying a
number of macroscopic property specifications. Specif-
ically, in polymer engineering it is often important to
systematically identify the architecture of a polymer
which best meets a number of performance require-
ments and design considerations. When there are only
a few “loose” property constraints, a suitable candidate
might be found from polymer property databases and
tabulations (van Krevelen, 1990; Blackletter, 1988).
However, when many “tight” property constraints must
be satisfied simultaneously or a performance objective
needs to be maximized, database searching, which is
limited by the number of tabulated alternatives, is not
always sufficient. The advantage of CAMD is that it is
not restricted to an existing tabulation of polymer

ods (van Krevelen, 1990) to estimate physical, chemical,
and mechanical polymer properties, CAMD is capable
of eliciting new, sometimes unexpected, molecular de-
signs. This aids the preliminary screening process,
which is followed by experimental testing and verifica-
tion with published property data.

A number of CAMD methods have been proposed in
the chemical engineering literature, primarily for the
design of solvents, refrigerants, and polymers. These
approaches are based on enumeration techniques (Steph-
anopoulos and Townsend, 1986; Joback, 1989; Joback
and Stephanopoulos, 1989; Derringer and Markham,
1985), knowledge-based strategies (Brignole et al., 1986;
Nagasaka et al., 1990; Nielsen and Gani, 1990; Gani et
al., 1991), graph reconstruction methods (Gordeeva et
al., 1990; Kier et al., 1993), multistage approaches
(Naser and Fournier, 1991; Gani and Fredenslund,
1993), genetic algorithms (Venkatasubramanian et al.,
1994a,b, 1995), artificial intelligence (Bolis et al., 1991),
local MINLP optimization (Odele et al., 1990; Odele and
Macchietto, 1993; Vaidyanathan and El-Halwagi, 1994;
Duvedi and Achenie, 1995), and interval Newton imple-
mentations (Vaidyanathan and El-Halwagi, 1996). For
the polymer design problem, Derringer and Markham
(1985) first proposed a CAMD approach for finding
viable polymer candidates satisfying a number of prop-
erties that are estimated with empirical equations (van
Krevelen, 1976). The method was of a heuristic nature
and was applied to a polymer design problem involving
water absorption, glass transition temperature, and
density specifications. Later, Joback and Stephanopo-
ulos (1989) introduced an enumeration-based technique
coupled with interval operations which was also applied
to the identification of polymers satisfying constraints
on properties such as glass transition temperature,
volume expansivity, thermal conductivity, and perme-
ability to oxygen. Recently, Venkatasubramanian et al.
(19944a,b, 1995) introduced an interesting adaptation of
genetic searches in the design of polymer repeat units
which were dynamically evolved in an attempt to reach
prespecified property targets. Finally, Vaidyanathan
and El-Halwagi (1994) addressed the problem of opti-
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mally designing addition or condensation polymers that
optimize a performance objective while satisfying other
design specifications. This task was formulated as an
MINLP problem and solved with a local optimizer GINO
(Liebman et al., 1986). Preliminary efforts to solve these
problems globally were reported in Vaidyanathan and
El-Halwagi (1996). The encouraging results obtained
by all these methods indicate the potential of computer-
aided molecular design (CAMD) methods for expediently
generating promising molecular design candidates.
Despite the diversity of the aforementioned CAMD
approaches and the intriguing ways that they propose
to tackle the enormity of the search space, a number of
guestions remain unanswered.

1. Can the globally optimum molecular design be
always reached with mathematical certainty and with-
out excessive computational effort?

2. Is it possible to identify not only the global
optimum molecular design but also a ranked list of the
the second, third, etc., best molecular designs?

3. Given a quantitative description of the inherent
property estimation uncertainty, what is the degree of
confidence that the obtained molecular designs will
optimally meet the design objectives?

In this paper, a systematic methodology is introduced
for reformulating a class of optimal molecular design
(OMD) problems with widely used nonlinear structure—
property functionalities into equivalent mixed-integer
linear (MILP) problems. This enables the efficient
identification of not only the best but also the second,
third, etc., best molecular designs with existing (MILP)
solvers. By eliminating the caveat of convergence to
suboptimal molecular designs, the chances of identifying
novel, possibly counterintuitive, superior design alter-
natives are improved. The key issue of quantifying
property prediction imprecision and deriving a proba-
bilistic measure of confidence that the obtained molec-
ular designs will optimally meet the design objectives
is addressed in (Maranas, 1996).

In the following sections, first a mathematical de-
scription of OMD is provided and the structure—
property prediction functionality is discussed. Next, it
is shown how the original nonconvex mixed-integer
nonlinear optimization MINLP representation of the
(OMD) problem can equivalently be expressed as a
much more tractable mixed-integer linear MILP
optimization problem. Finally, three case studies are
addressed to illustrate the proposed framework.

2. Mathematical Description

The problem of identifying the best molecular design
based on some measure of performance can be expressed
as the following mixed-integer nonlinear optimization
problem.

min MP(p;(n)) (OMD)

subject to pi < p(n) < p;’

ne{n,n-+1,..,n%, i=1,..,N

In formulation (OMD), n = (ny, ..., nN) is the vector of
the integer variables n; € {0, 1, 2, ..}, i =1, ..., N,
describing the number of times the ith molecular group
participates in the polymer repeat unit and niL, niU are
the corresponding upper and lower bounds. Additional
constraints in (OMD) may also be placed on the total
number of groups composing the polymer repeat unit,

N
nmin = Zni = nmax
=

The expressions p; = pj(n), j = 1, ..., M, established by
group contribution methods, denote the functionality
between polymer property j and the number of different
molecular groups in the polymer repeat unit. pJ!‘ and
ij are prespecified lower and upper bounds on prop-
erty p;. Finally, the objective function MP is a measure
of the performance of the molecular design and is
typically a function of one or more polymeric properties,
MP = MP(pj(n), j =1, ..., M). Because p; = pj(n), MP is
ultimately a function of only the decision variables n;
which fully specify the target molecule. The following
two most widely used measures of performance are
considered in this study:

(1) Minimization of the maximum scaled deviation of
properties from some target values (property matching
(PM)),

1
min MP = max —[p;(n) — pjl
i S

Pj

where p; is the target for property j and pjS the corre-
sponding scale. Clearly, the selection of the property
scales may affect but not completely overwhelm the
selection and relative optimality order of the best
molecular designs. Therefore, property scales must be
carefully selected so that they truly reflect the relative
importance of various property deviations from the
target values. For example, if a 10 K deviation for the
glass transition temperature target is as significant as
a 0.1 g/cm? deviation from a density target, then an
obvious selection for the corresponding property scales
is:

TZ =10, D°=0.1

If such quantitative trade-off information does not exist,
then the natural selection for property scales is the
actual property targets. In this case, the same relative
importance is assigned to all percent property violations
from their target values.

