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Abstract

A deterministic global optimization algorithm is proposed for locating the
global minimum of generalized geometric (signomial) problems (GGP). By
utilizing an exponential variable transformation the initial nonconvex problem
(GGP) is reduced to a (DC) programming problem where both the constraints
and the objective are decomposed into the difference of two convex functions. A
convex relaxation of problem (DC) is then obtained based on the linear lower
bounding of the concave parts of the objective function and constraints inside
some box region. The proposed branch and bound type algorithm attains finite
e—convergence to the global minimum through the successive refinement of a
convex relaxation of the feasible region and/or of the objective function and
the subsequent solution of a series of nonlinear convex optimization problems.
The efficiency of the proposed approach is enhanced by eliminating variables
through monotonicity analysis, by maintaining tightly bound variables through
rescaling, by further improving the supplied variable bounds through convex
minimization, and finally by transforming each inequality constraint so as the
concave part lower bounding is as tight as possible. The proposed approach is
illustrated with a large number of test examples and robust stability analysis
problems.

Keywords: global optimization, generalized geometric programming, signo-
mials, robust stability analysis.

1 Introduction

Generalized geometric or signomial programming (GGP) problems are characterized
by an objective function and constraints which are the difference of two posynomials.
A posynomial GG(x) is simply the sum of a number of posynomial terms or monomials
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ge(x), k = 1,..., K multiplied by some positive real constants ¢, k = 1,..., K.
FEach monomial gx(x) is in turn the product of a number of positive variables each of
them raised to some real power,

di g _dog d -
ge(x) = ay et k=100 K
where dy j,dy g, ..., dyi € R and are not necessarily integers. The term geometric

programming was adopted because of the key role that the well known arithmetic—
geometric inequality played in the initial developments. Generalized geometric prob-
lems were first introduced and studied by Passy and Wilde [1] and Blau and Wilde
[2] when existing (posynomial) geometric programming (GP) formulations failed to
account for the presence of negatively signed monomials in models for important
engineering applications. These applications are extensively reviewed in [3] and [4].
Chemical engineering applications include heat exchanger network design [5], chemical
reactor design [2, 6], optimal condenser design [7], oxygen production [8], membrane
separation process design [27], optimal design of cooling towers [4], chemical equi-
librium problems [10], optimal control [11], batch plant modeling [12, 13], optimal
location of hydrogen supply centers [14] and many more.

By grouping together monomials with identical sign, the generalized geometric
(GGP) problem can be formulated as the following nonlinear optimization problem:

mtin Go(t) = G
Gi(t) = GT(t) — G5 (t) <0, j=1,....M (GGP)

subject to

N
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=1
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Gi(t) = > e[ 67, j=0,....M
=1

ke KJ_

where t = (#1,...,%x5) is the positive variable vector; G;", G;,7=0,...,M are pos-
itive posynomial functions in t; ;5 are arbitrary real constant exponents; and ¢;; are
positive coefficients. Also, sets K;’, K} count how many positively/negatively signed
monomials form posynomials G;", G5 respectively. In general, formulation (GGP)
corresponds to a nonlinear optimization problem with nonconvex objective function
and/or constraint set. Note that if we set K = 0 for all j = 0,..., M then the
mathematical model for (GGP) reduces to the (posynomial) geometric programming
(GP) formulation which laid the foundation for the theory of generalized geometric
(GGP) problems.
Unlike (posynomial) (GP) problems, (GGP) problems remain nonconvex in both

their primal and dual representation and no known transformation can convexify



them. They may involve multiple local minima and/or nonconvex feasible regions and
therefore are much more difficult problems to solve. Local optimization approaches
for solving GGP problems include bounding procedures based on posynomial conden-
sation [15, 16, 18, 40, 11]; iterative solution of KKT conditions [6, 19, 20]; and adap-
tations of general purpose nonlinear programming methods [21, 3, 22, 23, 24, 25, 26].
A computational comparison of available codes for signomial programming is given
in [27, 20]. While local optimization methods for solving GGP problems are ubiq-
uitous, application of specialized global optimization algorithms on GGP problems
is scarce. Existing global optimization algorithms such as GOP [28, 29, 30, 31] and
aBB [32, 33, 34, 35] are not currently designed so as to handle efficiently the special
structure of signomial terms. Falk [36] proposed such a global optimization algorithm
based on the exponential variable transformation of (GGP) and the convex relax-
ation and branch and bounding on the space of exponents of negative monomials
(j=1,...,M and k € K; ). In this paper, (i) an alternative partitioning in the typi-
cally smaller space of variables ¢ = 1,..., N is investigated; (ii) a number of features
aimed at improving the efficiency of the branch and bound procedure are discussed;
(iii) the convergence properties of the proposed approach are analyzed; (iv) and a
number of example problems in the areas of engineering design and stability analysis
are considered.

