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A systematic method that quantitatively assesses property prediction uncertainty (im- 
precision) on optimal molecular design problems is introduced. Property - structure rela- 
tions are described with specific nonlinear finctionalities based on group contribution 
methods. Property prediction uncertainty is explicitly quantified by using multivariate 
probability density distributions to model the likelihood of different realizations of the 
group contribution parameters. Assuming stability of these probability distributions, a 
novel approach is introduced for transforming the original nonlinear stochastic formula- 
tion into a deterministic MINLP problem with linear binary and convex continuous 
parts with separability. The resulting convex MINLP formulation is solved to global 
optimality for molecular design problems involving many uncertain group contribution 
parameters. Results indicate the computational tractability of the method and the pro- 
found effect that property prediction uncertainty may have in optimal molecular design. 
Specifically, trade-off curves between pegormance objectives, probabilities of meeting 
the objectives, and chances of satisfiting design specifications offer a concise and system- 
atic way to guide optimal molecular design in the face of property prediction uncertainty. 

introduction 
The systematic identification of molecular products with 

optimal values of thermophysical, mechanical, and/or biolog- 
ical properties is a key objective in the chemical industries. 
Financial success and market share are ultimately tied to 
a company’s ability to continuously introduce novel, success- 
ful products. Computer-aided molecular design (CAMD) 
techniques are increasingly being employed to elicit prom- 
ising candidates from the astounding plethora of different 
potential molecular alternatives. One can already find in the 
literature success stories of CAMD in identifying novel com- 
pounds substantially superior to existing ones. These include 
the antibacterial compound norfloxacin, designed by Kyorin 
Pharmaceutical Company in Japan, that is 500 times more 
potent than previously marketed compounds; the fungicide 
myclobutanil, developed by Rohm and Haas, and the herbi- 
cides Metamitron by Bayer AG, and bromobutide by Sumit- 
omo (Boyd, 1990). 

In the chemical engineering literature, a considerable 
amount of work has been devoted to the derivation of struc- 
ture-property relations (Fredenslund et al., 1975; Joback and 
Reid, 1987; Constantinou and Gani, 1994; Mavrovouniotis, 

1990). These relations have been utilized in the computer- 
aided design of molecular products such as polymers 
(Venkatasubramanian et al., 1994b; Vaidyanathan and El- 
Halwagi, 19951, extractants (Gani and Brignole, 1983; Odele 
et al., 1990; Naser and Fournier, 19911, solvents (Brignole et 
al., 1986; Odele and Macchietto, 1993), and refrigerants 
(Duvedi and Achenie, 1996; Churi and Achenie, 1996). The 
employed search algorithms include enumeration techniques 
(Stephanopoulos and Townsend, 1986; Joback, 1989; Joback 
and Stephanopoulos, 1989; Derringer and Markham, 19851, 
knowledge-based strategies (Brignole et al., 1986; Nagasaka 
et al., 1990; Nielsen and Gani, 1990; Gani et al., 1991), graph 
reconstruction methods (Gordeeva et al., 1990; Kier et al., 
1983), multistage approaches (Naser and Fournier, 1991; Gani 
and Fredenslund, 1993), genetic algorithms (Venkatasubra- 
manian et al., 1994a,b, 19951, artificial intelligence (Bolis et 
al., 19911, local MINLP optimization (Odele et al., 1990; 
Odele and Macchietto, 1993; Vaidyanathan and El-Halwagi, 
1994; Duvedi and Achenie, 19961, interval Newton imple- 
mentations (Vaidyanathan and El-Halwagi, 1995), mixed- 
integer linear optimization for linear structure-property 
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relations (Constantinou et al., 1996), and exact linear refor- 
mulations for specific nonlinear structure-property relations 
(Maranas, 1996). A thorough review of the latest develop- 
ments in the area can be found in (Mavrovouniotis, 1996). 

The present state of the art involves primarily search tech- 
niques of either a local or opportunistic nature that may or 
may not find the mathematically best design. Preliminary ef- 
forts at finding the best molecular design with mathematical 
certainty include the work of Vaidyanathan and El-Halwagi 
(1995), Constantinou et al. (1996), and Maranas (1996). Iden- 
tifying the best molecular design with mathematical certainty 
is important because by eliminating the caveat of conver- 
gence to suboptimal molecular designs, the chances of identi- 
fying novel, possibly counterintuitive, superior design alterna- 
tives are improved. Furthermore, by removing the possibility 
of unknowingly converging to suboptimal solutions, possible 
discrepancies between obtained optimal solutions and experi- 
mentally derived designs can explicitly and unequivocably be 
attributed to uncertainty. 

While group contribution methods (GCM) (Franklin, 1949) 
provide popular, versatile, and relatively accurate (Horvath, 
1992) ways for estimating properties based on the number 
and type of molecular groups participating in a molecule or 
repeat unit, they provide only estimates for different proper- 
ties and may only be in partial agreement with experimental 
values. The same is true even for sophisticated methods based 
on connectivity indices (Kier and Hall, 1986), factor analysis 
(Cattell, 19521, molecular similarity (Horvath, 19881, pattern 
recognition (Kowalski and Bender, 1972), and so forth. In fact, 
5-10% (or even higher) discrepancies between experimental 
values and group contribution predictions are common. The 
relative accuracy of these predictions depends on the particu- 
lar property (e.g., polymer density estimates are typically more 
accurate than glass transition temperature estimates), on 
molecular complexity, and on the particular prediction 
method. The frequency and magnitude of these discrepancies 
in most instances of property prediction provide ample moti- 
vation for quantifying their effect on optimal molecular de- 
sign. Failure to handle, within a quantitative framework, the 
inherently approximate nature of structure-property predic- 
tive techniques may affect the quality and weaken confidence 
in the molecular designs obtained. 

The effect of imprecision (uncertainty) in process systems 
was recognized early and has been the subject of extensive 
work. Grossmann and coworkers (Grossmann and Sargent, 
1978; Halemane and Grossmann, 1983; Swaney and Gross- 
mann, 1985a; Floudas and Grossmann, 1987; Pistikopoulos 
and Grossmann, 1988) pioneered the concept of the flexibil- 
ity index to quantify the ability of a plant to operate over a 
range of conditions .while satisfying performance specifica- 
tions. The concept was later extended to account for stochas- 
tic uncertainty measuring the 'probability of feasible opera- 
tion by Straub and Grossmann (1990) and Pistikopoulos and 

wekar and Rubin, 1991; Reed and Whiting, 1993). While the 
problem of quantifying uncertainty in process systems has re- 
ceived considerable attention, there is so far, in the chemical 
engineering literature, little or no work on the effect of un- 
certainty in optimal molecular design. 

