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gk(x); k = 1; : : : ;K multiplied by some positive real constants ck; k = 1; : : : ;K.Each monomial gk(x) is in turn the product of a number of positive variables each ofthem raised to some real power,gk(x) = xd1;k1 xd2;k2 � � � xdN;kn ; k = 1; : : : ;Kwhere d1;k; d2;k; : : : ; dN;k 2 < and are not necessarily integers. The term geometricprogramming was adopted because of the key role that the well known arithmetic{geometric inequality played in the initial developments. Generalized geometric prob-lems were �rst introduced and studied by Passy and Wilde [1] and Blau and Wilde[2] when existing (posynomial) geometric programming (GP) formulations failed toaccount for the presence of negatively signed monomials in models for importantengineering applications. These applications are extensively reviewed in [3] and [4].Chemical engineering applications include heat exchanger network design [5], chemicalreactor design [2, 6], optimal condenser design [7], oxygen production [8], membraneseparation process design [27], optimal design of cooling towers [4], chemical equi-librium problems [10], optimal control [11], batch plant modeling [12, 13], optimallocation of hydrogen supply centers [14] and many more.By grouping together monomials with identical sign, the generalized geometric(GGP) problem can be formulated as the following nonlinear optimization problem:mint G0(t) = G+0 (t) � G�0 (t)subject to Gj(t) = G+j (t) � G�j (t) � 0; j = 1; : : : ;M (GGP)ti � 0; i = 1; : : : ; Nwhere G+j (t) = Xk2K+j cjk NYi=1 t�ijki ; j = 0; : : : ;MG�j (t) = Xk2K�j cjk NYi=1 t�ijki ; j = 0; : : : ;Mwhere t = (t1; : : : ; tN) is the positive variable vector; G+j ; G�j ; j = 0; : : : ;M are pos-itive posynomial functions in t; �ijk are arbitrary real constant exponents; and cjk arepositive coe�cients. Also, sets K+j ;K�j count how many positively/negatively signedmonomials form posynomials G+j ; G�j respectively. In general, formulation (GGP)corresponds to a nonlinear optimization problem with nonconvex objective functionand/or constraint set. Note that if we set K�j = 0 for all j = 0; : : : ;M then themathematical model for (GGP) reduces to the (posynomial) geometric programming(GP) formulation which laid the foundation for the theory of generalized geometric(GGP) problems.Unlike (posynomial) (GP) problems, (GGP) problems remain nonconvex in boththeir primal and dual representation and no known transformation can convexify2



them. They may involve multiple local minima and/or nonconvex feasible regions andtherefore are much more di�cult problems to solve. Local optimization approachesfor solvingGGP problems include bounding procedures based on posynomial conden-sation [15, 16, 18, 40, 11]; iterative solution of KKT conditions [6, 19, 20]; and adap-tations of general purpose nonlinear programming methods [21, 3, 22, 23, 24, 25, 26].A computational comparison of available codes for signomial programming is givenin [27, 20]. While local optimization methods for solving GGP problems are ubiq-uitous, application of specialized global optimization algorithms on GGP problemsis scarce. Existing global optimization algorithms such as GOP [28, 29, 30, 31] and�BB [32, 33, 34, 35] are not currently designed so as to handle e�ciently the specialstructure of signomial terms. Falk [36] proposed such a global optimization algorithmbased on the exponential variable transformation of (GGP) and the convex relax-ation and branch and bounding on the space of exponents of negative monomials(j = 1; : : : ;M and k 2 K�j ). In this paper, (i) an alternative partitioning in the typi-cally smaller space of variables i = 1; : : : ; N is investigated; (ii) a number of featuresaimed at improving the e�ciency of the branch and bound procedure are discussed;(iii) the convergence properties of the proposed approach are analyzed; (iv) and anumber of example problems in the areas of engineering design and stability analysisare considered.2 Analysis2.1 Di�erence of two Convex Functions TransformationThe objective function and constraints in the original formulationGGP are in generalnonconvex functions. Based on an eigenvalue analysis, it is quite straightforward toshow that the Hessian matrices of these nonlinear functions may involve eigenvaluesof either sign implying that in general they are neither convex nor concave. However,by applying the transformation [15],ti = exp zi; i = 1; : : : ; Nto the original formulation (GGP) we obtain the following programming problem(DC). minz G0(z) = G+0 (z) � G�0 (z)subject to Gj(z) = G+j (z) � G�j (z) � 0; j = 1; : : : ;M (DC)zLi � zi � zUi ; i = 1; : : : ; Nwhere G+j (z) = Xk2K+j cjk exp( NXi=1 �ijk zi); j = 0; : : : ;M3



G�j (z) = Xk2K�j cjk exp( NXi=1 �ijk zi); j = 0; : : : ;MBecause the the exponentiation of a linear expression is convex, both the objectivefunction and constraints of formulation (DC) are the di�erence of two convex func-tions. Also, since zLi = log (tLi ) it is necessary that the lower bounds tLi of all ti mustbe strictly positive for such a reformulation to exist. This problem can be overcomeby appropriately scaling all problematic original variables ti so ast0i = ti +maxn0;�tLi + �o; � > 0:Note that if G�j (z) = 0 for every j = 0; : : : ;M then problem (DC) becomes aconvex programming problem.2.2 Lower BoundingA lower bound on the solution of problem (DC) can be obtained by solving a convexrelaxation of (DC). Such a convex relaxation can be realized by underestimatingevery concave function, �G�j (z) with a linear function �L�j (z) for every j = 0; : : : ;M .This linear function is constructed by underestimating every implicitly separable term� exp( NPi=1 �ijk zi) with a linear function. This de�nes the following relaxed convexprogramming problem (R) whose solution provides a lower bound on the solution of(DC).minz Gconv0 (z) = G+0 (z) � L�0 (z)subject to Gconvj (z) = G+j (z) � L�j (z) � 0; j = 1; : : : ;M (R)zLi � zi � zUi ; i = 1; : : : ; Nwhere G+j (z) = Xk2K+j cjk exp( NXi=1 �ijk zi); j = 0; : : : ;ML�j (z) = Xk2K�j cjk (Ajk +Bjk  NXi=1�ijkzi!) ; j = 0; : : : ;M; k 2 K�jand Ajk = Y Ujk exp (Y Ljk)� Y Ljk exp (Y Ujk )Y Ujk � Y Ljk ; Bjk = exp (Y Ujk )� exp (Y Ljk)Y Ujk � Y Ljk ;Y Ljk = NXi=1min��ijkzLi ; �ijkzUi �; Y Ujk = NXi=1max��ijkzLi ; �ijkzUi �4



Note that the linear underestimator of �G�j , �L�j (z), is composed by the sum ofa number of linear functions, each one of which is a lower bound on an implicitlyunivariate function of the form � exp (Y ). Clearly, the smaller the di�erence betweenthe original functions G�j (z) and the linearizations L�j (z) the closer the solution of(R) will be to the solution of (DC). The quality of this lower bounding can beanalyzed by examining the tightness of underestimation of every concave term of theform � exp (Y ) with a linear function inside some interval [Y L; Y U ]. Let �(Y ) bethe separation between the concave function � exp (Y ) and its linear underestimatorinside the interval [Y L; Y U ]. �(Y ) is concave in Y and it reaches its single maximumat Y � = log exp (Y Ujk )� exp (Y Ljk)Y Ujk � Y Ljk !with a value �max = exp (Y L) (1 � Z + Z log (Z))where Z = exp (�)� 1� ; � = Y U � Y L:Note that as the interval width � = Y U � Y L goes to zero, Z approaches oneand therefore the maximum separation goes to zero as well, � �! 0; Z �!1; and �max �! 0: The rate at which this maximum separation goes to zero canbe determined by the Taylor expansion of �max(�) at � = 0.�maxexp (Y L) = �28 + �316 + 11�4576 + 5�51152 + 41�651840 + 5�741472 +O(�8)By considering only the �rst leading term of the positive series expansion we deducethat the rate at which �max approaches zero as � goes to zero is �max � O(�2): Onthe other hand, as � goes to in�nity, �max goes to in�nity as �max � O(exp (�)):The scaled maximum separation �max= exp (Y L) for di�erent values of � is shown inTable 1. Note that for small values of � < � 0:5 the maximum separation �max goesas O(�2) following the theoretically derived predictions. Therefore, if for example amaximumseparation of 10�4 is required an interval width of just 10�2 su�ces. On theother hand, for larger values of � > � 2 the maximum separation grows exponentiallywith � rendering this underestimating scheme ine�cient.2.3 Variable ScalingTo maintain a tight convex underestimation of the concave terms it is important tokeep the ranges of the linear terms participating as narrow as possible. To this end,a variable rescaling procedure is proposed on the original formulation (GGP). Thisvariable scaling can be accomplished if all �ijk's are integrands or rational numbersthat can be reduced into integrands. Note that, by preserving all constants in the5