2 Analysis

2.1 Difference of two Convex Functions Transformation

The objective function and constraints in the original formulation GGP are in general
nonconvex functions. Based on an eigenvalue analysis, it is quite straightforward to
show that the Hessian matrices of these nonlinear functions may involve eigenvalues
of either sign implying that in general they are neither convex nor concave. However,
by applying the transformation [15],

t; = expz, t=1,...,N

to the original formulation (GGP) we obtain the following programming problem

(DC).
min  Golz) = Gi(a) — Gy (a)
subject to  Gj(z) = G;I_(Z) - Gi(z) <0, j=1,....M (DC)
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N
Gilm) = % cjkexp{z - } j=0..M
=1

ke KJ_

Because the the exponentiation of a linear expression is convex, both the objective
function and constraints of formulation (DC) are the difference of two convex func-
tions. Also, since z&' = log (#) it is necessary that the lower bounds & of all #; must
be strictly positive for such a reformulation to exist. This problem can be overcome
by appropriately scaling all problematic original variables ¢; so as

t; =1 —I—maX{O,—tf + 6}, e > 0.

Note that if G (z) = 0 for every j = 0,..., M then problem (DC) becomes a
convex programming problem.

2.2 Lower Bounding

A lower bound on the solution of problem (DC) can be obtained by solving a convex
relaxation of (DC). Such a convex relaxation can be realized by underestimating
every concave function, —G75 (z) with a linear function — L7 (z) for every j = 0,..., M.
This linear function is constructed by underestimating every implicitly separable term

N
— exp{ ok 7 ¢ with a linear function. This defines the following relaxed convex
=1

programming problem (R) whose solution provides a lower bound on the solution of

(DC).

min  Gg™(z) = Gi(z) — Ly (z)

subject to  G5"(z) = Gf(z) — Li(z) <0, j=1,...

I
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where G;I_(Z) = Z cjkexp{z QGik 22}, j=0,....M
=1

keK;f
N
L]_(Z) = Z Cik {A]k + Bjk (Z ozijkzi) } , ] = ()7 . 7]\47 k c A’j—
kEI\"J_ =1
and A, = Vi exp (Vi) — Viiexp (Vi) B, = P (YY) —exp (V)
] wevgE ik
N N
Y]% = Z min (OéiijZL, OziijZU)7 Y]g = Z max (OéiijZL, Oéz’ijZU)
=1 =1



Note that the linear underestimator of —G7, —L7(z), is composed by the sum of
a number of linear functions, each one of which is a lower bound on an implicitly
univariate function of the form —exp (Y'). Clearly, the smaller the difference between
the original functions G (z) and the linearizations L} (z) the closer the solution of
(R) will be to the solution of (DC). The quality of this lower bounding can be
analyzed by examining the tightness of underestimation of every concave term of the
form —exp (Y) with a linear function inside some interval [Y2, YV]. Let A(Y) be
the separation between the concave function —exp () and its linear underestimator
inside the interval [Y2, YV]. A(Y) is concave in Y and it reaches its single maximum

at
N (exp () - ex;(n@)
Vi =V}

with a value

Ajur = €xp (YL) (1 —Z+ Zlog(2))

exp (6) — 1
5 Y
Note that as the interval width § = YV — Y goes to zero, Z approaches one

§ = YV vl

where 7/ =

and therefore the maximum separation goes to zero as well, 6 — 0, 7 —
1, and A, — 0. The rate at which this maximum separation goes to zero can
be determined by the Taylor expansion of A,,.,(6) at 6 = 0.