It is the objective of this article to establish the necessary 
theoretical foundation and provide a tractable computational 
framework for quantifying the effect of uncertainty in opti- 
mal molecular design and to address questions such as: 

1. Which molecular architecture is the most likely to meet 
a given design objective? 

2. What are the chances that the optimal molecular design 
will indeed meet the performance target and design specifi- 
cations? 

3. How is the selection of the mathematically best molecu- 
lar design affected by increasing/decreasing the desired 
probability of meeting the design target? 

First, we provide a brief mathematical description of the 
specifics of the optimal molecular design problem. This is fol- 
lowed by a description of how property-prediction uncer- 
tainty can be quantified within a stochastic framework. Next, 
we show how one can equivalently express the resulting 
stochastic optimization formulation, based on notions from 
chance-constraint programming, as a deterministic mixed- 
integer nonlinear (MINLP) optimization problem with con- 
vex-continuous and linear-integer parts. Two case studies il- 
lustrate the proposed theoretical and computational frame- 
work and demonstrate the significant effect property-predict- 
ion uncertainty has on optimal molecular design. 

Mathematical Description 
The basic features of optimal molecular design can be cap- 

tured mathematically in the following mixed-integer nonlin- 
ear optimization problem (Maranas, 1996): 

subjectto p ) ~ p , ( n ) ~ p y ,  i=1, ..., M 

ni E {nf ,nf  +1, ..., nu}, i =  1, ..., N .  

In formulation OMD, n =(n,, ..., n N )  is the vector of the 
integer variables ni E {0, 1, 2, . . .} describing the number of 
times the ith molecular group participates in the molecule. 
The expressions p j  = pj(n),  j = 1, . . . , M, established by group 
contribution methods, denote the functionality between 
property j and the type and number of different molecular 
groups. The objective function ntn6 is a measure of per- 
formance of the molecular design and is typically a function 
of one or more properties, 32 6 = nt a[ pj(n)] .  Additional 
constraints may be placed on OMD to ensure structural fea- 
sibility, such as, 

Mazzuchi (1990). These ideas were mainly applied to prob- 
lems in heat-exchanger networks (Floudas and Grossmann, 

N 
f =  c (Vi -2)n1+2, 

1987), multiproduct batch-plants design (Straub and Gross- i =  1 

mann, 19921, and operational planning (Ierapetritou and 
Pistikopoulos, 1994). Other approaches for quantifying un- 
certainty in process systems include the early work of Fried- 
man and Reklaitis (19751, two-stage expectation optimization 
(Pai and Hughes, 1987), and Monte Carlo simulations (Di- 

where ui is the valency (number of possible attachments) of 
the ith molecular group and f is the total number of remain- 
ing attachments available for bonding in a molecule ( f  = 0)  
or polymer repeat unit (f = 2). Chemical feasibility con- 
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straints may be added using developments of Pretel et al. 
(1994). 

The following two most widely used measures of perform- 
ance reflecting two distinct design philosophies are consid- 
ered (see Maranas, 1996): 

1. Optimal design of a molecular product with properties 
that match some prespecified targets. This objective is formu- 
lated as the minimization of the maximum allowable scaled 
deviation of properties from some target values (property 
matching): 

0 1 

j P, 
min 3K6, where 3126=max;lpj(n)-pjI. 

Here p /  is the target value for property j and ps is an appro- 
priate scale. If the maximum percent property deviation is 
minimized, then ps = pi”. 

2. Identification of a molecular product with the largest or 
smallest value for one property while maintaining the other 
property values within some lower and upper bounds. This is 
formulated as the minimization/maximization of a single 
property j *  subject to lower and upper bounds on the rest of 
them (property optimization): 

min/max 3126, where 3126 = p j * ( n ) .  

In the present study, emphasis is placed on the optimal 
design of polymers with optimized or customized property 
values. Based on the property compilation by van Krevelen 
(1990), most of the thermophysical, optical, electromagnetic, 
and mechanical property-estimating formulas for polymers 
conform or can be transformed to the following general 
functionality, as shown in Maranas (1996): 

posing the molecule (transferability assumption). However, 
discrepancies between model prediction and actual experi- 
mental data imply that the transferability assumption is not 
always rigorously satisfied. These discrepancies can be recon- 
ciled by recognizing that the contribution of molecular groups, 
for a given property, is not unchanged from one molecule to 
another (independent of molecular architecture), but varies 
slightly around some nominal value depending on the partic- 
ular molecular architecture. This intuitive abstraction can be 
expressed mathematically by utilizing probability density 
distributions to describe the likelihood of different realiza- 
tions of the group contribution parameters A,,, B,,. The pro- 
posed probabilistic description of uncertainty renders both 
design specifications and performance objective stochastic. 
Therefore, unless a particular realization of the uncertain pa- 
rameters A,,, B,, is specified, questions regarding the satis- 
faction of design specifications and performance objectives 
cannot be fathomed. While the a priori identification of the 
realization of the uncertain parameters A,,, B,, and conse- 
quently of design specifications and performance objectives is 
impossible, the evaluation of the probability of meeting a 
performance target or maintaining feasibility of the design 
specification is computable since the uncertain parameters 
A,,, B,, assume values according to some known probability 
density distribution. This probabilistic description of perfor- 
mance objectives and constraints yields the following optimal 
molecular design problem under stochastic uncertainty on the 
group contribution parameters: 

Pr{pf  I p j ( n )  I p y }  2 p ,  j = 1, .. ., M .  

Here A,, and B,, are given group contribution parameters 
associated with a specific molecular group i and property j 
and are independent of the particular molecular architecture. 

A systematic analysis framework is presented in Maranas 
(1996) for transforming the original formulation with nonlin- 
ear structure-property functionalities of the aforementioned 
type into equivalent mixed-integer linear (MILP) problems 
that can be solved to global optimality. This removes the 
chance of converging to suboptimal solutions, and therefore 
any discrepancies between solutions obtained and experi- 
mental verifications can unequivocably be attributed to prop- 
erty-estimation imprecision. This article extends this 
optimization framework to account for property-prediction 
imprecision based on the probabilistic description of uncer- 
tainty. 