transformed objective function and constraints the same convergence and feasibilitytolerances can be maintained. The proposed linear rescaling is the followingti  � tLi + tUi � tLitU;newi � tL;newi �tnewi � tL;newi � ; i = 1; : : : ; Nwhere tL;newi ; tU;newi are selected so that log (tU;newi )� log (tL;newi ) is small. The e�ect ofthis scaling on the maximum separation can be realized by considering the followingsimple example: min �tsubject to 0 < tL = exp (Y L) � t � exp (Y U ) = tUIt was shown earlier that the maximum separation between the transformed concaveobjective function and the linear underestimation is�max = exp (Y L) "1 � exp (�)� 1� + exp (�)� 1� log exp (�)� 1� # :The single variable t of the problem can be scaled as follows:t  � tL + tU � tLtU;new � tL;new �tnew � tL;new� :Without loss of generality we select tL;new = exp (Y L;new) = 1 which means thatY L;new = 0 and therefore Y U;new = �new. The original minimization problem nowbecomes, min � "exp (Y L) + exp (Y U)� exp (Y L)exp (�new)� 1 (tnew � 1)#subject to 1 � t � exp (�new):The maximum separation after rescaling is now�newmax = exp (Y L) exp (�)� 1exp (�new)� 1 "1� exp (�new)� 1�new + exp (�new)� 1�new log exp (�new)� 1�new # :The ratio of the maximum separation for the scaled example over the maximumseparation for the original one is therefore,R(�; �new) = �newmax�max = 8<: 1exp (�new)�1 � 1�new + 1�new log exp (�new)�1�new1exp (�)�1 � 1� + 1� log exp (�)�1� 9=;It must be emphasized, however, that the proposed variable scaling does not a�ect thescaling of the constraints. This implies that the same feasibility tolerance �f canstill be utilized before and after the variable scaling. The e�ect of this rescaling pro-cedure on the global optimization algorithm is illustrated in the motivating exampleof subsection 4.1. 6



2.4 Transformation of InequalitiesThe feasible region of the original problem (GGP) is de�ned by the fraction of theintersection of the nonlinear inequality constraintsGj(t) = G+j (t)�G�j (t) � 0; j = 1; : : : ;Mwhich lies within the hyperectangle de�ned by the box constraints0 < tLi � ti � tUi ; i = 1; : : : ; N:The convex relaxation (R) of (GGP) approximates the original feasible region witha relaxation of its convex hull. The closer this relaxation is to its convex hull thetighter the lower bounding of the objective function will be. This motivates the needto \preprocess" the original nonlinear constraints so that the employed relaxationwill be as tight as possible. This can be accomplished by taking advantage of themathematical structure of each original constraintGj(t) and the fact that all variablest are strictly positive. The positivity of t implies that for every nonlinear inequalityconstraint Gj(t) there exists a family of nonlinear constraints Gj(t) whose elementsare completely interchangeable with Gj(t) and are derived by multiplying the originalconstraint by td1j1 td2j2 � � � tdNjN where dij ; i = 1; : : : ; N; j = 1; : : : ;M are arbitrarilyselected real parameters.Gj(t) = (Gj(t;dj) = Gj(t) NYi=1 tdiji ! : dij 2 <; i = 1; : : : ; N)Note that even though the values of the elements of Gj might not be identical forevery t, because td1j1 ; : : : ; tdNjN > 0, they always maintain the same sign as Gj(t).This implies that every element of GjGj(t;dj) = Xk2K+j cjk NYi=1 t(�ijk+dij)i � Xk2K�j cjk NYi=1 t(�ijk+dij)iis an equivalent representation of the original constraint Gj(t) and therefore it canreplace it in formulation (GGP). Clearly, unlike the variable scaling presented inthe previous subsection, this multiplicative transformation a�ects the scaling of theproblem. Therefore, appropriate changes have to be made on the feasibility as wellas convergence tolerances to account for the changed scaling of the objective functionand constraints. After applying the exponential transformation on the constraintGj(z; tj) we obtain,Gj(z;dj) = Xk2K+j cjk exp " NXi=1 (�ijk + dij) zi# � Xk2K�j cjk exp " NXi=1 (�ijk + dij) zi#;7



which can replace the constraint Gj(z) in problem (DC). Even though all constraintsGj(z;dj) 2 Gj are interchangeable, this is not the case for their convex relaxations. Bylinearizing the concave terms G�j (z;dj), di�erent elements of Gj give rise to distinctlydi�erent convex relaxed constraints Gconvj (z;dj) whose domain of feasibility dependson the selection of dj .Gconvj (z;dj) = Xk2K+j cjk exp " NXi=1 (�ijk + dij) zi#� Xk2K�j cjk (Ajk +Bjk " NXi=1 (�ijk + dij) zi#)Because the tightest lower bounding of Gj(zj) is sought, for a given z the best selectionof dj is the one for which Gj(z;dj) is maximized,d�j(z) = arg maxdj Gj(z;dj):Note that it is not possible to consider the convex relaxations of all elements of Gjbecause their number is in�nite. Unfortunately, the maximization problem not onlyis parametric in z but also for a given z is as di�cult to solve as the original prob-lem (DC). Therefore, instead the following two criteria will be utilized to guide theselection of a good value for dj for every constraint j. The �rst criterion is to min-imize the number of variables zi participating in every concave function G�j (z;dj).This requirement reects the primary concern of any deterministic global optimiza-tion algorithm which is to keep the number of variables where branching is requiredat a minimum. The second criterion is associated with the observation that for agiven constraint j, a very important consideration when selecting dj is to maintainY Ujk � Y Ljk as small as possible for every k 2 K�j . Although the rescaling of variablesaims at this, it is sometimes necessary to complement this rescaling with an appro-priate selection of dj. Because the primary concern is not to allow any Y Ujk � Y Ljkto become larger than � 2 � 5 rather than minimizing a weighted sum of intervalsY Ujk � Y Ljk, it appears to be more meaningful to minimize the maximum Y Ujk � Y Ljkover all k 2 K�j (worst case analysis). Furthermore, in practice, more than oneconvex relaxed function Gconvj (z;dj) per constraint j can be incorporated in formu-lation (R) to tighter approximate the convex hull of constraint Gj(z). Although norigorous way is provided for selecting the optimum selection of the set of dj i's perconstraint, computational experience reveals that by utilizing the proposed criteriaconvex underestimation of every constraint j is improved.2.5 Reduction of Rectangular PartitionsA discussed in an earlier subsection, the convex relaxation (R) of the problem (DC)is aimed at deriving a lower bound to the solution of (DC). This lower bound iscalculated by solving the convex programming problem (R) inside some hyperectanglede�ned by: zLi � zi � zUi ; i = 1; : : : ; N:8



Clearly, the smaller this hyperectangle, the tighter the convex lower bounding ofall Gj(z); j = 0; : : : ;M and therefore the closer the solution of (R) will be to thesolution of (DC). Deterministic global optimization algorithms improve the quality ofthe obtained lower bounds by partitioning the initial hyperectangle into smaller ones,and repeatedly solving (R) inside each one of them. A number of branching rulesare utilized which make the subdivision process as e�cient as possible. However,the employed branch and bound procedure is exponential in nature and thereforepotentially very computationally consuming. This means that one would desire tofathom all or part of a hyperectangle region without having to resort to the CPUdemanding branch and bound whenever possible.To meet this objective, one can attempt to locate the minimum/maximum valuefor every variable zi for which the nonlinear constraint set of (DC) remains feasibleand also the value of the objective function is at least as good as the best currentupper bound U . min=max zi0; i0 = 1; : : : ; Nsubject to Gj(z) � 0; j = 1; : : : ;MG0(z) � UzLi � zi � zUi ; i = 1; : : : ; N:However, this is a nonconvex problem of equivalent di�culty with the initial problem(DC). Instead, one can solve a relaxation of this problem by replacing all nonlinearconstraints and objective function with their respective convex relaxations.min zi0; i0 = 1; : : : ; N (BR)subject to Gconvj (z) � 0; j = 1; : : : ;MGconv0 (z) � UzLi � zi � zUi ; i = 1; : : : ; N:The solution of these convex bound reducing (BR) problems provide valid lower/upperbounds on all zi so that all relaxed nonlinear constraints are feasible and the relaxedobjective function is less than some upper bound U . Note that if (BR) is infeasiblethis implies the intersection of the feasible region of problem (DC) with the domainwhere the objective function is at least as good as some prespeci�ed bound U is theempty set. In this case, the corresponding rectangular partition can be eliminatedbecause the global solution is guaranteed not to be situated inside it. As shown inFigure 1 by minimizing/maximizing all zi, the feasible region of (R) is inscribed insidethe smallest possible rectangle de�ning a new re�ned set of bounds for z. Becausethe reduction of the set of box constraints results in tighter underestimating functionsGconvj (z) and Gconv0 (z) the minimization/maximization of all zi can be repeated by dy-namically updating the bounds zLi ; zUi for more than one iteration until no furthersigni�cant improvement on the bounds is achieved. This de�nes the following boundimproving procedure: 9