(2) Minimization/maximization of a single property j*
(property optimization (PO)),

min/max MP = p;.(n)

Note that it is important to ensure that the molecular
designs which optimize these measures of performance
are structurally feasible. Specifically, if vi,i =1, ..., N,
is the valency (i.e., number of free attachments) of the
ith molecular group (e.g., the valency of —CH,— is two,
while the valency of >CH- is three), then there must
be enough free attachments to interconnect all molec-
ular groups in a structurally feasible way. Also, the
number of the remaining free attachments must be
equal to zero for molecules and two for polymer repeat
units. To maintain the structural feasibility of the
molecule, a number of linear constraints on n must be
included in the problem (OMD). These structural
feasibility constraints define the necessary conditions
under which a set of molecular groups can be intercon-
nected so that there is no shortage or excess of free
attachments. For the sake of simplicity and without
loss of generality we assume that any two molecular
groups may not be linked with more than a single bond,
implying that possible double and triple bonds must be
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Table 1. Molecular Groups for Case Study 1
index 1 2 3 4 5 6 7
group —CH,— —-CO- —-CO0— -0— —CONH- —CHOH- —CHCI-
Table 2. Group Contribution Parameter Values in Case Table 4. Molecular Groups in Case Study 3
Study 1 - - -
index mol. group index mol. group index mol. group
index group Yi Vi Hi Mi 1 T 1 “NH— 21 —CoHs
1 —CH— 2700 1585 33x105 14 2 —CHy— 12 —CONH- 22 —nCzHy
2 —CO- 27000 1340 0.11 28 3 —CHO 13 —OCONH- 23 —iCsHy
3 —CO0O— 8000 23.00 0.075 44 4 -S- 14  —NHCONH- 24 —tC4sHo
4 -0- 4000 10.00 0.02 16 5 —SO,— 15  —aCeHs— 25 -F
5 —CONH- 12000 24.90 0.75 43 6 —O- 16  —bCeHs— 26 —Cl
6 —CHOH- 13000 19.15 0.75 30 7 —CO- 17 —cCeHs— 27 —Br
7 —CHCI- 20000 29.35 0.015 48.5 8§ —COO- 18  [CeH3— 28 —OH
9 —0COO-—- 19  [TeH,O 29 —CgHs
Table 3. Molecular Groups in Case Study 2 10 —COO0CO— 20 —CH3; 30 —CN
index mol.group index mol.group  index mol. group Table 5. Group Contribution Parameters in Case Study
1 CHs 5 CH;COO— 9 [TeH4 3
g —ngs g 93gszcoo— ﬂ %:'Hr index i M Vai Vi Coi Uri
4 —COOH 8 [CHNH, 12 o 1 4 12.01 4.70 3.33 6.2 40
2 2 14.03 16.37 10.23  25.35 880
fully contained within the molecular groups. In this i g ég'gg 157)'28 lg';g 5451.8(5) ‘5‘28
case, the to_te_tl number of free atta<_:hments in a molecule 5 > 64.06 3250 20.30 50.00 1250
can be specified as follows: Each time a molecular group 6 2 16.00 8.00 371 16.80 400
i is added to a molecule, v; attachments are contributed 7 2 28.01 18.50 11.70 23.05 875
while spending two of them to form the connection 8 2 44.01 24.60 1520  46.00 1225
(starting with the second group). Therefore, the total 18 g ?g-g% 28-88 %3-88 gg-gg %i;g
number of free attachn)eljts ._avallablie for bonding in the 1 5 15.02 6.40 8.08 14.25 875
molecule or repeat unit is given by: 12 2 43.03 25.00 19.56 46.00 1750
13 2 59.03 3000 23.00 58.00 2100
N 14 2 58.04 3000 27.60  50.00 2000
=S —2n +2 15 2 76.09 65.50  43.32 78.80 4100
£ 16 2 76.09 69.00  43.32 78.80 4050
17 2 76.09 65.50  43.32 78.80 4000
. 18 3 75.08 63.34 4080  71.85 3700
For example, the unit —CH,CH,CH>— has (2 — 2)3 + 2 19 4 7408 5891 3828 6500 3300
= 2 free attachments. Clearly, in the design of a 20 1 15.03 23.00 13.67 30.90 1400
molecule the number of free attachments must be equal 21 1 29.06 38.50 23.90 56.25 2280
to zero, f = 0, whereas in the case of polymer repeat gg i j‘é-gg gggg gﬁg %-ig :3%28
unit this number must be f = 2. - 24 1 5711 7400 4434  99.00 4250
Problem (OMD) is, in general, very difficult to solve o5 1 19.00 1000 6.00 2140 530
due to the nonlinearities in the property—structure 26 1 35.46 18.40 12.20 27.10 1265
relations p; = pj(n) and the large number of different 27 1 79.92 2095 1460  26.30 1300
ways that a set of molecular groups can be intercon- 28 1 17.01 11.54 8.04 17.00 630
nected in a structurally feasible manner. It has been 29 1 7710 6465 4584 8560 5000
30 1 26.02 21.09 1470  25.00 1400

shown that the total number of distinct molecular
designs containing between Kpin and Kmax molecular
groups selected from a pool of N molecular groups is
equal to (Joback and Stephanopoulos, 1989),

Kmax (N + K — 1)!
K=Kmin KI(N - 1)'

assuming that different permutations of the same
molecular groups in the molecule are indistinguishable.
This corresponds to all different combinations of N
different objects, K at a time for K = Kqin, ..., Kmax With
repetitions. Table 6 summarizes the total number of
distinct molecular group interconnections for represen-
tative values of Kmnax and N with Knin = 1. Table 6
clearly demonstrates that simple search techniques
cannot cope with the explosive growth of molecular
alternatives as more realistic problem sizes are ad-
dressed. Instead, a method is needed which can ef-
ficiently eliminate many suboptimal designs at a time
without explicit one-by-one enumeration. While the
potential for reaching computational tractability for
arbitrary property-estimation models is questionable,
by recognizing, recovering, and utilizing the prevailing

Table 6. Total Number of Distinct, Structurally Feasible
Molecular Group Interconnections for Different Values
of Kmax and N