Stochastic Formulation 
Group contribution methods are based on the conjecture 

that property values for different molecules are uniquely de- 
fined by the type and number of the molecular groups com- 

Formulation SOMD involves a set of constraints imposing 
lower bounds on the probability of satisfying the performance 
objective and the imposed lower and upper bounds of the 
property. These constraints are called chance constraints. 
Formulation SOMD identifies the maximum value of the 
performance target 312 that the stochastic perfor- 
mance objective nZ. B can meet with probability of at least a 
(e.g., 90%), and at the same time maintain all property values 
within their respective lower and upper bounds with proba- 
bility greater than or equal to p. Therefore, the solution of 
formulation SOMD will have at least an (Y chance of meeting 
the performance objective and at least a p chance of main- 
taining the property values within their designated bounds. 
By solving formulation SOMD for different values of a and 
p,  trade-offs between the performance objective target 
312 @ target , the probability (Y of meeting this performance tar- 
get, and the probability p of satisfying all property con- 
straints can be established. These trade-offs can then provide 
a concise and systematic way of selecting the most promising 
molecular design in the face of property-prediction uncer- 
tainty. Next, two special instances of the general stochastic 
optimal molecular design problem SOMD are highlighted. 

Property matching under uncertainty 
After omitting, for the sake of succinctness, all deterministic 

linear constraints in n (i.e., structural feasibility require- 
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ments, variable bounds, etc.), the stochastic property-matching 
(SPM) problem under property-prediction uncertainty can be 
formulated as the following chance-constrained optimization 
problem: 

min s 

r 

L 

n, E {nf. nf 

Formulation SPM ider 

(SPM) 

k 1, ..., n y ) ,  i = 1, ..., N .  

ifies the type and number of molecu- 
lar groups for which a scaled property-violation target s, 
guaranteed to be met by all properties j with probability of 
at least a ,  is minimized. For a = 0.5, all properties j have at 
least a fifty-fifty chance of meeting the property-violation tar- 
get s. Higher values of a reflect a more conservative attitude 
regarding meeting the property targets. 

Property optimization under uncertainty 
Often, rather than matching property values to some pre- 

specified targets, the maximization or minimization of a sin- 
gle property j* is sought while maintaining property values 
within some lower and upper bounds. This objective, 
under property-prediction uncertainty, can be expressed 
mathematically as the following stochastic property optimiza- 
tion (maximization) formulation- SF 

max pj* 

tv c A,,*% 

c B1,*nl 
subject to Pr ' =  N I 2 PI' I r = l  

2 a  

N r c A1;nr 
1 

n, E {n;,nf- +1, ..., n y ) ,  i =  1, ..., N .  

Formulation SPO identifies the type and number of molecu- 
lar groups for which a property target pjR for property j*, 
met with probability a ,  is maximized, while lower and upper 
bounds on the rest of the properties are satisfied with proba- 
bility of at least p. By manipulating the values of the proba- 
bility levels a and p the relative importance of meeting a 
property target as opposed to satisfying the property bounds 
can be adjusted. 

Deterministic Equivalent Representation 
Formulations SPM and SPO involve probability terms 

whose evaluation for each realization of the deterministic 

variables requires the integration of multivariate probability 
density distributions. Many integration methods exist, but in 
general, they all exact a heavy computational burden, either 
in the form of additional variables (quadrature point integra- 
tion), or excessive function and gradient evaluation (Monte 
Carlo integration) (Watanabe and Ellis, 1994) and thus are 
restricted to problems with only a few uncertain parameters. 
However, the number of uncertain parameters in optimal 
molecular design can be as high as 2MN, where M and N 
are the total number of properties and molecular groups, re- 
spectively. Typically M = 3-5 and N = 10-30, therefore for- 
mulation OMD problems routinely involve from tens to hun- 
dreds of uncertain parameters. In this study, to deal with such 
a high number of possibly correlated uncertain parameters 
the exact transformation of the original stochastic constraints 
into equivalent deterministic ones is sought without having to 
resort to computationally intensive explicit or implicit multi- 
variate integration. To this end, the deterministic equivalent 
representation of the chance-constrained formulations based 
on the ideas pioneered by (Charnes and Cooper, 1959, 1960, 
1963) is pursued. 

Basic results 
Assuming that the uncertain parameters Ai j  and B,, fol- 

low stable (Allen et al., 1974) up to two-parameter probability 
density distributions (i.e., normal, Poisson, chi-square, bino- 
mial, etc.), chance constraints that are linear in terms of the 
uncertain parameters can be transformed into equivalent de- 
terministic constraints. A probability density distribution F is 
stable if (1) it can be completely specified with only two pa- 
rameters u,  u, and (2) the convolution of any two distribution 
functions F ( ( x  - u,)/u,) and F ( ( x  - u2)/u2) is again of the 
form F((x  - u) /u)  (Vajda, 1970). The normal distribution is 
selected in this work to describe the uncertainty associated 
with group contribution parameters. The normal distribution 
is a stable distribution with u = p and u = u, which ade- 
quately captures the qualitative trends of group contribution 
uncertainty. Specifically, it involves relatively high probability 
density around the mean, which gradually diminishes away 
from it. 

To illustrate how the deterministic equivalent representa- 
tion is obtained, the following general chance constraint is 
considered: 

Here ai denotes the uncertain parameters whose realization 
follows a two-parameter stable probability distribution F 
(normal) and f i ( x )  are a set of functions of the deterministic 
variables x. Let p(ai) denote the expected value of a,; 
Var(ai) = E[ai  - p(ai)I2 the variance of a,; and Cov(ai, ai , )  
= E [ a ,  - p(ai)][air  - p(ai,)] the covariance between uncer- 
tain parameters ai and air. Here E represents the expecta- 
tion operator. By subtracting the mean and dividing by the 
square root of the variance of c ~ s , a i f i ( x ) ,  the chance 
constraint can equivalently be written as 
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3 

Prl J 

Because the normal distribution is stable, the lefthand side 
expression, 

is a normally distributed random variable with a mean of zero 
and a variance of one (standardized form). Thus, if @ is the 
standardized normal cumulative density distribution, then the 
chance constraint can be replaced by the following determin- 
istic equivalent: 

By applying the inverse of the cumulative normal distribution 
function W '  on both sides of the last relation, we get 

The original inequality sign is preserved because the inverse 
of the cumulative normal distribution is a monotonically in- 
creasing function (Abramowitz and Stegun, 1972). In Figure 
1 the inverse of the cumulative standardized normal distribu- 
tion is plotted vs. the probability level a. Rearranging terms 
yields, 

where 
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Figure 1. Inverse of the normal cumulative distribution. 