STEP 0. Set i0  � 1STEP 1. Solve min zi0subject to Gconvj (z) � 0; j = 1; : : : ;M (BRmin)Gconv0 (z) � UzLi � zi � zUi ; i = 1; : : : ; N:STEP 2. Set zL;oldi0  � zLi0zLi0  � z�i0STEP 3. Solve max zi0subject to Gconvj (z) � 0; j = 1; : : : ;M (BRmax)Gconv0 (z) � UzLi � zi � zUi ; i = 1; : : : ; N:STEP 4. Set zU;oldi0  � zUi0zUi0  � z�i0STEP 5. If i0 < N then i0  � i0 + 1. Go to STEP 1.STEP 6. If NQi=1(zLi �zUi )NQi=1(zL;oldi �zU;oldi ) � r then go to STEP 0. Otherwise ENDParameter r < 1 typically r � 0:6 � 0:9, is simply the minimum hyperectangle vol-ume reduction per iteration which is required to further continue the bound improvingprocedure. It must be noted, however, that with this procedure 2N convex program-ming problems must be solved per iteration. In this work this procedure is appliedonly in the initial partition. For intermediate rectangular partitions a relaxation ofthis procedure is utilized for detecting whether the current partition element can befathomed. This alternative check is based on �rst deriving a lower bound for the ob-jective function and every constraint of formulation (R) using monotonicity analysisprinciples. If the lower bound of the objective function is greater than U or if thelower bound of any of the constraints is greater than zero then the corresponding10



partition element can be eliminated since it is guaranteed either not to include theglobal minimum solution or to be infeasible. Note that the form of the objective andconstraints in formulation (R) isGconvj (z) = Xk2K+j cjk exp NXi=1 Yjk!� Xk2K�j cjk "Ajk +Bjk  NXi=1 Yjk!# ; j = 0; : : : ;MNote that because the function exp(x) is monotonically increasing, a lower boundGconv;Lj of Gconvj (z) can be obtained by �xing all Yjk; k 2 K+j at their lower boundsY Ljk, and all Yjk; k 2 K�j at their respective upper bounds Y Ujk since Bjk � 0.Gconv;Lj = Xk2K+j cjk exp NXi=1 Y Ljk!� Xk2K�j cjk "Ajk +Bjk  NXi=1 Y Ujk!# ; j = 0; : : : ;MThe corresponding partition element can be eliminated ifGconv;L0 � U; or 9 j = 1; : : : ;M such that Gconv;Lj � 0:These feasibility checks can be applied to every subdivision element before the convexminimization of problem (R) is performed and the associated computational e�ort isnegligible. Note that the relaxation of the bounding procedure is a computationallye�cient check for detecting infeasibility of the constraint set especially at earlier stagesof the algorithm. Computational experience has shown that this results in signi�cantreduction in the number of required convex minimizations (10% � 50%).2.6 Monotonicity AnalysisMonotonicity analysis principles can be utilized to improve the convex relaxation of(DC) by dictating that some nonlinear inequality constraints must be satis�ed asequality constraints at the global minimum solution.minz G0(z)subject to Gj(z) � 0; j = 1; : : : ;M (DC)Hansen et al. [37] pointed out that if there exists a global minimum solution for(DC) and the objective function G0(z) is monotonically increasing(decreasing) insome zi, then at least one constraint which is monotonically decreasing(increasing)with respect to zi will be active at the global minimum solution. Note also that if ziis not present in the objective function then at least one constraint involving zi willbe active at the global minimum solution. The conclusions from the monotonicityanalysis can be more conveniently expressed by associating a boolean variable aj forevery constraint j = 1; : : : ;M . If the constraint j is active at the global minimum11



solution then aj = 1, otherwise aj = 0. Let also J�i ; J+i ; J0i denote the sets of indices ofconstraints j involving variables zi which are monotonically decreasing, monotonicallyincreasing, and not monotonous or with unknown monotonicity in zi respectively. Themonotonicity principles can then be expressed mathematically as follows:Xj2J+i [J0i aj � 1; if G0(z) is monotonically decreasing in ziXj2J�i [J0i aj � 1; if G0(z) is monotonically increasing in ziXj2J+i [J0i aj � 1 or Xj2J�i [J0i aj � 1; if G0(z) is independent of ziClearly, the smaller the sets J0i , the less the number of aj's that will participate ininequality relations, and therefore it will be more likely to have some aj's �xed at one.Note that if aj = 1, then the corresponding constraint j is satis�ed as an equality.This can lead to elimination of a variable or addition of an extra constraint.A constraint Gj(z) of formulation (DC),Gj(z) = Xk2K+j cjk exp NXi=1 �ijkzi!� Xk2K�j cjk exp NXi=1 �ijkzi!;is guaranteed to be monotonic in zi if�ijk � 0; 8 k 2 K+j and �ijk � 0; 8 k 2 K�jor �ijk � 0; 8 k 2 K+j and �ijk � 0; 8 k 2 K�jHowever, by appropriately replacing the initial constraint Gj(z) with one from thefamily GjGj(z;dj) = Xk2K+j cjk exp " NXi=1 (�ijk + dij) zi# � Xk2K�j cjk exp " NXi=1 (�ijk + dij) zi#;one can come up with less restrictive conditions for monotonicity. More speci�cally,Gj(z;dj) is monotonically increasing in zi if, mink2K+j �ijk � maxk2K�j �ijkand dij 2 24maxk2K�j �ijk; mink2K+j �ijk35Gj(z;dj) is monotonically decreasing in zi if, maxk2K+j �ijk � mink2K�j �ijkand dij 2 24maxk2K+j �ijk; mink2K�j �ijk35These monotonicity analysis principles can be utilized to eliminate variables or furtherconstraint formulation (DC). In the next section, a branch and bound type globaloptimization algorithm is introduced for solving problem (DC).12



3 Global Optimization3.1 DescriptionA global optimization algorithm is proposed for locating the global minimum solutionof (DC) based on the re�nement of converging lower and upper bounds through thesolution of convex programming problems (R). Clearly the value of the objectivefunctionG0(z) at any feasible point z provides an upper bound on the global minimumG�0. Lower bounds on G�0 within some box constraints are derived by solving theconvex lower bounding optimization problem (R).Since (R) is convex, its single global minimum within some box constraintscan be routinely found with a commercially available optimization algorithm (e.g.MINOS 5.4 [38]) and will always underestimate the global minimum of (DC) withinthe same box constraints. Assuming that this global minimum solution of (R) is afeasible point for (DC), an upper bound on G�0 can then be obtained by simply cal-culating G0(z) at the global minimum point of (R). Based on the analysis performedin subsection 2.2, the gap between the upper bound and the lower bound on G�0 willbe at most,�0;max = Xk2K�0 c0k exp (Y L0k) "1� exp (�0k)� 1�0k + exp (�0k)� 1�0k log exp (�0k)� 1�0k #where �0k = Y U0k � Y L0kand Y L0k = NXi=1min��i0kzLi ; �i0kzUi �; Y U0k = NXi=1max��i0kzLi ; �i0kzUi �Note that �0;max goes to zero as all �0k; k 2 K�0 approach zero. Furthermore, becauselim�i=zUi �zLi !0+; 8 i=1;:::;N �0k = 0; 8 k 2 K�0we have lim�i=zUi �zLi !0+; 8 i=1;:::;N �0;max = 0:This implies that as the current box constraints [zL; zU ] collapse into a point themaximum separation �0;max between the original objective function of (DC) and itsconvex relaxation in (R) becomes zero. Because �0;max is a continuous function of�0k � 0; k 2 K�0 and thus of �i � 0; i = 1; : : : ; N , for every positive number �c therewill always be a positive number �� such that if all �0k � �� we have �0;max � �c.This result reects the fact that by reducing the bounds [zL; zU ] the objective functionG0(z) of (DC) can become arbitrarily close to its convex relaxation Gconv0 (z) of (R).By following the same argument the maximum separations �j;max between con-straints Gj(z) and the corresponding convex relaxations Gconvj (z)�j;max = Xk2K�j cjk exp (Y Ljk) "1� exp (�jk)� 1�jk + exp (�jk)� 1�jk log exp (�jk)� 1�jk #13