Kmax N distinct designs
5 5 251
5 10 3,002
5 20 53,129
5 30 324,631
5 40 1,221,758
10 5 3,002
10 10 184,755
10 20 30,045,014
10 30 847,660,527
10 40 10,272,278,169
20 5 53,129
20 10 30,045,014
20 20 137,846,528,819
20 30 47,129,212,243,959
20 40 4,191,844,505,805,494

mathematical features of widely used group contribution
methods, this task becomes more manageable.
3. Structure—Property Relations

Group contribution methods (GCM) (Franklin, 1949)
provide popular, versatile, and relatively accurate (Hor-



3406 Ind. Eng. Chem. Res., Vol. 35, No. 10, 1996

vath, 1992) ways for estimating properties based on the
number and type of molecular groups participating in
a molecule or repeat unit. GCM are based on the
additivity principle of the groups constituting the
molecule under investigation and have been extensively
utilized in the estimation of a wide spectrum of poly-
meric properties including volumetric, calorimetric,
thermophysical, optical, electromagnetic, and mechan-
ical properties. An extensive compilation of these
estimation methods along with the corresponding pa-
rameters can be found in (van Krevelen, 1990). Note
that while some quantities are either exactly (i.e., repeat
unit molecular weight) or approximately (e.g., molar
volume, molar heat capacity) additive with respect to
the individual molecular group contributions, this is not
the case for almost all properties of interest in molecular
design. In fact, it appears that the estimation of most
properties pertinent to engineering design is given by
the ratio of two linear expressions in n;. We denote this
special nonlinear structure—property functionality as

type |I.

j=1,.., M (typel)

Note that A;; and Bj; are given parameters associated
with a specific molecular group i and property j and
independent of the molecular architecture. Table 7
summarizes a number of polymeric properties whose
estimating formula is of type I. Note that the wide-
spread use of type | functionality in property estimation
is not a mere coincidence. It stems from the fact that
while most properties of interest are not additive on the
individual molecular group contributions, their products
with either molar volume or monomer molecular weight
are. Not all polymeric properties can be predicted based
on an estimating formula of type I. A number of
properties, in particular, mechanical properties, require
an estimating formula which is derived by raising a
formula of type | to some real positive power d;. We
denote this estimating type of formula as type II.

N dj

ZAijni
=

p(n) = N ,

Bijn;

j=1, .., M (typell)

Table 8 summarizes a number of polymeric properties
and their estimating formulas which are of type II.

It is interesting to note that the property-predicting
methods summarized in Tables 7 and 8 take into
account only the type and number of molecular groups
composing the molecule in question and not the way
they are interconnected. Note that sometimes the
specific molecular group interconnection has a signifi-
cant effect on property values. For example, while the
density (at 296 K) of polypropylene —CH,CH(CH3)CH>-
CH(CHj3)— is 0.8504 (g/cm3), the density of head-to-head
polypropylene —CH>CH(CH3)CH(CH3)CH,— is 0.8736
(g/cm3) even though both repeat units have the same
molecular group representation. In general, only partial
information about the internal molecular architecture
can be elicited based on knowledge of pertinent property

Table 7.

Polymer Properties Estimating Formulas

Following Functionality of Type |

density

specific thermal
expansivity

thermal expansion
coefficient

specific heat capacity

crystalline melting
temperature

glass transition
temperature

cohesive energy

density

solubility parameter

refraction index

dielectric constant

water absorption

W

N
Min;
£

N

(g/cm®)
v,

y4
N
0.45 x 103§ v,n

wi'li

e= - (cm®/g K)
Min;
£
N
0.45 x 10§ v,,n;
a= . (1K)
Vin;
£
N
Coin
Cp=— (Jig K)
Min;
£
N
ZYmini
£
Th= (K)
Min;
£
N
Yl
£
Ty = (K)
Min;
£
N
Ecohni
£
€eoh = N (chm3)
ZMini
&
N
Fin;
5= 'Z (3V%cm®?)
Zvini
£
N N
(Rgpi + Vi, Ryin;
n=_— or —
N N
vin; Min;
= =
N N
Z(Vi + 2P )N Pyin;
€=— or —
N N
(Vi = PLodm; Min;
1= 1=
N
18H,n,
= I:N— (g of H,O/g of polymer)
M:.n



Table 8. Polymer Properties Estimating Formulas
Following Functionality of Type Il

surface tension N 4

Pgin;
&
=|——| (N/m
14 " (N/m)
Vin;
=
unperturbed N 2
viscosity (3; + 4.2Z)n;
coefficient &
Ko = !\LlMini (cm3 mol~ Y2 g—3/2)
dipole moment N 1/2
(P — Rudm;
&
u=\———— (D)
20.6
specific shear N 6
modulus Ui
.
Glp=|— (J/g)
Vin;
v
specific bulk N 6
modulus UriN;
.
Klo =
o=~ (J/g)
Vin;
&
activation energy N 3
of viscous flow H;;ini
&
E, () = " (I/mol)
M;n

values by utilizing group contribution methods. Excep-
tions to this rule are the estimating relations for the
glass transition and crystalline melting temperatures
which in some cases provide additional information on
the internal molecule architecture. In particular, the
suggested values of the parameters Yg and Y, for some
molecular groups (e.g., —C(CHgs),—, —COO—, —SO,—,
etc.) are adjusted according to whether they are bonded
with zero (nonconjugated), one (one-sided conjugation),
or two (two-sided conjugation) aromatic groups. This
can be accounted for by defining additional pseudo-
molecular groups and modeling the same molecular
group with a different integer variable depending on
whether it has none, one-sided, or two-sided conjugation.