Apor _ 88 1160 56 4180 5T L O
exp(YL) — 8 16 ' 576 ' 1152 ' 51840 @ 41472

By considering only the first leading term of the positive series expansion we deduce
that the rate at which A,,,, approaches zero as 6 goes to zero is A, = (’)(52). On
the other hand, as § goes to infinity, A, goes to infinity as A, = O(exp (9)).
The scaled maximum separation A,/ exp (YL) for different values of 6 is shown in
Table 1. Note that for small values of 6 < ~ 0.5 the maximum separation A,,,, goes
as O(6?%) following the theoretically derived predictions. Therefore, if for example a
maximum separation of 107* is required an interval width of just 1072 suffices. On the
other hand, for larger values of 6 > &~ 2 the maximum separation grows exponentially
with 6 rendering this underestimating scheme inefficient.

2.3 Variable Scaling

To maintain a tight convex underestimation of the concave terms it is important to
keep the ranges of the linear terms participating as narrow as possible. To this end,
a variable rescaling procedure is proposed on the original formulation (GGP). This
variable scaling can be accomplished if all o ’s are integrands or rational numbers
that can be reduced into integrands. Note that, by preserving all constants in the



transformed objective function and constraints the same convergence and feasibility
tolerances can be maintained. The proposed linear rescaling is the following
U _ 4L I
b e— 1 (4 ) =1,
tU,new . tL,new ( ) ) )

K3 K3

Lmew 4Umew g re selected so that log (£7"7) —log (17"°) is small. The effect of

7 ) “e 7 7

N

Y

where ¢
this scaling on the maximum separation can be realized by considering the following
simple example:

min —t
subject to 0 < tF=exp(Y") < t < exp(YY)=4Y

It was shown earlier that the maximum separation between the transformed concave
objective function and the linear underestimation is

exp (6) — 1 N exp (6) — 1
) )

log

A = exp (Y1) |1 - exp((S)—l]‘

o

The single variable ¢ of the problem can be scaled as follows:
v —th
(tnew . tL,new) )

L
be— 1"+ tU,new _ tL,new

Without loss of generality we select t1"*% = exp (Y1) = 1 which means that
YLmew — 0 and therefore YVme¥ = §7¢%  The original minimization problem now
becomes,

exp (YY) — exp (V1)
exp (6mew) — 1
subject to 1 < ¢ < exp(6™7).

exp (V) +

min —

)

The maximum separation after rescaling is now

exp (6) — 1 ll _exp (6m) —1 N exp (6"") — 1 exp (6"") — 1]
1 :

Anew YL 1
exp (V) T o8

maxr

5new 5new 5new

The ratio of the maximum separation for the scaled example over the maximum
separation for the original one is therefore,

exp (§"°%)—1

R(s, gy = Smos _ T~ e T geew log
) Az ﬁ_%_l_%logmgﬁ

It must be emphasized, however, that the proposed variable scaling does not affect the
scaling of the constraints.  This implies that the same feasibility tolerance ¢; can
still be utilized before and after the variable scaling. The effect of this rescaling pro-
cedure on the global optimization algorithm is illustrated in the motivating example
of subsection 4.1.



2.4 Transformation of Inequalities

The feasible region of the original problem (GGP) is defined by the fraction of the
intersection of the nonlinear inequality constraints

Gi(t) = GF(t) -G (t) <0, j=1,....M

J

which lies within the hyperectangle defined by the box constraints

0 <th<t; <tV i=1,...,N.
The convex relaxation (R) of (GGP) approximates the original feasible region with
a relaxation of its convex hull. The closer this relaxation is to its convex hull the
tighter the lower bounding of the objective function will be. This motivates the need
to “preprocess” the original nonlinear constraints so that the employed relaxation
will be as tight as possible. This can be accomplished by taking advantage of the
mathematical structure of each original constraint GG;(t) and the fact that all variables
t are strictly positive. The positivity of t implies that for every nonlinear inequality
constraint (7;(t) there exists a family of nonlinear constraints G;(t) whose elements
are completely interchangeable with Gi;(t) and are derived by multiplying the original

d2ﬂ...t§lVNJ i, ¢t =1,....N, gy =1,..., M are arbitrarily

constraint by tlljt where d;;

selected real parameters.