where �jk = Y Ujk � Y Ljkand Y Ljk = NXi=1min��ijkzLi ; �ijkzUi �; Y Ujk = NXi=1max��ijkzLi ; �ijkzUi �go to zero as all �jk; 8 k 2 K�j or alternatively �i = zUi � zLi ! 0+; 8 i = 1; : : : ; Napproach zero. Furthermore, �j;max are continuous functions of �jk; k 2 K�j and alsoof �i; i = 1; : : : ; N . This implies that for every positive number �f there will alwaysbe a positive number �� such that by selecting �jk � �� we havemaxj2K�j �j;max � �f :The interpretation of this result is that by reducing the bounds [zL; zU ] on z, dif-ferences between the feasible region of the original problem (DC) and its convexrelaxation (R) become arbitrarily small. Therefore, any feasible point zc of problem(R) (even the global minimum solution) becomes at least �f{feasible for problem(DC) by su�ciently tightening the bounds on z around this point.After establishing upper and lower bounds on the global minimum inside somerectangular domain, the next step is to tighten them. This is accomplished by re-stricting the rectangular size. Tighter box constraints can be realized by partitioningthe rectangle that the initial box constraints de�ne into a number of smaller rectan-gles. The minimum number of variables along which subdivision is required is equalto the number of linearly independent Y 0jks; j = 0; : : : ;M; k 2 K�j . Typically thisnumber is equal to the number of zi participating in any of the terms G�j (z). Thisde�nes the following set of variables where branching is required.Z = nzi� : 9 �i�jk 6= 0; j = 0; : : : ;M; and k 2 K�j oIn the great majority of cases the number of zi 2 Z is much smaller than the totalnumber of terms Yjk; k 2 K�j in formulation (DC). Therefore in this work subdivisionis performed on the set of variables zi belonging in Z.One way of partitioning is to successively divide the current rectangle in twosubrectangles by halving on the middle point of the longest side of the initial rect-angle (bisection). Presumably, at each iteration the lower bound of G�0 is simply theminimum over all the minima of problem (R) in every subrectangle composing theinitial rectangle. Therefore, a straightforward (bound improving) way of tighteningthe lower bound is to halve at each iteration, only the subrectangle responsible for thein�mum of the minima of (R) over all subrectangles, according to the rules discussedearlier. This procedure generates a nondecreasing sequence for the lower bound of G�0.Furthermore, we construct a nonincreasing sequence for the upper bound by selectingit to be the infenum over all the previously recorded upper bounds. Clearly, if thesingle minimum of (R) in any subrectangle is greater than the current upper boundwe can safely ignore this subrectangle because the global minimum of G0(z) cannotbe situated inside it (fathoming step). 14



The next question is how small these subrectangles must become before the upperand lower bounds of G0(z) are within �c and also the feasible region of (DC) is �f{close to the feasible region of (R). Because �c and �f are very small numbers themaximum separations �j;max, will be proportional to the square of the diagonal � ofthe current subrectangle (� O(�2)). This means that the required for convergencevalue of � is proportional to the square root of �c. Therefore, if for example �c; �f areset to be 0:0001, it su�ces for � to be proportional to 0:01.The basic steps of the proposed global optimization algorithm are summarized inthe following section.3.2 Steps of the Global Optimization AlgorithmSTEP 1 - InitializationA convergence tolerance �c and a feasibility tolerance �f are selected and theiteration counter Iter is set to one. Appropriate global bounds zLBDi ; zUBDi on thezi's are calculated based on the bound improving procedure discussed in subsection 2.5and local bounds zL;Iteri ; zU;Iteri for the �rst iteration are set to be equal to the globalones. The initial constraints Gj(z); j = 1; : : : ;M are replaced by an appropriatelyselected (based on the analysis of subsection 2.3) set of constraints Gj(z;dj) 2 G. Inthis description of the algorithm the parameters dj are omitted from the constraintsfor the sake of simplicity. Finally, lower and upper bounds GLBD0 ; GUBD0 on the globalminimum G�0 are initialized and an initial current point zc;Iteri is selected.STEP 2 - Feasibility Check and Update of Upper Bound GUBD0If the maximum over all constraints Gj calculated at the current point zc;Iteri isless than �f , maxj=1;:::;M Gj(zc;Iter) � �fthen the constraint set is �f{feasible at the current point. If so, the objective functionG0 is calculated at the current point zc;Iter and the upper bound GUBD0 is updated asfollows, GUBD0 = min�GUBD0 ; G0(zc;Iter)�STEP 3 - Partitioning of Current RectangleThe current rectangle hzL;iteri ; zU;Iteri i ; i = 1; : : : ; N is partitioned into the follow-ing two rectangles (r = 1; 2): 15



266666666664 zL;Iter1 zU;Iter1... ...zL;IterlIter �zL;IterlIter + zU;IterlIter �2... ...zL;IterN zU;IterN 377777777775 ; 266666666664 zL;Iter1 zU;Iter1... ...�zL;IterlIter + zU;IterlIter �2 zU;IterlIter... ...zL;IterN zU;IterN 377777777775where lIter corresponds to the variable with the longest side in the initial rectangle,lIter = arg maxi �zU;Iteri � zL;Iteri �STEP 4 - Feasibility Checks of Convex Relaxation (R)Update in both subrectangle (r = 1; 2) the parameters Y Ljk; Y Ujk ; Ajk; Bjk as follows:Y Ljk = NXi=1min��ijkzLi ; �ijkzUi �; Y Ujk = NXi=1max��ijkzLi ; �ijkzUi �Ajk = Y Ujk exp (Y Ljk)� Y Ljk exp (Y Ujk )Y Ujk � Y Ljk ; Bjk = exp (Y Ujk )� exp (Y Ljk)Y Ujk � Y LjkIf there exists j = 0; : : : ;M such that one of the lower boundsGconv;Lj = Xk2K+j cjk exp NXi=1 Y Ljk!� Xk2K�j cjk "Ajk +Bjk  NXi=1 Y Ujk!# ; j = 0; : : : ;Msatisfy Gconv;L0 � GUBD0 or Gconv;Lj � 0; for some j = 1; : : : ;Mthen the corresponding subrectangle is eliminated (fathoming), go to STEP 6.Otherwise, proceed with STEP 5.STEP 5 - Solution of Convex Problems Inside SubrectanglesSolve the following convex optimization problem (R) in both subrectangles (r =1; 2) by using any convex nonlinear solver (e.g. MINOS 5.4 [38]).minz Gconv0 (z)subject to Gconvj (z) � 0; j = 1; : : : ;MzL � z � zUIf a solution Gr;Iter0;sol is less than the current upper bound, GUBD0 then it is stored alongwith the value of the variables z at the solution point zr;Iteri;sol .16



STEP 6 - Update Iteration Counter Iter and Lower Bound GLBD0The iteration counter is increased by one,Iter  � Iter + 1and the lower bound GLBD0 is updated to the minimum solution over the stored onesfrom previous iterations. Furthermore, the selected solution is erased from the storedset. GLBD0 = Gr0 ;Iter00;solwhere Gr0 ;Iter00;sol = minr;I Gr;I0;sol; r = 1; 2; I = 1; : : : ; Iter� 1:STEP 7 - Update Current Point zc;Iter and Current Bounds zL;Iter; zU;Iter on zThe current point is selected to be the solution point of the previously found minimumsolution in STEP 6, zc;Iter = zr0;Iter0i;soland the current rectangle becomes the subrectangle containing the previously foundsolution, hzL;Iteri ; zU;Iteri i = 266666666664 zL;Iter01 zU;Iter01... ...zL;Iter0lIter0 �zL;Iter0lIter0 + zU;Iter0lIter0 �2... ...zL;Iter0N zU;Iter0N 377777777775 ; if r0 = 1hzL;Iteri ; zU;Iteri i = 266666666664 zL;Iter01 zU;Iter01... ...�zL;Iter0lIter0 + zU;Iter0lIter0 �2 zU;Iter0lIter0... ...zL;Iter0N zU;Iter0N 377777777775 ; if r0 = 2STEP 8 - Check for ConvergenceIF �GUBD0 �GLBD0 � > �c, then return to STEP 217