It is important to emphasize that the aforementioned
group contribution methods provide only estimates for
different polymeric properties and may only be in partial
agreement with experimental values. In fact, 5—10%
or even higher discrepancies between experimental
values and group contribution predictions are not
uncommon. The relative accuracy of these predictions
depends on the particular property (e.g., density esti-
mates are typically more accurate than glass transition
temperature estimates), molecular complexity, and
property prediction method. The effect of property
prediction uncertainty on optimal molecular designs is
addressed in (Maranas, 1996). Next, by utilizing the
underlying mathematical functionalities of type I or Il
in polymeric property estimation (van Krevelen, 1990),
the original mixed-integer nonlinear (MINLP) formation
(OMD) is transformed into an equivalent MILP repre-
sentation.
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4. Reformulation

First, problems whose structure—property function-
alities are all of type | are addressed. After omitting
all linear constraints in n (i.e., feasibility structure
requirements, size bounds, etc.), for the sake of clarity,
the property matching (PM) problem is formulated as:

min s (PM)

N

A
_ 1|&

subject to s> — -pj. 1=1..M

Pj| <

1S Bin;
&

ne{n,n-+1,...n%, i=1,..,N

Here s is the maximum over all target properties scaled
violation to be minimized, p; is the target value for
property j, and pjS is an appropriate scale. Typically,
the maximum percent property deviation is minimized,
and therefore pjs = p;. Note that this formulation is
nonconvex since the expressions for p;(n) are, in general,
nonlinear in n. The original formulation, however, can
be simplified by first eliminating the absolute values.
By observing that (i) an inequality of the form |x] <y
can equivalently be replaced by two inequalities x <y,
—x =<y, and (ii) A, Bij > 0O, the property matching
problem (PM) can equivalently be written as:

min s (PM)

subject to
N N N

pJS( B”nl)S = ( A”nl - pjo Bunl), j = 1, ey M
1= 1= 1=

N N N
pjs( Bijnis = —() Ayni — pj) B;jny),
i= i=

i=1, ..M

ne{n,n-+1,...n%, i=1..,N

This transformation removes all absolute values but
introduces nonlinear products between the continuous
variable s and the linear sums of integer variables
z:\‘:lBijni,j =1, ..., M. To eliminate this nonlinearity,
the integer variables n are first expressed as a linear
combination of binary variables yix (Floudas, 1995). The
integer variables n; € {n}, ..., n/’} can be expressed as a
linear combination of a number of binary 0—1 variables
yik as follows:

K
n,=nr+ zozkyik, i=1,..,N
=

_ log(ny’ — ny)

N log 2 5

where

For example, the integer n € {0, ..., 7} can be written
as n =y + 2y, + 4yz where yi, yo, y3 € {0, 1}. This
implies that products between continuous and integer
variables can be decomposed into the sum of a number
of products of continuous and binary variables. Such
nonlinear products of continuous and binary variables
can equivalently be expressed with four linear inequal-
ity constraints eliminating the nonlinearity at the
expense of introducing only a single extra variable
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(Glover, 1975). Let xy be such a product where x is a
continuous variable with x € [xt,xY] and y is a binary
variable y € {0, 1}. This product can be replaced by a
single additional continuous variable z = xy which must
satisfy the following constraints.

x—x'A—-y)sz=x—x"1-vy)
xty <z <x%

Note that if y = 0 these constraints become x — xY < z
<x—xtand0 < z <0, forcing z to zero. Alternatively,
ify=1x=<z=<x andx"- <z=<xY, then z is equal to x.
In both cases z assumes the correct value xy. Based on
(i) the expression of integer variables as a linear
combination of binary variables and (ii) the replacement
of continuous and binary variable products with linear
inequality contraints, the original nonlinear formulation
can equivalently be rewritten as the following mixed-
integer linear programming (MILP) problem.

max s (PM)

subject to
N N

N
p;() Bynsy) = (ZAijni Py Bm), i=1,..M

N N N
p;(> Bijns) = —(H) Ayni — pY By,  i=1,... M
i= =

K
n,=n-+ zozkyik, i=1,.., N
K=

K
ns; = ni's + szkysik, i=1,.,N
K=

s —5°(1 — Vi) < ysi =5 —s"(1 —yy)
L U - —
SVYik VYSik =S Vi 1=1,..,N, k=1,..,K

ne{n,n-+1,..,n%, i=1,..,N
Here, variables ns; and ysik represent the products n;s
and yis, respectively. Also st and sY are lower and
upper bounds on the scaled maximum property violation
(typically s- = 0 and sY = 10—20%).

Often in practice, rather than designing a polymer
whose properties match some prespecified targets, the
maximization or minimization of a single property j* is
sought while maintaining property values within some
lower and upper bounds. This objective is expressed
mathematically by the property optimization formula-
tion (PO). By again omitting linear constraints in n;,
this problem is formulated as follows:

N
1=

max/min pj. = -~ (PO)

N
A
: L_ "= U .
subject to Py = - =p;, 1=1..M
Bijn;
&
ne{n,n-+1,..,n"%, i=1.,N

where variable pj« denotes the j*th property to be
minimized or maximized and p}‘ and pV are the corre-
sponding lower and upper bounds. As described earlier
in detail for the (PM) formulation, by (i) expressing all
integer variables as linear combinations of binary
variables and (ii) replacing nonlinear products of con-
tinuous and binary variables with linear inequalities
(Glover, 1975), the nonlinear (PO) formulation can
equivalently be rewritten as the following (MILP)
problem.

max/min p;. (PO)
N N
subject to Bij<npjj« = ) Ay
1= 1=
N N N

( Biini)pj!_ = AN = ( Bijni)pjuu ji=1, ., M

K
n,=nt+ Zozkyik’ i=1,..,N
k=i

K
npij* = n:‘pj* —+ 202kypij*k' i= 1, ceey N
K=

P — pjli(l = YiK) = YPijx = Pjr — p,!1(1 = Yi)

PYik < YPiju < Pp¥ie  1=1, ., N, k=1,..,K
Here, variables np;j= and yp(ij*k) represent the prod-
ucts nipj« and yikpj+, respectively. So far it has been
shown how formulations (PM) and (PO) can be trans-
formed into (MILP) problems when all structure—
property functionalities are of type I. Next, the linear-
ization of problems where some of the structure—
property functionalities are of type Il is addressed.
The introduction of functionalities of type Il for some
properties gives rise to nonlinear terms of the form

N N N
( Aijni)djv ( Bijni)djl s( Bijni)dj
i= i= =

in both formulations (PM) and (PO). The linearization
of these terms is not as straightforward as the one for
the nonlinear terms resulting from functionalities of
only type I. This linearization is complex and requires
the introduction of a large number of extra continuous
variables. Nevertheless, one can avoid this computa-
tional burden by (i) appropriately rearranging equations
and (ii) invoking monotonicity principles. Specifically,
because the function f(x) = xd (d = 0) is strictly
monotonically increasing in x, the maximum/minimum
point of f(x) subject to a set of constraints in x is the
same with the maximum/minimum point of x subject
to the same set of contraints. Thus, the maximization/
minimization of



BijN;

in the (PO) formulation can equivalently be replaced by
the maximization/minimization of

N
Ay,

By,

This yields an objective function definition identical with
that derived for type | structure—property relations.
Also the nonlinear property-bounding constraints

N dj
L =

Py = N =P

Bijni

can equivalently be replaced with the linear constraints

N N N
EHYEY By = S AN < (V)YIS BN,

Formulation (PM) involving some type Il structure—
property relations can also be converted to one with only
type | structure—property formulas. Instead of at-
tempting to match a target p;with a scale pjS to the jth
property of type Il,

N dj
ZAuni

1||E .