and 

Inspection of the deterministic equivalent constraint reveals 
that it is composed of the mean of the original constraint 
augmented by the square root of its variance times @-'(a).  
Typically, a is greater than 0.5, and thus @ - ' ( a )  2 0. This 
implies that the variance term penalizes the deterministic 
constraint (for a 2 0.51, making it more restrictive than the 
mean of the original constraint. This is consistent with the 
intention of satisfying the original constraint not only at its 
expectation but also for all realizations with probability 
greater than or equal to a.  As the imposed probability a of 
satisfying the constraint increases, '( a )  increases as well, 
implying that the stricter (more conservative) the imposed 
probability levels are, the more difficult it will be to satisfy 
the chance constraint. In the limit of a = 1, @ - I (  a )  diverges 
to plus infinity and the chance constraint becomes rigorously 
infeasible for any values of the deterministic variables x. 
Kataoka (1963) showed that for f i ( x )  = x i ,  i = 1, . . . , n, the 
square root of the variance, 

is a convex function in x. Therefore the deterministic equiva- 
lent constraint of 

Pr car xi<^ 2 a i: 1 
is convex for a 2 0.5 and concave for a I 0.5. Convexity of 
the deterministic equivalent representation of the chance 
constraint is very important in optimization studies because it 
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implies a single optimum solution that can be found 
efficiently with existing solvers. 

In this subsection, we describe how a single general chance 
constraint with linearity in the stochastic parameters can be 
transformed into an equivalent deterministic constraint pro- 
vided that the stochastic parameters follow stable distri- 
butions. If in addition, the deterministic variables xi appear 
linearly in the constraint and the probability level of con- 
straint satisfaction a is greater than or equal to 0.5, then the 
deterministic equivalent constraint is convex in x. In the fol- 
lowing subsection, we address the deterministic equivalent 
representation of a specific joint chance constraint that cap- 
tures all the essential features of the chance constraints found 
in formulations SPM and SPO. 

Deterministic equivalents of joint constraints 
The absolute-value constraint of formulation SPM and the 

upper and lower property bounds in formulation SPO give 
rise to joint chance constraints of the form 

measuring the probability of maintaining the ratio of two lin- 
ear expressions in n, between a lower and an upper bound. 
Here A,,, B,, (group contribution parameters) are normally 
distributed stochastic parameters; ni  are deterministic vari- 
ables; and L,, 

After lumping all the stochastic parameters into a single 
stochastic variable 

are given deterministic parameters. 

I I: N 
y = C A i j n i  C B i j n i ,  

J 

we have P r [ L , I y J < U , ] 2 a .  Because P ~ [ L , I ~ , I U , ] = ~ -  
Pr[y, I L,I- Pr[y, 2 U,], Pr[y, I LI1 = 1 - Pr[y, 2 L,], and 
R [ y ,  2 U,] = 1 - Pr[y, I U,] ,  the original joint chance con- 
straint can be decomposed into the sum of two nonjoint 
chance constraints, 

If @’ and 
yj I U,, respectively, we have 

are the probabilities of satisfying Lj  I yj and 

After substituting the expression for y j  and rearranging, we 
obtain 

N 
Bijni - C A i j n i  I 0 

i 
n j = l ,  ..., M .  I t  N 

i 

Next, the parameter Jil is defined as 

L j ,  for I = 1  
-U,, for 1=2.  

Jj ,  = 

This enables the recasting of both chance constraints in the 
same form: 

j = 1 ,  ..., M ,  [ = 1 , 2 .  

Based on the analysis presented earlier, the equivalent deter- 
ministic constraint of the “decoupled” joint constraint is 

j = 1 ,  ..., M ,  1=1,2 

2 
c p / 2 1 + a ,  j = 1 ,  ..., M .  

1 = 1  

Calculation of the variance terms requires prior knowledge of 
stochastic parameter variances and covariances. In this analy- 
sis, covariances between stochastic parameters of only the 
same type are considered; however, the extension for other 
types of correlations is straightforward: 

Cov(Aij,Airj), i , i ‘ = l ,  ..., N ,  j = 1 ,  ..., M 

These covariances measure how discrepancies in the value of 
a group contribution parameter of a molecular group i from 
its mean value biases similar deviations for a different group 
i’ for the same property and molecule. A positive covariance 
element Cov(Aij, Aic j )  implies that when the mean value of 
A i j  for group i over(under)estimates the true value of Ai j  for 
a given molecule, then more often than not the mean value 
for Aif j  will also over(under)estimate the true value of Airj 
for the same molecule. A negative value for C o d A i j , A i r j )  
implies the opposite. Based on the definition of variance we 
have: 
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1 N N  

+ J$ c Var(Bjj)n? + 2  C C n,Cov( Bjj, Bi,j)nrt , “ i =  1 j = ]  ; ’ = [ + I  

N 

C Aijni 
subjectto P r [  so>+ - p ;  

C Bijni 
i = l  

j = 1 ,  ..., M, /=1 ,2 .  

] > a ,  j = 1 ,  ..., M ,  

The resulting set of equivalent deterministic constraints is 
nonconvex because unlike a ,  which is a fixed parameter, pf 
are variables, and thus the products of @-‘(pf) with the 
square roots of the variances introduce nonconvex terms. 
These nonconvexities can be eliminated at the cost of intro- 
ducing extra continuous variables. First, two new sets of vari- 
ables are defined, ti’ = @- ‘( p;), which implies that @(ti’> = 

pf, and nt,:. = ni ti’. After incorporating the new variables and 
variance expressions into the deterministic equivalent repre- 
sentation, we obtain 

N N 

I! N N N  
Var(Bij)ntilz+2 C C ntijCov(Bjj, Bjrj)ntfrj 

r = l  i ‘ = r + l  

5 0 ,  j = l ,  ..., M ,  1=1 ,2  
2 

C @(t j l )>l+a,  j = 1 ,  ..., M 
I = 1  

nt!=n,. t; ,  i = l ,  ..., N, j = 1 ,  ..., M ,  1=1,2.  
‘I 

Kataoka (1963) showed that the square root of the variances 
is a convex function in nt,l,. Also, the cumulative density dis- 
tributions @(ti’) are concave for t,! 2 0, which is satisfied for 
a 2 0.5. This implies that C:= ,@(ti’) 2 1 + a is a convex con- 
straint for a 2 0.5. 

The only remaining source of nonconvexity stems from the 
definition of nf:j involving the products between ni and t,!. 
However, nonlinear products of continuous and integer vari- 
ables can be expressed equivalently with a linear set of equa- 
tions at the expense of introducing extra continuous vari- 
ables. Specifically, the integer variables ni are first expressed 
as linear combinations of binary variables y,, as follows: 

K 

n i = n f +  C 2,yik, i = 1 ,  ..., N 
k = O  

where 

Next, the products t;,-y,, between continuous t; and binary 
yjk variables are equivalently expressed with four linear in- 
equality constraints (Glover, 1979, 

t !  - t!.”(l- yik) 5 yt!. < t !  - ti’.L(l- Yik)  
I 1  Ilk - I 

t!.LY. 1 rk  - < yt!. i lk  - < t’.” ] Yik7 

i = l ,  ..., N ,  j = 1 ,  ..., M ,  k = O ,  ..., K ,  1=1,2.  