Otherwise, �c{convergence has been reached and the global minimum solution, andsolution point are: G�0  � G0(zc;Iter00)z�  � zc;Iter00where Iter00 = argI nG0(zc;I) = GUBD0 ; I = 1; : : : ; Itero :In the following section, a mathematical proof that the proposed global optimiza-tion algorithm converges to the the global minimum is given based on the analysis ofa standard deterministic global optimization algorithm presented in [39].3.3 Proof of Convergence to the Global MinimumConvergence properties of a global optimization algorithm depend on:(i) the limit behavior of the di�erenceGUBDj �GLBDj ; j = 0; : : : ;M for unfathomedsuccessively re�ned partitions,(ii) the subdivision process of the current partitions, and(iii) the employed selection process of the partition(s) that have to be furtherre�ned.In the employed global optimization algorithm, a lower bound Gr;Iter0;L is obtained asthe solution of the convex minimization of (R) for every partition element (r; Iter).Also an upper bound Gr;Iter0;U is obtained as the value of G0 at the single solutionof problem (R) assuming that it is an �f{feasible point for (DC). The partitionelement involving the minimum lower bound Gr;Iter0;L is selected for further re�ningaccording to the bisection rule and partition elements whose lower bound Gr;Iter0;L isgreater than the current upper bound GUBD0 are fathomed. A su�cient conditionfor a global optimization algorithm to be convergent to the global minimum, statedin [39], requires that the bounding operation must be consistent and the selectionoperation bound improving.A bounding operation is called consistent if at every step any unfathomed par-tition can be further re�ned, and if any in�nitely decreasing sequence of successivelyre�ned partition elements satis�es,limIter!1 �GIter0;U � Gr;Iter0;L � = 0;where Gr;Iter0;L is a lower bound of G�0 inside the (r; Iter) partition element and GIter0;U isthe best upper bound at iteration Iter not necessarily occurring inside the (r; Iter)partition element. In practice, the requirement limIter!1 �GIter0;U � Gr;Iter0;L � = 0 forany in�nitely decreasing sequence of successively re�ned partition elements is di�cultto verify because GIter0;U is not necessarily attained at the partition element (r; Iter).Therefore, in view of the inequality Gr;Iter0;U � GIter0;U � Gr;Iter0;L , the following, at least18



equally strong condition, su�ces to be shown:limIter!1 �Gr;Iter0;U � Gr;Iter0;L � = 0:In subsection 3.1 we have shown that by reducing the size of the partition element[zL; zU ] where we assume that (R) is feasible then (DC) is �f{feasible and the objec-tive function G0(z) becomes arbitrarily close to its convex relaxation Gconv0 (z). Thismeans that, lim�i=zUi �zLi !0+; 8 i=1;:::;N Gr;Iter0;U � Gr;Iter0;L = 0Therefore, it su�ces to show thatlimIter!1 maxi �i = 0This is equivalent with requiring that any unfathomed in�nitely decreasing sequenceof successively re�ned partition elements is exhaustive [39]. The employed subdivisionprocess is the bisection where every partition element (r; Iter) is subdivided into twosubrectangles r = 1; 2 of equal volume by halving at the midpoint of the longest side.By scaling all sides of any partition element with the sides of the rectangle that theinitial global constraints de�ne, the scaled sides of the initial rectangle are all equalto one. Therefore, the condition of always subdividing along the longest side can besatis�ed by simply subdividing �rst along the side k = 1, then along the side k = 2;etc. until the last side k = K is encountered when the subdivision starts again fromk = 1. By partitioning in this orderly manner each side of every successively re�nedpartition element is halved exactly once every K subdivisions. Consequently, after Ksubdivisions the diagonal of the resulting partition elements is one half the diagonalof the original partition element. Therefore, as the number of successive subdivisionsof a partition element goes to in�nity, the diagonals of the resulting partition elementsgo to zero. This implies that the employed subdivision process is exhaustive.Consequently, for any in�nitely decreasing sequence of successively re�ned parti-tion elements limIter!1 �Gr;Iter0;U � Gr;Iter0;L � = 0meaning that the employed bounding operation is consistent.A selection operation is called bound improving if at least one partition elementwhere the actual lower bound is attained is selected for further partition after a �nitenumber of re�nements. Clearly, the employed selection operation is bound improvingbecause the partition element where the actual lower bound is attained is selected forfurther partition in the immediately following iteration.In summary, we have shown that the bounding operation is consistent and thatthe selection operation is bound improving, therefore according to Theorem IV.3. in[39] the employed global optimization algorithm is convergent to the global minimum.In the next section the proposed global optimization algorithm is applied to a numberof example problems. 19



4 Computational ResultsFirst, a prototype generalized geometric problem is addressed and the e�ect of rescal-ing on the total number of required for convergence iterations is examined and shownto follow the theoretical predictions. Next, a number of engineering design problemsare addressed, two of them in detail, and �{convergence to the global minimum isachieved in all cases. Finally, in the last subsection a model for checking the sta-bility of given control strategies is presented which requires the solution of (GGP)problems and a number of stability analysis examples are considered. The proposeddeterministic global optimization algorithm has been implemented in GAMS andcomputational times are reported for all examples on a HP{730 workstation. Moree�cient implementations in C are expected to result in signi�cant CPU reductions.4.1 Motivating ExampleThe following motivating example, taken from [40], involves the minimization of asingle variable subject to two nonlinear constraints.minx1;x2 x1subject to 14x1 + 12x2 � 116x21 � 116x22 � 1 � 0 (P)114x21 + 114x22 + 1� 37x1 � 37x2 � 01 � x1 � 5:51 � x2 � 5:5These two nonlinear constraints de�ne a nonconvex crescent{shaped feasible regionshown in Figure 2 and even though the objective function is linear there still existsthree distinct KKT points A,B and C. Therefore, local optimization approaches canconverge to either one of them at best depending on which basin of attraction theinitial point is inside.The following linear variable scaling is then applied on both x1; x2 and its e�ectis measured on the total number of iterations for convergence.x1  � 1 + 4:5U � 1 (xnew1 � 1) x2  � 1 + 4:5U � 1 (xnew2 � 1) :This transformation de�nes a one to one mapping of the original variables x1; x2 ontothe new variables xnew1 ; xnew2 whose upper bound U is a manipulated parameter.xnew1 = 1 + U � 14:5 (x1 � 1) x2 = 1 + U � 14:5 (x2 � 1)20



1 � xnew1 ; xnew2 � UAfter substituting the expressions for x11; x2 into (P) we obtained the following trans-formed problem, parametric in U :minxnew1 ;xnew2 1 + 4:5U � 1 (xnew1 � 1)subject to 63 + 18U32(U � 1)2xnew1 + 27 + 54U32(U � 1)2xnew2 � 8164(U � 1)2 (xnew1 )2 (PU)� 8164(U � 1)2 (xnew2 )2 � 21 + 48U + 12U232(U � 1)2 � 08156(U � 1)2 (xnew1 )2 + 8156(U � 1)2 (xnew2 )2 + 17 + 56U + 8U228(U � 1)2� 45 + 36U28(U � 1)2xnew1 � 45 + 36U28(U � 1)2xnew2 � 01 � xnew1 ; xnew2 � UClearly, for any value of the new upper bound U � 1, problem (PU) has the same solu-tion with (P). Furthermore, the performed variable scaling does not a�ect the scalingof the constraints. Note that even though the scaling of the new variables xnew1 ; xnew2depends on U , the value of the objective function and constraints remains unchangedin (PU). However, the solution of the convex relaxation (RU) of (PU) is a function ofU . This implies that di�erent values for U yield di�erent number of required for con-vergence iterations for (PU). After selecting the convergence as well as the feasibilitytolerances to be equal to �c = �f = 10�4, the proposed global optimization procedureis applied and convergence to the global minimum point (x�1 = 1:178; x�2 = 2:178) isachieved from all starting points for di�erent values of U . The average number ofiterations as a function of U are summarized in Table 2. It appears that the totalnumber of iterations for solving (PU) is a monotonically increasing function of U .This implies that the tighter the rescaling, the better the underestimation will be.This is consistent with the theoretical results presented in subsection 2.2. Note thatas U approaches one, numerical stability problems o�set the bene�ts of marginallybetter underestimators.4.2 Alkylation process designThis example involves the design of an alkylation unit [41]. The objective is to improvethe octane number of some ole�n feed by reacting it with isobutane in the presence ofacid. The product of the reaction is distilled and the unreacted isopropane is recycled21