S = p_Js N — pj
Bijni

it is equivalent to match p'¥ to the target (p9*% with a
l/dj

scale ()",
N

A
1 |=

S)l/dj N

(p;

ijNi

5 > _ (pplldj

The resulting mathematical formulation is again identi-
cal to that with only type | structure—property relations.

The key advantage of reformulating (PM) and (PO)
as an MILP problem is that now efficient MILP solvers
such as CPLEX and OSL can locate the global optimum
molecular design with mathematical certainty. More-
over, by incorporating appropriate integer cuts in the
formulations (Floudas, 1995), not only can the best
solution be found but also the second best, third best,
etc., can be generated successively. For example, if
y3Y' is the best solution and the generation of the
second best solution is sought, then the following integer
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cut,

K
Z z Yik T z 1-yi)|=KN-1
K=1] (i, k)yi=1 (i,K):yi9=0

sol

makes y;. infeasible, forcing the solver to converge to
the second best solution. By accumulating integer cuts
and resolving the problem multiple times, a sequence
with the n-best solutions can be generated. In this
section, it was shown how the original nonlinear for-
mulations (PM) and (PO) involving structure—property
relations of types | and Il can be reformulated as mixed-
integer linear programming problems. Next, a number
of polymer design case study problems are addressed.

5. Polymer Design Case Studies

5.1. Case Study 1. The first case study involves the
design of a polymer repeat unit which meets constraints
and/or optimizes objectives on density, water absorption,
and glass transition temperature (Derringer and
Markham, 1985). The molecular groups which are
allowed to participate in the polymer repeat unit are
given in Table 1. The contribution of these molecular
groups to the three properties of interest follows the
empirical equations proposed by van Krevelen (1976)
and all fall within type I. The expressions for the water
absorption, density and glass transition temperature are
given in Table 7. The values for the group contribution
parameters H;, M;, Y;, and V; for different groups are
given in Table 2. The same molecular group is allowed
to participate up to three times in the polymer repeat
unit, nj €{0, 1, 2, 3}, i =1, ..., 7; however, no additional
upper bound is imposed on the total number of groups
in the repeat unit. The property targets in the (PM)
formulation are

We = 0.005 (g of H,O/g of polymer),

D° = 1.50 (g/em®),  Tg =383 (K)
and the property scaling factors are selected to be
identical to the property targets.

Ws=we°, D°=D°, TZ=TS
This ensures that percent deviations from the target
values are penalized equally for all properties. The
property bounds for the (PO) formulation are

0=W=018, 298=T;=673, 1=D=15
Both formulations are solved with the GAMS/CPLEX
(Brooke et al., 1988) combination on a HP-730 worksta-
tion with an absolute convergence tolerance of 1078,
Table 9 summarizes, in decreasing order of optimality,
the 10 best solutions of the (PM) problem. Specifically,
the polymer repeat unit, maximum scaled property
violation, water absorption, glass transition tempera-
ture, density, and CPU in seconds are tabulated. The
best repeat unit structure involves groups —CH,— and
—CHCI- in a 1:2 ratio. Note that, even in suboptimal
solutions, these two groups in various ratios are domi-
nant. The oxygen group —O— only later appears in
some of the suboptimal solutions. Note that the CPU
requirements are very small (less than a second) and
grow approximately linearly as more integer cuts ac-
cumulate (see Figure 1). This gives rise to only a
quadratic increase in the cumulative CPU requirements
(see Figure 2). This implies that much larger problems
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Table 9. Results of Property Matching for Case Study 1

rank repeating unit violation w T (K) D CPU (s)
1 —(CH2(CHCI)2)— 0.0163 0.0049 384.68 1.4889 0.32
2 —(CH2z(CHClI)3)— 0.0264 0.0051 393.10 1.5351 0.32
3 —((CH2)2(CHCI)3)— 0.0526 0.0047 376.94 1.4489 0.32
4 —(CHCI)— 0.1134 0.0056 412.37 1.6524 0.38
5 —(CH2CHCI)— 0.1169 0.0044 363.20 1.3827 0.44
6 —((CH2)30(CHCl)3)— 0.1674 0.0058 354.30 1.3977 0.50
7 —((CH_)30(CHCI),)— 0.1843 0.0059 336.12 1.3333 0.55
8 —((CH2)3(CHCI)2)— 0.1974 0.0040 346.04 1.3082 0.55
9 —((CH2)s0CHCI)— 0.2166 0.0061 301.41 1.2255 0.54
10 —((CH_)20(CHCl)3)— 0.2474 0.0062 366.23 1.4605 0.70
5 T T T T T T T T T Table 10. Results of Water Absorption Minimization for
Case Study 1
rank repeating unit w T (°C) D CPU (s)
! 1 —((CH)sCHCl)— 0.00318 37.49 1.1768 0.64
2 —((CHa)CHCI)— 0.00368 59.03 1.2531  0.60
3 —((CH2)3(CHCI)2)— 0.00401 73.04 1.3082 0.59
e 1 4 —(CH.CHCI)— 0.00441 90.20 1.3827 0.81
H 5 —((CH2)2(CHCIl);)—  0.00474 103.95 1.4488 0.77
B 6 —(CHz(CHCI))— 0.00492 111.68 1.4889 0.75
M. i 7  —((CH2)30(CHCI)3)— 0.00584 81.30 1.397 1.22
8 —((CH.);O(CHCI),)— 0.00592 63.13 1.3333 0.97
9 —((CH2)3OCHCIl)—  0.00608 28.41 1.2255 1.03
10 —((CH2)20(CHCIl)3)— 0.00624 93.23 1.4605 0.88
1r 4
5.2. Case Study 2. The second medium-size case
study involves the optimal design of a polymer with
10 20 3 40 S0 e 70 s 9% 100 property restrictions on the molecular weight M of the

Iteration

Figure 1. CPU requirements of the best 100 solutions of case
study 1.

250 T T T T T T T T T

CPU (sac)

o Y 5 ! ! ' L ' ) !

10 20 30 40 50 60 70 80 920 100
Iteration

Figure 2. Cumulative CPU requirements of the best 100 solutions
of case study 1.

and more complex property prediction models can be
addressed. Clearly, the solution obtained depends on
the adopted scaling; therefore, it is very important to
select the scaling property factors in a way that truly
reflects their relative importance.