Here yt;], are additional continuous variables that account 
for the products between binary and continuous variables and 
are related with ntf, as follows: 

K 

ntf, = rift; + C 2kytj1,, i = 1, .. . , N, j =  1, . . ., M ,  
k = O  

1 = 1,2. 

In this subsection, we showed how chance constraints fol- 
lowing the mathematical formalism, 

Pr L j s  1 
N 

C Aijni 

N 

CBijni 
i 

j = l ,  ..., M 

can be recast into a deterministic equivalent representation 
with linear binary and convex continuous part. Next, based 
on this analysis the deterministic equivalent representation of 
formulation SPM is derived. 

Deterministic equivalent representation of SPM 
Formulation SPM, presented earlier, identifies the type and 

number of molecular groups for which a scaled property-vio- 
lation target s, guaranteed to be met by all properties j with 
probability of at least a ,  is minimized. To conform with the 
joint chance-constraint formalism discussed earlier, instead 
of minimizing s for a given target on a ,  the equivalent for- 
mulation of maximizing a for a given target so on s is solved. 
Thus, the alternative formulation of the stochastic optimiza- 
tion problem is 

max a 

where so is given and a is a deterministic variable between 
zero and one. After rearrangement the chance constraints are 
brought in the standard joint form discussed in the previous 
section: 
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C Bijni 
1 -  1 

By setting L, = p,” - sop; and V, = p,” + sop,!, the chance- 
constraint formalism discussed in the previous section is re- 
covered. Thus, the deterministic equivalent formulation for 
the stochastic property-matching problem (SPM) is 

max a 

constraints, maintaining that all lower and upper property 
bounds are met with probability of at least p. 

After defining npij: = ni -p j*  and rearranging terms, the 
first chance constraint can be written as 

r~ N 1 
C Bij* ripij: - C Aij* ni I 0 2 a 

i = l  i = l  I 
with 

np..* = n,.pj*, i =  1, ..., N .  ‘I 

Based on the analysis of the previous section, the determinis- 
tic equivalent representation is 

I N  

In this subsection, we showed how the original chance- 
constrained stochastic property-matching formulation (SPM) 
can be first transformed into a deterministic equivalent rep- 
resentation and then recast into a mixed-integer nonlinear 
programming MINLP formalism with a linear discrete and 
convex continuous part. The resulting MINLP formulations 
can be solved to global optimality with existing algorithms 
such as OA (Viswanathan and Grossmann, 1990) or GOS 
(Floudas et al., 1989). This allows the exact solution of opti- 
mal molecular design problems under property-prediction 
uncertainty. In the next subsection, the deterministic equiva- 
lent representation of the SPO problem is presented. 

Equivalent deterministic representation of SPO 
Formulation SPO, presented earlier, involves two different 

sets of chance constraints, each with a different mathematical 
structure. The first one, composed by a single constraint, 
models the probability a of meeting the property objective 
that is optimized. The second set comprises M joint chance 

The second set of constraints, 

has exactly the same form with the one addressed earlier af- 
ter setting Lj =pi” and =#. Thus, its deterministic 
equivalent representation is identical with the one derived in 
that same subsection. Next, two molecular design case stud- 
ies under property-prediction uncertainty are addressed to il- 
lustrate the proposed framework. 

Case Study 1 
The first case study involves the design of a polymer that 

meets constraints on density, water absorption, and glass 
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Table 1. Molecular Groups of the First Case Study 

Index 1 2 3 4  5 6 7 
Grow -CH,- -CO- -COO- -0- -CONH- -CHOH- -CHCI- 

transition temperature (Derringer and Markham, 1985). The 
deterministic property matching (PM) and property optimi- 
zation (PO) formulations of this problem were addressed 
in Maranas (1996). The molecular groups that are allowed to 
participate in the polymer repeat unit are shown in Table 1. 
The contribution of these molecular groups to the three 
properties of interest follow the empirical equations pro- 
posed by van Krevelen (19761, 

N c Mint 
(g/cm3) Density P = N  c Yn1 

c Y g A  

c M A  

c 1 8 H A  

c MI% 

1 = 1  

r = l  

N 

(K) 1 =  I Glass transition temperature Tg = ~ N 

r = l  

N 

w= ' = I  
N 

I =  1 

Water absorption 

(g H rO/g polymer). 

The mean values for the group contribution parameters Hi, 
Mi, Ygi, and I/; for different molecular groups are the ones 
proposed by van Krevelen (1990) and tabulated in (Maranas, 
1996). The same molecular group is allowed to participate up 
to three times in the polymer repeat unit, ni E {O, 1, 2, 31, 
i = 1, . . . , 7. The property targets are, respectively, 

W o  = 0.005 (g H,O/g polymer), 

po = 1.50 (g/cm3), 7 = 383 (K). 

The property scales, Ws,  p', Ti,  are selected to be equal to 
the property targets W", po, and T:, respectively. This im- 
plies that the same relative importance is assigned to all per- 
cent property violations from their target values. 

The group contribution parameters are assumed to be in- 
dependent random variables (covariances equal to zero), nor- 
mally distributed and with mean values equal to their values 
reported in the literature. Their variances are chosen to re- 
flect the relative accuracy of the group contribution methods. 
For instance, density estimates based on group contribution 
are typically more accurate than estimates of water absorp- 
tion or glass transition temperature. Specifically, the variance 
Var(Mi) of Mi is chosen to be zero because the repeat unit 
molecular weight is rigorously additive to the individual 
molecular group contributions. The variance of V,  is selected 
SO that 99% of possible realizations of V,  are within * 5 %  
from the mean value (Kreyszig, 19931, 

, i = l ,  ..., N .  ( 2.58 
Var( yl1 = 

A 10% scatter around the mean value for Hi and a 20% scat- 
ter for Yg, are imposed, implying that 

, i = l ,  ..., N .  
0.20x p. . (y ,J  

Note that the variance values are not rigorously estimated 
based on experimental data. They are arbitrarily chosen to 
provide reasonable estimates. A systematic procedure is de- 
scribed in the Appendix for rigorously obtaining not only the 
mean values of the group contribution parameters but also 
the variance-covariance matrix. 