back to the reactor. All equality constraints are eliminated and the problem has beenformulated as a signomial optimization problem.min c1x1 + c2x1x6 + c3x3 + c4x2 + c5 � c6x3x5subject to c7x26 + c8x�11 x3 � c9x6 � 1c10x1x�13 + c11x1x�13 x6 � c12x1x�13 x26 � 1c13x26 + c14x5 � c15x4 � c16x6 � 1c17x�15 + c18x�15 x6 + c19x4x�15 � c20x�15 x26 � 1c21x7 + c22x2x�13 x�14 � c23x2x�13 � 1c24x�17 + c25x2x�13 x�17 � c26x2x�13 x�14 x�17 � 1c27x�15 + c28x�15 x7 � 1c29x5 � c30x7 � 1c31x3 � c32x1 � 1c33x1x�13 + c34x�13 � 1c35x2x�13 x�14 � c36x2x�13 � 1c37x4 + c38x�12 x3x4 � 1c39x1x6 + c40x1 � c41x3 � 1c42x�11 x3 + c43x�11 � c44x6 � 11500 � x1 � 20001 � x2 � 1203000 � x3 � 350085 � x4 � 9390 � x5 � 953 � x6 � 12145 � x7 � 162where ci; i = 1; : : : ; 44 are positive parameters given in Table 3. This problem involvesseven nonlinear variables subject to 12 nonlinear and two linear inequality constraints.Note that there exists a large number of bilinear, trilinear, and even fractional termsin the objective function and constraints. First, the bound improving procedure yieldsthe following reduced variable bounds:1660:00 � x1 � 2000:0023:54 � x2 � 120:003000:00 � x3 � 3278:6885:00 � x4 � 93:0092:18 � x5 � 95:003:78 � x6 � 10:68145:00 � x7 � 153:5322



Convergence to the global minimum point,x�1 = 1698:18x�2 = 53:66x�3 = 3031:30x�4 = 90:11x�5 = 95x�6 = 10:50x�7 = 153:53having an objective function value of f� = 1227:00 is reached from every initial pointin about 200 iterations requiring 30 seconds of CPU time.4.3 CSTR Sequence Design with Capital Cost ConstraintsThis example was �rst proposed in [42] and involves the design of a sequence of twoCSTR reactors where the consecutive reaction A ! B ! C takes place. The con-centration Cb2 of B in the outlet stream of the second reactor needs to be maximizedsubject to an upper bound on the investment cost. First order kinetics are assumedfor both reactions and the reaction constants for the �rst (a) and second (b) reactionin reactors (1) and (2) are ka1 = 9:6540 10�2 s�1;kb1 = 3:5272 10�2 s�1;ka2 = 9:7515 10�2 s�1;kb2 = 3:9191 10�2 s�1:The inlet concentration of A is ca0 = 1:0=;mol=l, and zero for both B and C. If V1; V2are the residence times for the two reactors and ca1; cb1; ca2; cb2 are the correspondingexit concentrations then the reactor design problem can be formulated as the followingnonconvex optimization problem. min �cb2subject to (ca1 � ca0) + ka1ca1V1 = 0(ca2 � ca1) + ka2ca2V2 = 0(cb1 + ca1 � ca0) + kb1cb1V1 = 0(cb2 � cb1 + ca2 � ca1) + kb2cb2V2 = 0V 0:51 + V 0:52 � 4 (2)0 � ca1; cb1; ca2; cb2 � 1 (3)1 � V1; V2 � 100 (4)23



Assuming that the capital cost of a reactor is proportional to the square root of itsresidence time, constraint (2) provides an upper bound on the total investment costs.Also constraints (3) and (4) de�ne some initial bounds on the variables. This problemhas been reported to involve two local minima [42].First, by applying the bound improving procedure described in subsection 2.5 theinitial bounds are re�ned into the following:0:4090 � ca1 � 0:91190:2128 � ca2 � 0:83090:0845 � cb1 � 0:45010:0571 � cb2 � 0:70991:0000 � V1 � 9:00001:0000 � V2 � 9:0000Application of the proposed global optimization procedure yields the following globaloptimum solution c�a1 = 0:6587c�a2 = 0:5161c�b1 = 0:2869c�b2 = 0:3866V �1 = 5:3666V �2 = 2:8338from every initial point in about 400 iterations and CPU of 20 seconds with conver-gence and feasibility tolerances of 10�3.Next, the bounds of the reactor volumes are expanded to:10�6 � V1; V2 � 16and all concentration variables ca1; ca2; cb1 and cb2 are eliminated from the initial for-mulation for the reactor design problem. The resulting compact formulation involvesonly two variables V1; V2.min �cb2 = �ca0 ka2V2 (1 + kb1V1) + ka1V1 (1 + ka2V2)(1 + ka1V1) (1 + kb1V1) (1 + ka2V2) (1 + kb2V2)subject to V 0:51 + V 0:52 � 410�6 � V1; V2 � 16Note that unlike methods based on the bilinearization of the original problem [42, 43]the proposed approach can readily handle ratios of polynomial expressions and thustake advantage of the reduction of the total number of variables from six to onlytwo. After transforming the fractional objective into a signomial form it takes onlyabout 282 iterations and 17 seconds of CPU to locate the global optimum solution24



(V �1 = 15:992 � 16; V �2 = 10�6 � 0). This corresponds to over an order of magni-tude reduction in the computational requirements over those reported in [42], (7950iterations and 7950 seconds on an Apollo DN10000). This is attributed to the factthat not only no additional variables are introduced but also elimination of existingvariables is possible. Consequently, the obtained lower bounds are much tighter andthe branch and bound procedure is performed on a smaller set of variables.Recently, Ryoo and Sahinidis [43] solved globally the same problem by convexlower bounding the bilinear terms for a di�erent set of reaction constants. A numberof variations on the main algorithm were considered and the best one yielded a CPUof 23 seconds on a SPARC 2. ka1 = 9:755988 10�2 s�1;kb1 = 3:919080 10�2 s�1;ka2 = 9:658428 10�2 s�1;kb2 = 3:527172 10�2 s�1:The approach proposed here, converged to the global optimum (V �1 = 3:037; V �2 =5:096) after 299 iterations and about 20 seconds of CPU time. This is competitivewith the CPU requirements in [43].Computational results on a number of additional examples corresponding to op-timal reactor design, heat exchanger design as well as standard test examples areshown in Table 4.4.4 Robust Stability Analysis of Nonlinear SystemsRobust stability analysis of nonlinear systems involves the identi�cation of the largestpossible region in the uncertain model parameter space for which the controller man-ages to attenuate any disturbances in the system. The stability of a feedback structureis determined by the roots of the closed loop characteristic equation:det (I + P (s;q)C(s;q)) = 0where q is the vector of the uncertain model parameters, and P (s); C(s) the transferfunctions of the plant and controller respectively. After expanding the determinantwe have: P (s;q) = an(q)sn + an�1(q)sn�1 + � � �+ a1(q)s+ a0(q) = 0where the coe�cients ai(q); i = 0; : : : ; n are typically multivariable polynomial func-tions. The \zero exclusion condition" (ZEC) implies that a system with characteristicequation P (q; s) = 0 is stable only if it does not have any roots on the imaginary axisfor any realization of the q's in the uncertain model parameter space Q.0 =2 P (j!;q); 8 q 2 Q; and 8 ! 2 [0;1]25