Next, a (PO) problem formulation is addressed involv-
ing the minimization of the polymer water absorption
W subject to bounds on the other properties. Table 10
summarizes, in increasing order of water absorption, the
10 best solutions of the water absorption minimization
problem including the polymer repeat unit, water
absorption, glass transition temperature, density, and
CPU in seconds. The repeat unit structure which
globally minimizes the water absorption involves again
only groups —CH,;— and —CHCI- in a 3:1 ratio. In
subsequent solutions, the same molecular groups again
appear to dominate. The CPU requirements are again
very small (about a second) and comparable with those
of the property matching problem.

polymer repeat unit, glass transition temperature Tg,
shear modulus G, density p, and specific heat capacity
Cp. Three different design objectives are considered,
involving the identification of the polymer repeat unit
with (i) the maximum glass transition temperature Ty,
(if) maximum specific heat capacity cp, and (iii) maxi-
mum specific shear modulus G/p.

Participating molecular groups, group contribution
parameters, and estimating formulas are taken from
example 4.3 of (Vaidyanathan and El-Halwagi, 1996).
The molecular groups are shown in Table 3 and the
property estimating formulas are found in Tables 7 and
8 after replacing the molar volume estimating expres-
sion, YN, V,.n, with 1.435 SN,V .n. Unlike example
4.3 of (Vaidyanathan and El-Halwagi, 1996), where
fairly tight bounds were selected for all polymer proper-
ties, which excluded all but two polymer designs, the
following much wider property bounds are chosen in this
study.

50 < M =< 200 (g/mol of monomer)
298 = T, = 500 (K)
500 = G = 20000 (MPa)

0.8 < p < 1.4 (g/cm®)
1.0 = ¢, = 1.5 (J/(g K))

This increases considerably the allowable molecular
diversity and thus the difficulty of the optimization
problem. Apart from the estimating formulas for shear
modulus,

N N 6
M;in; Uin

N N
V,ini[|1.4355 v,

1.435



Table 11. Results of Maximization of T4 in Case Study 2

molecular groups Tg (K) CPU (s)
n; = 3, no=1nyp= 2 447.85 3.12
n=1,n3 =1,np=1 440.38 2.14
n=3n=1np=2 434.93 4.10
nn=1n3=1,ng=1,nipo=1 432.49 4.37
n=1n=1ng=1,np=1 424.04 2.73
n=3nNn=1ng=1,nNp=2 423.22 2.85
n=1n=1n=1np=1 423.11 2.87
n; = 3, no=1,ng=1, Ny = 2 417.72 3.25
nn=1,n3=1,ng=1,np=1 417.29 5.12
n=1n=1ng=1n=1 415.69 5.50

Table 12. Results of Maximization of ¢, in Case Study 2

molecular groups cp (J/g K) CPU (s)
n=2n=3nN2=1 1.713 1.40
n=2n=2n;=1 1.694 1.67
n=3n=2np=1ne=1 1.685 2.31
n=2n=1np=1 1.666 2.46
n=3n=1np=1np=1 1.664 2.27
n=3nop=1np=1 1.636 2.30
n=2n=3nNg=1np=1 1.596 3.50
Ny =2,nNg=2, Ng = 1,np=1 1.567 4.90
n=3n=1ng=1np=1n;p=1 1.560 4.63
ni=3,ng=1n3,=3 1.557 4.62

Table 13. Results of Maximization of G/p in Case Study 2

molecular groups Glp (J/g) CPU (s)
ng=1 16868 0.99
ne=1ng=3 11614 2.29
no=1ng=3,np=1 10447 3.73
ng=1,ng=2 9976 2.09
n=1ng= 3, Nnp=1 9887 1.65
n=1n=1,ng=3,nNp=1 8998 1.65
n=1,ng=2,nNp=1 8837 1.79
Nng=2,Ng=3 8723 1.87
nn=2ng=3,nNp=1 8592 3.05
n=1, Ng = 2, Nig = 1 8250 3.05

which is neither of type I nor type 11, all other property
estimating formulas are of type | or simpler (i.e.,
molecular weight). However, the lower and upper
bounds on G can equivalently be imposed with upper
and lower bounds on G/p whose estimating function,

N 6
Upin;

G oY < Glp = = < GYp"
1.435) V,n;

is of type Il. This means that the maximization of Tg,
Cp, Or G/p subject to lower and upper bounds on molec-
ular weight M, shear modulus G, density p, and specific
heat capacity c, falls within the scope of the property
optimization (PO) problem whose linear reformulation
is presented in section 4. Therefore, existing efficient
(MILP) solvers (i.e., OSL, CPLEX) can be utilized and
guarantee the identification of the global optimum
without having to resort to local (MINLP) solvers or to
typically computationally intensive global (MINLP)
solvers.

The maximum total number of molecular groups
allowed to participate in the polymer repeat unit is
seven, and the maximum number of the same molecular
groups is four. The GAMS/OSL combination is utilized
on an IBM RS6000 43P-133 series workstation with an
absolute convergence tolerance of 1078. Computational
results on the maximization of Ty, cp, and G/p are shown
in Tables 11—13, respectively. These results include the
10 best solutions in decreasing order of optimality and
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the associated computational requirements in seconds.
Note that in all cases the computational requirements
are only a few seconds, indicating the computational
efficiency and practical feasibility of the proposed ap-
proach.

The results of the maximization of the glass transition
temperature T4 show that the 10 best solutions are all
within 7% of the best molecular design, indicating the
existence of many “good” molecular designs (see Table
11). The best molecular design involves a fully branched
main chain with methyl —CH3; and chlorine —CI side
groups in a 3:1 rato. Additional solutions also involve
highly branched main chains with primarily methyl and
to a lesser extent aromatic, chlorine, and amino groups.
These results are consistent with the experimentally
observed fact that highly branched chains typically
involve high Ty.

The 10 best solutions for the maximization of the
specific heat capacity c, are again fairly close in value
to the global optimum (within 9%). Itis also interesting
that all six best solutions involve only hydrocarbon
groups (see Table 12). The global optimum solution
involves a main chain with three out of four carbon
atoms saturated with hydrogens and only one out of four
carbon atoms fully branched with two methyl groups.
Additional hydrocarbon solutions involve increasingly
more methyl side groups per main chain carbon, start-
ing with a ratio of 2:3 of methyl groups to main-chain
atoms for the second best solution and finishing with a
ratio of 3:2 in the sixth solution. Finally, in the last
four solutions a single —CHNH,— group appears in
methyl-branched carbon main chains.