SPM formulation 
The solution of the deterministic property matching prob- 

lem (PM) (where property uncertainty was not considered), 
which was studied by Maranas (1996), yields the five best 
molecular designs, which are shown in Table 2 in decreasing 
order of optimality. 

In this article, the deterministic equivalent formulation of 
SPM is solved using the GAMS/DICOPT interface on a 
RS6000 43P-133 workstation with an absolute convergence 
tolerance of The maximum scaled property violation 
target so ranges from 0.0163 (solution of PM) to 0.30. Be- 
cause the resulting MINLP involves convex continuous and 
linear discrete components that are mutually separable, the 
GAMS/DICOPT interface is guaranteed to identify the 
global minimum. The results for different values of so are 
shown in Table 3. 

These results imply that the higher the probability a ,  the 
larger the achievable maximum scaled property violation tar- 
get is. The most promising polymer design for scaled prop- 
erty violations of less than about 0.065 (or a less than 0.6) is 
the design identified as the best for the deterministic model, 
-(CH, - (CHCI),)-. However, for probabilities greater than 
0.6 the best design becomes the third-best design of the 
deterministic model -((CH 2 ) 2  - (CHCI),)-. This result 
demonstrates that property prediction uncertainty may affect 
the selection of the best molecular design by reversing the 
deterministic order of optimality for certain probability levels 
a. Furthermore, there is less than 18% chance of meeting 
the scaled property violation target 0.0163 predicted by the 
deterministic model. For a more likely target ( a  = 0 3 ,  a 

Table 2. Five Best Molecular Designs for the PM 
Formulation 

Alias Repeating Unit Violation W T P 
1-2 -(CH,-(CHCI)z)- 0.0163 0.0049 384.68 1.4889 
1-3 -(CH,-(CHCl),)- 0.0263 0.0051 393.10 1.5351 
2-3 -((CHz)Z-(CHCI)3)- 0.0526 0.0047 376.95 1.4489 
0-1 -(CHCl)- 0.1134 0.0056 412.37 1.6524 
1-1 -(CH,-CHCI)- 0.1169 0.0044 363.20 1.3827 
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Table 3. Pareto Optimum Solutions of Case Study 1 

ff 

0.1761 
0.2152 
0.4151 
0.5874 
0.7331 
0.8349 
0.9481 
0.9876 
0.9978 
0.9997 
0.9999 

Max. Viol. 
0.0163 
0.0200 
0.0400 
0.0600 
0.0800 
0.1000 
0.1400 
0.1800 
0.2200 
0.2600 
0.3000 

CPU (s) 

32.72 
21.31 
21.31 
9.27 

15.02 
8.82 

10.63 
8.58 
8.44 
8.88 
9.86 

threefold increase in the value of the scaled property viola- 
tion target is predicted. Finally, for a: = 0.99, the achievable 
scaled property violation target is approximately 0.19. This is 
an order of magnitude higher than the results of the deter- 
ministic model. 

Figure 2 illustrates the trade-off curves between scaled 
property violations and probabilities for the five best molecu- 
lar designs predicted by the deterministic model. Simple in- 
spection of the trade-off curves reveals that the first three 
molecular designs with aliases 1-2, 1-3, 2-3 are superior over 
the entire probability range to those with 0-1, 1-1. Addition- 
ally, while for probability less than about 0.6, design 1-2 is 
superior; for higher probability values, design 2-3 becomes 
the optimum. This is shown more clearly in Figure 3. Note 
that the “crossing over”of the trade-off curves of designs 1-2 
and 2-3 is not unique. For example, the trade-off curve for 
design 1-1 crosses over the one for design 0-1. 

By definition, the trade-off curves of all molecular designs 
start from the solution derived by the deterministic model 
reflecting that the quantitative effect of property-prediction un- 
certainq is to penalize the deterministic model predictions. In 
fact, the higher ranked the molecular design is, the lower the 
probability of meeting the deterministic model suggestions 
appear to be. This indicates that random perturbations 
around a mean of the group contribution parameters have a 
more prominent effect on optimal designs than on “subopti- 
mal” ones. Because the best molecular design is so “fine- 

-.-- I 

0.2 - 

0 ‘  I 
0 0.05 0.1 0.15 0.2 0.25 0.3 

Maximum Scaled Pmperty Violation Targets 

Figure 2. Trade-off curves of the five best molecular de- 
signs of SPM for the first case study. 

0.7 t 

0.45 ’ ’ .’ ’ 1 
0.04 0.05 0.06 0.07 0.08 0.09 0.1 

Maximum Scaled Property Violation Targets 

Figure 3. Magnification of the trade-off curves for the 
SPM problem around the crossover point in 
the first case study. 

tuned,” any random fluctuations on the values of the group 
contribution parameters almost always worsen rather than 
improve the scaled property violation. The trade-off curves 
shown in Figure 2 provide a concise and systematic way for 
answering important questions pertinent to design. For ex- 
ample, if a scaled property violation of only up to 10% can be 
tolerated, then designs 2-3, 1-2, and 1-3 with probabilities of 
0.87, 0.82, and 0.78, respectively, emerge as the most promis- 
ing designs. Alternatively, if a 90% probability level of meet- 
ing the scaled property violation target is imposed, then 
molecular designs 2-3, 1-2, 1-3, 1-1, and 0-1 will involve scaled 
property violations of at most 0.11, 0.12, 0.14, 0.16 and 0.19, 
respectively. 

SPO formulation 
The property optimization problem under uncertainty SPO 

involves the minimization of a target on water absorption 
subject to lower and upper bounds on glass transition tem- 
perature and density (Maranas, 1996): 

298 (K) I Tg 5 673 (K) and 1 (g/cm3) I p I 1.5 (g/cm3) 

The five best molecular designs in decreasing order of opti- 
mality identified in Maranas (1996) by utilizing the deter- 
ministic model PO (without considering property-prediction 
uncertainty) are shown in Table 4. 