A stability margin km can then be de�ned as follows:km(j!) = inf fk : P (j!; q(k)) = 0; 8 q 2 QgRobust stability for this model is then guaranteed if and only if:km � 1Geometrically, km expands the initial uncertain parameter region Q as much as pos-sible without loosing stability (See Figure 3). Note that, typically real parameteruncertainty is expressed as bounds on the real parameters of the model.Checking the stability of a particular system with characteristic equation P (j!;q)involves the solution of the following nonconvex optimization problem.minqi;k�0;!�0 k (S)subject to Re [P (j!;q)] = 0Im [P (j!;q)] = 0qNi ��q�i k � qi � qNi +�q+i k; i = 1; : : : ; nwhere qN is a stable nominal point for the uncertain parameters and �q+;�q�are estimated bounds. Note that it is important to be able to always locate theglobal minimum of (S), otherwise the stability margin might be overestimated. Thisoverestimation can sometimes lead to the erroneous conclusion that a system is stablewhen it is not. Because for most problems without time delays ai(q); i = 0; : : : ; nare multivariable polynomial functions, formulation (S) corresponds to a generalizedgeometric problem. In the following, a number of stability analysis examples areconsidered.4.4.1 Stability Analysis ExamplesProblem 1This example was studied in [45] and [46]. The plant has three uncertain param-eters and the characteristic equation is:P (s; q1; q2; q3) = s4+(10 + q2 + q3) s3+(q2q3 + 10q2 + 10q3) s2+(1� q2q3 + q1) s+2q1The nominal values of the parameters of the system areqN1 = 800; qN2 = 4; qN3 = 626



and the bounded perturbations�q+1 = �q�1 = 800; �q+2 = �q�2 = 2; �q+3 = �q�3 = 3After eliminating ! the zero exclusion formulation becomes:min ksubject to 10q22q33 + 10q32q23 + 200q22q23 + 100q32q3+100q2q33 + q1q2q23 + q1q22q3 + 1000q2q23+8q1q23 + 1000q22q3 + 8q1q22 + 6q1q2q3+60q1q3 + 60q1q2 � q21 � 200q1 � 0800 � 800k � q1 � 800 + 800k4 � 2k � q2 � 4 + 2k6 � 3k � q3 � 6 + 3kThe stability margin is found to be equal to km = 0:3417 which implies that thesystem is unstable. Furthermore, the �rst instability occurs at:q�1 = 1073:4q�2 = 3:318q�3 = 4:975Computational requirements were 15 iterations and 0.5 seconds of CPU time.Problem 2This example examines the l1 stability margin for the closed{loop system de-scribed in [47]. The characteristic polynomial is:P (s; q1; q2; q3) = s4 + �q31q2� s3 + �q21q22q3� s2 + �q1q32q23� s+ q33The nominal parameter values areqN1 = 1:4; qN2 = 1:5; qN3 = 0:8and the bounded perturbations�q+1 = �q�1 = 0:25; �q+2 = �q�2 = 0:20; �q+3 = �q�3 = 0:20Again after eliminating ! the zero exclusion formulation becomes:min k27



subject to q41q42 � q41 � q42q3 = 01:4� 0:25k � q1 � 1:4 + 0:25k1:5� 0:20k � q2 � 1:5 + 0:20k0:8� 0:20k � q3 � 0:8 + 0:20kThe stability margin is found to be equal to km = 1:089 implying that the system isstable. Furthermore, the closest to the nominal point unstable point is:q�1 = 1:1275q�2 = 1:2820q�3 = 1:0179Computational requirements were 26 iterations and 1.4 seconds of CPU time.Problem 3This example involves a�ne coe�cient functions and it was �st proposed by [48].The closed{loop characteristic polynomial is:P (s; q1; q2; q3) = 16s4 + (16q1 � 24) s3 + (�9:625q1 � 16q2 + 78) s2+ (19q1 + 8q2 + q3 � 44) s+ (q3 � q2 � 4q1 + 12)The nominal parameter values areqN1 = 2:25; qN2 = 1:5; qN3 = 1:5and the bounded perturbations�q+1 = �q�1 = 0:25; �q+2 = �q�2 = 0:50; �q+3 = �q�3 = 1:50In this example ! is not eliminated and therefore the formulation becomes:min ksubject to q3 + 9:625q1! + 16q2! + 16!2 + 12 � 4q1 � q2 � 78! = 016q1! + 44 � 19q1 � 8q2 � q3 � 24! = 02:25 � 0:25k � q1 � 2:25 + 0:25k1:5� 0:50k � q2 � 1:5 + 0:50k1:5� 1:50k � q3 � 1:5 + 1:50k28



The stability margin is found to be equal to km = 0:8175 which means that the systemis stable. Note that application of a local solver [38] consistently overestimated thestability margin as km = 0:8765. The critical parameter values for instability are:q�1 = 2:4544q�2 = 1:9088q�3 = 2:7263!� = 1:3510Computational requirements were 51 iterations and 5 seconds of CPU time.Problem 4This example studies the stability of the mechanical system proposed in [49]. Thecorresponding closed{loop characteristic polynomial is:P (s;q) = a4(q)s4 + a3(q)s3 + a2(q)s2 + a1(q)s1 + a0(q)where a4(q) = q23q2 (4q2 + 7q1)a3(q) = 7q4q23q2 � 64:918q23q2 + 380:067q3q2 + 3q5q2 + 3q5q1a2(q) = 3 ��9:81q3q22 � 9:81q3q1q2 � 4:312q23q2 + 264:896q3q2 + q4q5 � 9:274q5�a1(q) = 15 (�147:15q4q3q2 + 1364:67q3q2 � 27:72q5)a0(q) = 54:387q3q2The nominal parameter values areqN1 = 10:0; qN2 = 1:0; qN3 = 1:0; qN4 = 0:2; qN5 = 0:05and the parameter perturbations�q+1 = �q�1 = 1:0;�q+2 = �q�2 = 0:1;�q+3 = �q�3 = 0:1;�q+4 = �q�4 = 0:01;�q+5 = �q�5 = 0:005The zero exclusion formulation is: min ksubject to a4(q)!4 � a2(q)!2 + a0(q) = 0a3(q)!2 � a1(q) = 029



10:0 � 1:0k � q1 � 10:0 + 1:0k1:0 � 0:1k � q2 � 1:0 + 0:1k1:0 � 0:1k � q3 � 1:0 + 0:1k0:2� 0:01k � q4 � 0:2 + 0:01k0:05 � 0:005k � q5 � 0:05 + 0:005kComputational requirements were 3076 iterations and 485.75 seconds of CPU time.Problem 5This example addresses the stability of a wire guided Daimler Benz 0305 bus [48].The transfer function of the linearized system isG(s; q1; q2) = q1 (48280q1 + 388600s + 609:8q1q2s2)(16:8q21q2 + 270000 + 1077q1q2s+ q21q22s2) s3 :The transfer of the controller isC(s) = 9375 + 10938s + 2344s215625 + 1250s + 50s2 + s3 :The closed{loop characteristic polynomial isP (s; q1; q2) = 8Xi=0 ai(q1; q2)siwhere a0(q1; q2) = 453 106q21a1(q1; q2) = 528 106q21 + 3640 106q1a2(q1; q2) = 5:72 106q21q2 + 113 106q21 + 4250 106q1a3(q1; q2) = 6:93 106q21q2 + 911 106q1 + 4220 106a4(q1; q2) = 1:45 106q21q2 + 16:8 106q1q2 + 338 106a5(q1; q2) = 15:6 103q21q22 + 840q21q2 + 1:35 106q1q2 + 13:5 106a6(q1; q2) = 1:25 103q21q22 + 16:8q21q2 + 53:9 103q1q2 + 270 103a7(q1; q2) = 50q21q22 + 1080q1q2a8(q1; q2) = q21q22The nominal parameter values areqN1 = 17:5; qN2 = 20:0and the parameter perturbations�q+1 = �q�1 = 14:5; �q+2 = �q�2 = 1530



The zero exclusion formulation is: min ksubject to a8(q)!8 � a6(q)!6 + a4(q)!4 � a2(q)!2 + a0(q) = 0a7(q)!6 � a5(q)!4 + a3(q)!2 � a1(q) = 017:5 � 14:5k � q1 � 17:5 + 14:5k20:0 � 15:0k � q2 � 20:0 + 15:0kThe system was found to be stable, km > 1:0, for the given range of uncertainparameters. Computational requirements were 109 iterations and 22 seconds of CPUtime.Problem 6In this example, an analysis of the stability margin of the spark ignition engineFiat Dedra [50, 51] is carried out for a continuous range of operating conditionsinvolving seven uncertain parameters. The closed{loop characteristic polynomial ofseventh degree is: P (s;q) = 7Xi=0 ai(q)siwhere the characteristic polynomial coe�cients ai(q); i = 0; : : : ; 7 are polynomialfunctions of qi; i = 0; : : : ; 7.a7(q) = q27a6(q) = 0:1586q1q27 + 2q2q27 + 2q5q7 + 0:1826q6q7 + 0:0552q27a5(q) = 0:0189477q1q27 + 0:11104q2q27 + 0:1826q5q6 + 0:1104q5q7 + 0:0237398q6q7+q22q27 + 0:1586q1q2q27 + 0:0872q1q4q7 + 0:0215658q1q6q7 + 0:3652q2q6q7+2q3q4q7 � 0:0848q3q6q7 + q25 + 7:61760 10�4q27 + 0:3172q1q5q7+4q2q5q7a4(q) = 0:1586q1q25 + 4:02141 10�4q1q27 + 2q2q25 + 0:00152352q2q27 + 0:0237398q5q6+0:00152352q5q7 + 5:16120 10�4q6q7 + 0:0552q22q27 + 0:01898477q1q2q27+0:0872q1q4q5 + 0:034862q1q4q7 + 0:0215658q1q5q6 + 0:00287416q1q6q7+0:0474795q2q6q7 + 2q3q4q5 + 0:1826q3q4q6 + 0:1104q3q4q7 � 0:0848q3q5q6�0:00234048q3q6q7 + 2q22q5q7 + 0:1826q22q6q7 + 0:0872q1q2q4q7 + 0:3172q1q2q5q7+0:0215658q1q2q6q7 + 0:1586q1q3q4q7 + 2q2q3q4q7 � 0:0848q2q3q6q7 + 0:0552q25+0:3652q2q5q6 + 0:0378954q1q5q7 + 0:2208q2q5q731