The values of the 10 best solutions for the maximiza-
tion of the specific shear modulus G/p involve a much
higher spread of over 50% (see Table 13). The methy-
lamino —CHNH,— group completely overwhelms all
other groups in all 10 best molecular designs. More
specifically, the best design involves only the group
—CHNH,—. The second best design, involving a 31%
drop in the specific shear modulus value, includes
groups —CHNH,— and —CH,— in a 3:1 ratio. Ad-
ditional solutions involve main chains composed prima-
rily of methylamino groups with occasional methyl and
chlorine side groups.

5.3. Case Study 3. This large-scale molecular
design case study involves the optimal design of a
polymer repeat unit which most closely matches given
property targets on density p, thermal expansion coef-
ficient o, specific heat capacity c,, and bulk modulus K.
This design objective can be formulated as the minimi-
zation of the scaled deviation of p, a, ¢y, and K from
given target values, property matching problem (PM).
The molecular groups composing the optimal polymer
repeat unit are chosen from a diverse pool of 30
molecular groups (see Table 4) which are essentially
identical to those utilized in (Venkatasubramanian et
al., 1995) with only minor modifications to exclude
molecular groups with parameters of low accuracy (i.e.,
—H). Figure 3 illustrates the location of the free
attachments in the aromatic molecular groups. The
estimating formulas for density p, thermal expansion
coefficient a, specific heat capacity c,, and bulk modulus
K are given in Tables 7 and 8, and the corresponding
parameters (van Krevelen, 1990) in Table 5. Note that
while the estimating expressions for p, a, and c, are of
type 1, the formula for K is neither of type I nor of type
Il. This problem can be overcome by observing that,
instead of trying to match a bulk modulus target, one
can equivalently match the ratio of bulk modulus over
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Figure 3. Molecular architectures of aromatic molecular groups
of case study 3.
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Figure 4. Molecular architectures of targets T1, T2, T3, and T4.

density, K/p, whose estimating formula,

N 6
l-Jrinl
=
Kip =
p N
Vin;
&
is of type Il. Therefore, the minimization of the

maximum scaled deviation of p, a, ¢y, and K (alterna-
tively K/p) from given target values falls within the
scope of formulation (PM) with three property-estimat-
ing formulas of type | and one of type Il. By selecting
the property scales pS, oS, c;, and Ks to be equal to the
property targets p°, a°, ¢;, and K®, the objective func-
tion to be minimized is the maximum percent property
violation:

S = max
p(n) — p° a(n) — a® ¢,(N) — g K(n)/p(n) — K°/p°
p° al ’ C; ' Ke°/p®

Based on the linear reformulation of (PM), presented
in section 4, an equivalent (MILP) representation is
obtained.

Four different molecular design targets are exam-
ined: T1 (polycarbonate), T2, T3 (Kevlar), and T4.
Their molecular architectures are shown in Figure 4.
Table 14 summarizes the molecular groups participating
in the repeat units of these four targets and gives their
density, thermal expansion coefficient, heat capacity,
and bulk modulus target values as predicted by the
estimating formulas of Tables 7 and 8. For each case,
not only the molecular design with the global minimum
scaled property violation, as defined in section 2, but
additionally the five best molecular designs are sought.
The total number of molecular groups allowed to
participate in the polymer repeat unitis 1 < $2.n, <
7, apart from the T2 target where as many as 10

Table 14. Molecular Design Targets and Architecture of
Case Study 3

polymer
target  p (g/cm?3) o (1/K) cp (J/g K) K (N/m?2)
T1 1.1954 2.8817 x 107 1.1350 5.2027 x 10°
T2 1.1864  2.8895 x 1074 1.0740 5.2688 x 10°
T3 1.3170 3.1338 x 10* 1.0111 9.6396 x 10°
T4 1.0917 2.7686 x 1074 1.1631 4.1135 x 10°
polymer target molecular groups
T1 Nn=1ng=1nNis=2,Nyp=2
T2 n=1n=1ns=2,nN5=4,Nyp=2
T3 nz=1Lnp=1np=1n;s=2
T4 Ne=2,Nig=1Nw=1np=3

molecular groups are allowed. Also, the maximum
number of occurrences of the same molecular group in
the polymer repeat unitis five,0 < n; < 5,i=1, ..., 30.

the developed linear reformulation is solved by utiliz-
ing the GAMS/OSL interface on a IBM RS6000 43P-
133 series workstation with an absolute convergence
tolerance of 1075. Tables 15 and 16 summarize the
computational results for the four design targets. In
all cases, not only the target polymer with zero property—
target discrepancies is recovered, but also the second,
third, fourth, and fifth optimum designs are generated.
Note that in (Venkatasubramanian et al., 1995) (where
an additional glass transition temperature target is
employed) the T3 target was never identified for any of
the implemented variants of the proposed genetic
algorithm and, furthermore, the targets T1 and T4 were
sometimes missed. The difficulty in identifying the T2
target is manifested in our approach by the increased
CPU requirements.

Differences between the molecular groups participat-
ing in the T1 (polycarbonate) target and the second
through fifth best solutions include the presence of a
variety of aromatic groups, —NH— containing molecular
groups, and the persistence of the side group —tCsHo.
For the target T2 design case study, these differences
are even more pronounced including a host of different
hydrocarbon side groups, halogens such as chlorine and
fluorine, and amino-containing groups. In the T3 (Kev-
lar) design study, the basic aromatic, amino, and car-
bonyl groups remain in the second through fifth best
solutions, and additional groups include mainly oxygen
and aromatic side groups. In the T4 design study, most
notable is the persistence of the —CzH7 group in the
second through fifth best designs. Table 15 indicates
that in all cases the second best molecular design
involves only a very small maximum scaled property
violation (0.1—-0.6%). Also, in going from the second best
to the fifth best molecular design, the drop in the
objective function is in all cases less than 3 x 10~2 and
sometimes even less than 1074, indicating the presence
of a substantial number of molecular designs with
objective values very close to the global optimum.
However, despite this proximity in objective function
values the corresponding molecular architectures are
often very different from each other.