First, the maximum value of p is identified, for which the 
five best molecular designs 3-1, 2-1, 3-2, 1-1, and 2-3 satisfy 
the lower and upper bounds on density and glass transition 

Table 4. Five Best Molecular Designs for the PO 
Formulation 

Alias Repeating Unit W Tg P 
3-1 -((CH,),-CHCl)- 0.00318 310.49 1.1768 

3-2 -((CHz)-,-(CHCI)z)- 0.00401 346.04 1.3082 

2-3 -((CHz)Z-(CHCl)3)- 0.00474 376.95 1.4488 

2-1 -((CHz)z-CHCI)- 0.00368 332.03 1.2531 

1-1 4CHZ-CHCl)- 0.00441 363.20 1.3827 
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Table 5. Maximum Values of p for the Five Best 
Molecular Designs 

subject to Pr 

Alias Repeating Unit Prnax 

3-1 -((CH,),-CHCI)- 0.7505 
2- 1 -((CH,),-CHCI)- 0.9475 
3-2 -((CH2)3-(CHCl)z)- 0.9826 
1-1 -(CHZ-CHCI)- 0.9954 
2-3 -((CH, )2-(CHCl)?)- 0.9878 

C Aijni  
U pi” I 5 p i  > - p ,  ]=1, ..., M .  

temperature. For a given molecular design ( n ,  fixed) this re- 
quires the solution of the following convex (NLP) formulation: 

max P 
r N 1 

L i =  I J 

The solution of its deterministic equivalent representation 
yields the maximum values for probability levels /3 for the 
five best designs (see Table 5). These values indicate that 
molecular designs 2-1, 3-2, 1-1, and 2-3 are more likely to 
satisfy the lower and upper bounds on density and glass tran- 
sition than design 3-1, which is the mathematically best ac- 
cording to the deterministic model. 

Next, by fixing /3 to the values shown in Table 5 for each 
of the molecular designs 3-1, 2-1, 3-2, 1-1, and 2-3, the 
stochastic property optimization formulation is solved (ni 
fixed) while varying the probability level a between 0.1 to 
0.9999. This yields the trade-off curves between the minimum 
water absorption target and probability a of satisfaction of 
the target for the five best molecular designs (see Figure 4). 
Clearly, the optimality order derived by the deterministic 
model is maintained and no “crossover” points between 
trade-off curves are observed. The effect of uncertainty is not 
nearly as pronounced as in the property-matching problem. 
In fact, a scatter of only about 0.0002 of the water absorption 
target is observed for lower or higher values of a. In all prob- 

1 

0.8 

0.6 
U 

0.4 

0.2 

0 

t d  X *  

3-2, BETA* 9826 8 
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Water Absorption Target 

Figure 4. Trade-off curves of the five best molecular de- 
signs of SPO for the first case study. 

Table 6. Property Targets for Second Case Study 

Polymer P a K 
Target (,g/cm3) ( 1/K) (.I;{K) (N/m’ ) 
Kevlar 1.3170 3.1338 lo-‘ 1.0111 9.6396 10’ 

lems studied so far, the effect of property-prediction uncer- 
tainty is much more pronounced in the property-matching 
problem than in the property-optimization case. The reason 
for this lies in the different nature of the chance constraints 
in the two cases. Specifically, in the SPM problem discrepan- 
cies of all properties from their target values are bounded 
from above and below. Howeve’r, in the SPO problem a single 
property to be maximized is only bounded by its target from 
below. 

Case Study 2 
The second case study addresses the design of the polymer 

repeat unit that most closely matches given property targets 
on density p, thermal expansion coefficient a, specific heat 
capacity cp, and bulk modulus K.  The molecular groups 
composing the optimal polymer repeat unit are chosen from 
a set of thirty molecular groups and are tabulated in Maranas 
(1996) along with the utilized group contribution estimating 
formulas for density p, thermal expansion coefficient a ,  spe- 
cific heat capacity c p ,  and bulk modulus K .  The five best 
molecular designs, according to the deterministic formulation 
PM, that most closely match the property targets shown in 
Table 6 are given in Table 7. Here ni is the number of times 
the ith molecular group [see Table 13 in Maranas (1996)l 
participates in the polymer repeat unit. 

Next, the effect of property estimation uncertainty on the 
prediction of the deterministic model PM is quantified. The 
group contribution parameters are again assumed to be in- 
dependent random variables (covariances equal to zero), 
normally distributed, with mean values equal to those 
reported in the literature. The values of the variances of the 
group contribution parameters are again selected to reflect 
the relative accuracy of the estimating formulas: 

Var( Mi) = , i = 1 ,  ..., N 

(molecular weight) 

, i = l ,  ..., N 
0.05 X p(Vai) ( 2.58 

Var( VOi ) = 

(molar volume) 

Table 7. Five Best Designs in Second Case Study 

Alias Max. Viol. Molecular Groups 
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(VDW molar volume) 

, i = 1, ..., N 
0.02x CL(Cpr) ( 2.58 

Var(C,,,) = 

(molar heat capacity) 

, i = l ,  ..., N 
0.1ox /&IRi) ( 2.58 

Var(U,,) = 

(bulk modulus) 

Next, the trade-off curves between maximum property vio- 
lations and probabilities of meeting them are constructed (see 
Figure 5 )  for each one of the five best molecular designs. The 
trade-off curves shown in Figure 5 indicate that the optimal- 
ity order obtained from the deterministic formulation PM 
is almost completely reversed when group contribution 
uncertainty is considered. Designs 3, 4 and 5 (with 3 slightly 
better) clearly emerge as the most promising designs, with 
design 2 following fourth, and design 1 being the last. Likely 
values (for a = 0.5) for the scaled property violation are in 
the range of 0.014 to 0.022, while conservative estimates (a 
= 0.9) are between 0.035 and 0.055. As in the first case study, 
it is observed that property prediction uncertainty has a signi- 
ficant effect on which molecular design is the most promising 
and what is an achievable design target. 

A closer inspection of the low probability region (see Fig- 
ure 6) reveals that no discernible crossover between trade-off 
curves exists. This implies that the pareto optimum curve (max 
over all trade-off curves) is dkcontinuous. This partitions the 
scaled property-violation range into three subintervals. For 
scaled property violations of less than 0.0022, molecular de- 
sign 1 is the only alternative. Between 0.0022 and 0.0032, 
molecular design 2 is superior to design 1. Finally, for values 
greater than 0.0033 molecular designs 3, 4, and 5 outperform 
designs 1 and 2. While the deterministic predictions for the 
scaled property violations are very small (less than 0.005), the 
probabilities of meeting these deterministic predictions are 
also small (less than 20%). This is in agreement with the ob- 
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0.4 

0.2 

0 
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

Maximum Scaled Property Violation Targets 

Figure 5. Trade-off curves of the five best molecular 
designs for the second case study. 

0.3 
1 - b  

0 0.001 0.002 0.003 0.004 0.005 0.006 
Maximum Scaled Property Violation Target s 

Figure 6. Magnification of the trade-off curves of the five 
best molecular designs for the second case 
study. 

servation made in the first case study that the lower the value 
the deterministic model predicts for the scaled property vio- 
lation, the more sensitive it is to random perturbations of the 
group contribution parameter values. 