a3(q) = 0:0189477q1q25 + 0:1104q2q25 + 5:16120 10�4q5q6 + q22q25+7:61760 10�4q22q27 + q23q24 + 0:1586q1q2q25 + 4:02141 10�4q1q2q27+0:0872q1q3q24 + 0:034862q1q4q5 + 0:00336706q1q4q7 + 0:00287416q1q5q6+6:28987 10�5q1q6q7 + 0:00103224q2q6q7 + 0:1104q3q4q5 + 0:0237398q3q4q6+0:00152352q3q4q7 � 0:00234048q3q5q6 + 0:1826q22q5q6 + 0:1104q22q5q7+0:0237398q22q6q7 � 0:0848q23q4q6 + 0:0872q1q2q4q5 + 0:034862q1q2q4q7+0:0215658q1q2q5q6 + 0:0378954q1q2q5q7 + 0:00287416q1q2q6q7+0:1586q1q3q4q5 + 0:0215658q1q3q4q6 + 0:0189477q1q3q4q7 + 2q2q3q4q5+0:1826q2q3q4q6 + 0:1104q2q3q4q7 � 0:0848q2q3q5q6 � 0:00234048q2q3q6q7+7:61760 10�4q25 + 0:0474795q2q5q6 + 8:04282 10�4q1q5q7 + 0:00304704q2q5q7a2(q) = 4:02141 10�4q1q25 + 0:00152352q2q25 + 0:0552q22q25 + 0:0552q23q24+0:0189477q1q2q25 + 0:034862q1q3q24 + 0:00336706q1q4q5+6:82079 10�5q1q4q7 + 6:28987 10�5q1q5q6 + 0:00152352q3q4q5+5:16120 10�4q3q4q6 � 0:00234048q23q4q6 + 0:034862q1q2q4q5+0:0237398q22q5q6 + 0:00152352q22q5q7 + 5:16120 10�4q22q6q7+0:00336706q1q2q4q7 + 0:00287416q1q2q5q6 + 8:04282 10�4q1q2q5q7+6:28987 10�5q1q2q6q7 + 0:0189477q1q3q4q5 + 0:00287416q1q3q4q6+4:02141 10�4q1q3q4q7 + 0:1104q2q3q4q5 + 0:0237398q2q3q4q6+0:00152352q2q3q4q7 � 0:00234048q2q3q5q6 + 0:00103224q2q5q6a1(q) = 7:61760 10�4q22q25 + 7:61760 10�4q23q24 + 4:02141 10�4q1q2q25+0:00336706q1q3q24 + 6:82079 10�5q1q4q5 + 5:16120 10�4q22q5q6+0:00336706q1q2q4q5 + 6:82079 10�5q1q2q4q7 + 6:28987 10�5q1q2q5q6+4:02141 10�4q1q3q4q5 + 6:28987 10�5q1q3q4q6 + 0:00152352q2q3q4q5+5:16120 10�4q2q3q4q6a0(q) = 6:82079 10�5q1q3q24 + 6:82079 10�5q1q2q4q5The nominal parameter values and perturbations areqN1 = 3:4329; �q+1 = 0; �q�1 = 1:2721qN2 = 0:1627; �q+2 = 0; �q�2 = 0:06qN3 = 0:1139; �q+3 = 0; �q�3 = 0:0782qN4 = 0:2539; �q+4 = 0:3068; �q�4 = 0qN5 = 0:0208; �q+5 = 0; �q�5 = 0:0108qN6 = 2:0247; �q+6 = 2:4715; �q�6 = 0qN7 = 1:0000; �q+7 = 9:0000; �q�7 = 032



The zero exclusion formulation yields: min ksubject to � a6(q)!6 + a4(q)!4 +�a2(q)!2 + a0(q) = 0a7(q)!6 � a5(q)!4 + a3(q)!2 � a1(q) = 03:4329 � 1:2721k � q1 � 3:43290:1627 � 0:06k � q2 � 0:16270:1139 � 0:0782k � q3 � 0:11390:2539 � q4 � 0:2539 + 0:3068k0:0208 � 0:0108k � q5 � 0:02082:0247 � q6 � 2:0247 + 2:4715k1:0000 � q7 � 1:0000 + 9:0000kThe system was found to be stable km > 1:0, throughout the entire range of theuncertain parameters. Computational requirements were 4,896 iterations and about10,000 seconds of CPU time.5 Summary and ConclusionsIn this paper a deterministic branch and bound type global optimization algorithmwas proposed for solving generalized geometric problems (signomials) (GGP). Thisclass of optimization problems has been extensively used to model a host of di�erentengineering design and robust stability problems. An exponential variable transfor-mation was employed to the initial nonconvex problem (GGP) to reduced it intoa (DC) programming problem. A convex relaxation (R) of problem (DC) is thenobtained based on the linear lower bounding of the concave parts of the objectivefunction and constraints. The proposed algorithm was shown to attain �nite �{convergence to the global minimum through the successive re�nement of a convexrelaxation of the feasible region and/or of the objective function and the subsequentsolution of a series of nonlinear convex optimization problems. A number of proce-dures aimed at improving the e�ciency of the proposed approach are also discussed.The proposed approach was applied to a number of small to medium size engineeringdesign problems and a number of test as well as real size robust stability analysis prob-lems. In all cases, convergence to the global minimum was achieved. Convergencewas particularly expedient for problems with a small number of variables participat-ing in negative monomial terms and preferably a small number of negative monomialterms. 33
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Table 1: Maximum separation as a function of interval width� = Y U � Y L �max= exp �Y L�0.00026 10�80.00275 10�60.02808 10�40.26449 10�21.75079 12 1.515725 71.280710 14752.3
Table 2: Number of Iterations as a function of UU Iterations1.1 171.5 182 195.5 2010 21100 271000 5838



Table 3: Coe�cients for alkylation examplei ci i ci i ci1 1.715 16 0.19120592 E-1 31 0.000610002 0.035 17 0.56850750 E+2 32 0.00053 4.0565 18 1.08702000 33 0.819672004 10.000 19 0.32175000 34 0.819672005 3000.0 20 0.03762000 35 24500.06 0.063 21 0.00619800 36 250.07 0.59553571 E-2 22 0.24623121 E+4 37 0.10204082 E-18 0.88392857 23 0.25125634 E+2 38 0.12244898 E-49 0.11756250 24 0.16118996 E+3 39 0.0000625010 1.10880000 25 5000.0 40 0.0000625011 0.13035330 26 0.48951000 E+6 41 0.0000762512 0.00660330 27 0.44333333 E+2 42 1.2213 0.66173269 E-3 28 0.33000000 43 1.014 0.17239878 E-1 29 0.02255600 44 1.015 0.56595559 E-2 30 0.00759500Table 4: Computational results on additional examples.Example # Var. # Neg. Mon. Solution Iter. CPUHeat exchanger design [44] 8 5 7049.24 1600 100Optimal reactor design [41] 8 2 3.9511 71 6.8Colville's test problem [20] 5 4 1.1436 30 2.0Problem 10 of [20] 3 2 -83.254 50 17Problem 11 of [20] 4 1 -5.7398 7 0.4Problem 12 of [20] 8 2 -6.0482 82 12Problem 14 of [20] 10 2 1.1436 290 22Problem 17 of [20] 11 5 0.1406 2950 42739
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Figure 1: Initial bounds and feasible region, convex relaxation and improved bounds40
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