6. Summary and Conclusions

In this paper, OMD problems with nonlinear struc-
ture—property functionalities which are or can be
transformed to type | and/or Il were addressed. It was
shown how they can be transformed into equivalent
mixed-integer linear (MILP) problems. While, in gen-
eral, it is not possible to solve the original nonlinear
OMD problem formulation for the best molecular design
with mathematical certainty, the equivalent MILP
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Table 15. Molecular Architectures of Solutions in Case Study 3

max violation

molecular groups

T1 (Polycarbonate)

n=1ng=1nNi5=4,Nyp=2
n=1Ln=1ns3=1ns=1neg=1nig=1ny=1
N=1nmns=1ns5=1ng=2,Np=1npy=1
Nn=1,n3=1,n7=1nNig=2,Nnp=1nu=1
Nns=1,ng=1,n3=1,nNis=1,nNg=2,Nnu=1

T2

n=1,n=1,ng=2,Ni5=4,N0=2
n1=1,n6=1,n7=1,n15=2,n18=1,n20=1,n21=1,n26=1
n=1n=1n=1np=1nNns=2,nNng=2,Ns=1nNyp=1
NnNn=1n=1,ns5=3,N=1Ng=1,nN3=1nNyp=2
Nnn=1,n1=1,nN=1,Nng=3,Nus=1,Ns=2,Nyg=1

T3 (Kevlar)

0.0000

0.0027

0.0028

0.0028

0.0032

0.0000

0.0013

0.0013

0.0013

0.0013

0.0000

0.0022

0.0032

0.0035

0.0048

0.0000

0.0067

0.0068

0.0072

0.0072
Table 16. Property Values of Solutions in Case Study 3

p (g/cm3) o (1/K) Cp (/g K) K (N/m?) CPU (s)
T1 (Polycarbonate)
1.1954 2.8882 x 1074  1.1351 5.2027 x 10° 1687
1.1954 2.8854 x 107*  1.1374 5.1185 x 10° 2675
1.1920 2.8892 x 1074  1.1341 5.2730 x 10° 2187
1.1920 2.8892 x 1074  1.1341 5.1228 x 10° 895
1.1990 2.8821 x 1074 1.1341 5.1231 x 10° 2491
T2
1.1864 2.8895 x 107*  1.0740 5.2688 x 10° 2973
1.1879 2.8869 x 1074  1.0742 5.2471 x 10° 5543
1.1877 2.8892 x 1074  1.07533 5.3118 x 10° 5671
1.1862 2.8912 x 107*  1.0729 5.2999 x 10° 1955
1.1870 2.8932 x 1074  1.0727 5.2746 x 10° 4504
T3 (Kevlar)
1.3170 3.1338 x 1074 1.0112 9.6396 x 10° 261
1.3153 3.1330 x 1074 1.0134 9.6366 x 10° 1648
1.31533 3.1360 x 1074  1.0109 9.4431 x 10° 1775
1.3204 3.1259 x 1074  1.0142 9.8725 x 10° 1848
1.3233 3.1211 x 1074 1.0099 9.5564 x 10° 1622
T4

1.0917 2.7686 x 1074  1.1631 4.1135 x 10° 13
1.0857 2.7818 x 107*  1.1654 3.9294 x 10° 237
1.0980 2.7843 x 1074  1.1616 3.9702 x 10° 90
1.0939 2.7884 x 1074  1.1562 4.0991 x 10° 143
1.0939 2.7886 x 107*  1.1695 3.9688 x 10° 89

reformulation obtained in this study of even large-scale
OMD problems was solved with commercially available
MILP solvers for the best, second best, third best, etc.,
molecular designs. Two popular design objectives were
addressed: (i) minimization of the maximum scaled
deviation of design properties from some target values,
property matching (PM), and (ii) minimization/maximi-
zation of a single property subject to lower and upper
bounds for the remaining properties, property optimiza-
tion (PO). The approach was customized to the design
of polymers whose properties were estimated with
widely used group contribution methods (van Krevelen,
1990).

The results obtained in three case studies illustrate
the ability of the approach to uncover a plethora of
molecular designs and diverse molecular architectures
capable of meeting various design objectives in a
globally optimum way. By removing the possibility of
converging to suboptimal solutions, possible discrepan-
cies between obtained optimal solutions and experimen-

nz=21ni1=1np=1n;5=2
ns=1,n=1,n=1nu=1nNs=2,Np=1
Nns=1,ng=1,ns=1,nNis=1Mg=1nNpg=1ny=1
Nno=1nu1=3,nNne=1,nNng=1,nyp=1
Nn2=1,nNn3=1nNu=1NMmg=2,Nng=1,nNyp=1

T4

Ng=2,Nng=1,nNg=1nNy=3
N=2,Ng=2,Ng=1,nNyp=1nxp=1
Nn=1,ng=2,N=3,Np=1
Nn=1,n=2,n=2,Nig=1ny3=1
Nn=1n=2,n=2,Nig=1,np=1

tally derived designs can be solely attributed to property
estimation imprecision. Based on this, a prediction—
correction loop for improving property prediction ac-
curacy can be constructed. While in some cases the best
molecular design is clearly superior over the second,
third, etc., best molecular designs, in most cases such
clear-cut distinction is absent. Considering this prevail-
ing proximity in objective value of the second, third, or
even tenth best molecular design to the global optimum
one, it is equally important that the approach is
guaranteed not to miss any of the n-best molecular
designs with the identification of the global optimum
molecular design with mathematical certainty.

Note that, although the proposed analysis framework
was applied only to polymer design case studies, the
same underlying mathematical features are present to
some extent in other OMD problems such as optimal
design of agrochemicals, refrigerants, and solvents.
While in the case studies that were addressed in this
paper all property-estimating expressions belonged or
were transformed into type | or 11, this may not always
be the case. Nevertheless, even if full linearization is
not possible, partial linearization of the OMD model,
along the lines of the analysis presented in this paper,
is bound to aid any mathematical optimization-based
solution approaches. Furthermore, continuing efforts
at solving globally OMD problems will greatly benefit
from a standardization of the type of functionalities
utilized in property-estimating formulas. This will
greatly facilitate the algorithmic development for OMD
problems.

A key issue in CAMD is the inherent discrepancies
between property estimations and actual experimental
data. In polymer design, sources of error can be due to
polydispersity, cross-linking, and different grades of the
same material in the final product. Incorporating
information on molecular group interconnection in the
property-estimating formulas is likely to reduce but not
eliminate discrepancies with experimental data. There-
fore, property prediction imprecision is likely to remain
a key issue in OMD. Quantifying the effect of property
prediction imprecision within a probabilistic framework
and studying its effect on meeting design objectives is
addressed in (Maranas, 1996).
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