Summary and Conclusions 
In this article, a systematic framework was introduced that 

for the first time quantitatively assesses the effect of prop- 
erty-prediction uncertainty in optimal molecular design. 
Property-structure relations with specific nonlinear function- 
alities were established based on group contribution methods 
compiled by van Krevelen (1990). Property prediction uncer- 
tainty was explicitly quantified by utilizing multivariate 
probability density distributions to model the likelihood of 
different realizations of the group contribution parameters 
employed. Two special instances of the general stochastic op- 
timal molecular design problem were addressed in detail. 

1. The stochastic property matching problem (SPM) that 
identifies the type and the number of molecular groups for 
which a scaled property violation target s, guaranteed to be 
met by all properties j with probability of at least a, is mini- 
mized. 

2. The stochastic property optimization problem (SPO) 
that identifies the type and number of molecular groups for 
which a property target pi* for property j * ,  together with 
probability a, is maximized, while lower and upper bounds 
for the rest of the properties are satisfied with probability of 
at least p .  

Assuming that the probability density distribution model- 
ing the stochastic nature of the group contribution parame- 
ters is stable (e.g., normal, Poisson, chi-square, and binomial), 
an approach based on the deterministic equivalent chance- 
constraint representation was introduced for transforming the 
original nonlinear stochastic formulation into a deterministic 
MINLP problem with linear binary and convex continuous 
parts. These MINLP formulations can be solved efficiently to 
global optimality (for (Y 2 0.5) with existing algorithms such 
as OA (Viswanathan and Grossmann, 1990) or GOS (Flou- 
das et al., 1989). The proposed theoretical and computational 
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framework allowed the exact formulation and solution of op- 
timal molecular design problems under property-prediction 
uncertainty. Note that for a < 0.5 formulations SPM and SPO 
become nonconvex. Although multiple local minima may ex- 
ist in theory, this was not observed in practice after employ- 
ing multiple starting points. Of course, this is only indicative 
and not a rigorous proof for the existence of a unique mini- 
mum for a < 0.5. 

Two different case studies were addressed in this article. 
Trade-off curves between performance objectives, probabili- 
ties of meeting these objectives, and chances of satisfying de- 
sign specifications were constructed establishing concise and 
systematic ways of selecting molecular designs in the pres- 
ence of property-prediction uncertainty. For the property- 
matching problem (SPM), it was observed that property- 
prediction uncertainty had a dramatic effect on the selection 
of the best molecular design. This was manifested by the fre- 
quent reversal of the order of optimality obtained by the de- 
terministic model, depending on the selection of the proba- 
bility level a. This quantitatively demonstrated the intuitive 
expectation that the answer to the question of what is the best 
molecular design depends on how ji-equently design target viola- 
tions can be tolerated. In fact, the best molecular designs for 
optimistic ( a  = 0.11, most likely (a = 0.51, and conservative 
( a  = 0.9) scenarios were usually different. In all cases, the 
trade-off curves of all molecular designs started from the so- 
lution derived by the deterministic model reflecting that the 
quantitative effect of propeq prediction uncertainty in SPM was 
to penalize the deterministic model predictions. The higher 
ranked the molecular design was (according to the determin- 
istic model PM), the lower the probability of meeting the de- 
terministic model predictions in the SPM formulation. This 
indicates that random perturbations around the mean value of 
the group contribution parameters have a more prominent effect 
on optimal rather than suboptimal designs. In the property-op- 
timization formulation SPO, the effect of uncertainty was not 
even nearly as pronounced as in the SPM model. Computa- 
tional results indicated that it was extremely unlikely to have 
the results of the deterministic model changed when prop- 
erty-prediction imprecision was superimposed. Of course, 
these conclusions are valid only for the addressed example 
and for the selected variance values. 

While the variance values for the examples addressed in 
this article were selected somewhat arbitrarily, a systematic 
approach was proposed (see the Appendix) for calculating not 
only mean values but also the full variance-covariance matrix 
of group contribution parameters. Application of this proce- 
dure to an extensive set of polymer properties is currently 
under way. Although the proposed theoretical and computa- 
tional framework was tailored only to polymer design, the 
same underlying mathematical features are present, to some 
extent, in (1) other molecular design problems, such as opti- 
mal design of agrochemicals, refrigerants, and solvents, and 
(2 )  more complex design instances involving process consider- 
ations and mixtures of compounds. Work is currently under- 
way on extending the proposed framework in these directions. 
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Appendix: Estimation of Means and Variances of 
the Group Contribution Parameters 

The means and variance-covariances of the group contri- 
bution parameters can be more efficiently found by treating 
separately the numerators and denominators of the adopted 
property prediction functionality. This simplifies the analysis 
by maintaining the linearity of the estimation models without 
sacrificing accuracy. 

Let k = 1, . . . , K denote a set of molecular compounds (or 
repeat units) and I j k  the experimental measurement of prop- 
erty p for compound k .  Assuming an additive linear group 
contribution relation between the number of times nik 
molecular group i participates in compound k ,  we have 

N 
p k =  c u p i k ,  k = l ,  ..., K ,  

i = l  

where P k  is the group contribution estimate of property p ,  
and ai are the group contribution parameters. 

(Mu1ti)linear regression is based on the assumption that 
for each specific X there is a normal distribution of Y that is 
(1) independent of X ,  (2) involves a mean that depends lin- 
early on X ,  and (3) has the same variance from which real- 
izations of Y are drawn at random. Multilinear regression 
can be utilized to identify unbiased estimators (means) and 
sample estimators of the variance-covariance matrix of the 
vector of uncertain group contribution parameters a = [ a , ,  
. . . , a,]‘. The minimization of the sum of the squares of the 
differences between the experimentally measured I jk  and es- 
timated values pk 

2 K K N 
min c (bk - pk)* = min C 

k = l  k = l  
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yields the unbiased estimators for the values of the group 
contribution parameters (Snedecor and Cochran, 1989) 

where a is the ( N  X 1) vector of the group contribution pa- 
rameters, 

N is the ( K  X N )  matrix whose elements are the integers nik  
counting how many times molecular group i participates in 
compound k ,  and p is the ( K  X 1) vector of the experimental 
measurements 

Based on the analysis described in detail in Snedecor and 
Cochran (19891, the ( N  X N )  variance-covariance matrix of 
the group contribution parameter vector a is given by 

where 

is the unbiased estimator of the variance of the experimental 
property values. 

Alternatively, using indexed equations, the mean and the 
variance terms can be expressed as the solution of the follow- 
ing system of linear equations: 

where 

Sii. = Kronecker's delta 

Note that the identification of the vector of means and the 
variance-covariance matrix requires only the solution of lin- 
ear systems of equalities, thus, very large volumes of data can 
be processed efficiently. 
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