60 = {04 = 6o (1) 4  mim1v)

Note that even though the values of the elements of G; might not be identical for
every t, because t;l“,. th] > 0, they always maintain the same sign as G;(t).

This implies that every element of G,

N Ak tdig al Ak tdig
Gi(t,dy) = > e ]l tz( ) _ > o]l tz( )

kEIX’j =1 ke[{; =1

is an equivalent representation of the original constraint G;(t) and therefore it can
replace it in formulation (GGP). Clearly, unlike the variable scaling presented in
the previous subsection, this multiplicative transformation affects the scaling of the
problem. Therefore, appropriate changes have to be made on the feasibility as well
as convergence tolerances to account for the changed scaling of the objective function
and constraints. After applying the exponential transformation on the constraint
G(z,t;) we obtain,

N N
Gl = ) cipexp [Z (cvijr + di) ] Y cirexp [Z (viji + dij) Zz'],

kEB =1 kEIX =1



which can replace the constraint ;(z) in problem (DC). Even though all constraints
Gj(z,d;) € G; are interchangeable, this is not the case for their convex relaxations. By
linearizing the concave terms G5 (z,d;), different elements of G; give rise to distinctly
different convex relaxed constraints G5°""(z,d;) whose domain of feasibility depends
on the selection of d;.

N N
G5 (z,d;) = > cipexp [Z (i + dij) Zz] - > {Ajk + Bk [Z (s + dij) Zz] }

kEIX”j i=1 ke]{]‘ i=1

Because the tightest lower bounding of (¢;(z;) is sought, for a given z the best selection
of d; is the one for which G;(z,d;) is maximized,

di(z) = arg max Gj(z,d;).
J

Note that it is not possible to consider the convex relaxations of all elements of G;
because their number is infinite. Unfortunately, the maximization problem not only
is parametric in z but also for a given z is as difficult to solve as the original prob-
lem (DC). Therefore, instead the following two criteria will be utilized to guide the
selection of a good value for d; for every constraint j. The first criterion is to min-
imize the number of variables z; participating in every concave function G5 (z,d;).
This requirement reflects the primary concern of any deterministic global optimiza-
tion algorithm which is to keep the number of variables where branching is required
at a minimum. The second criterion is associated with the observation that for a
given constraint j, a very important consideration when selecting d; is to maintain
Y][,i — Y]% as small as possible for every & € K. Although the rescaling of variables
aims at this, it is sometimes necessary to complement this rescaling with an appro-
priate selection of d;. Because the primary concern is not to allow any Y][,g — Y]%
to become larger than &~ 2 — 5 rather than minimizing a weighted sum of intervals
ng — Y]%, it appears to be more meaningful to minimize the maximum ng — Y]%
over all k& € K (worst case analysis). Furthermore, in practice, more than one
convex relaxed function G**(z,d;) per constraint j can be incorporated in formu-
lation (R) to tighter approximate the convex hull of constraint 7;(z). Although no
rigorous way is provided for selecting the optimum selection of the set of d;i’s per
constraint, computational experience reveals that by utilizing the proposed criteria
convex underestimation of every constraint j is improved.

2.5 Reduction of Rectangular Partitions

A discussed in an earlier subsection, the convex relaxation (R) of the problem (DC)
is aimed at deriving a lower bound to the solution of (DC). This lower bound is
calculated by solving the convex programming problem (R) inside some hyperectangle
defined by:

do< <V =1

K3 [
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Clearly, the smaller this hyperectangle, the tighter the convex lower bounding of
all G(z), j = 0,..., M and therefore the closer the solution of (R) will be to the
solution of (DC). Deterministic global optimization algorithms improve the quality of
the obtained lower bounds by partitioning the initial hyperectangle into smaller ones,
and repeatedly solving (R) inside each one of them. A number of branching rules
are utilized which make the subdivision process as efficient as possible. However,
the employed branch and bound procedure is exponential in nature and therefore
potentially very computationally consuming. This means that one would desire to
fathom all or part of a hyperectangle region without having to resort to the CPU
demanding branch and bound whenever possible.

To meet this objective, one can attempt to locate the minimum/maximum value
for every variable z; for which the nonlinear constraint set of (DC) remains feasible
and also the value of the objective function is at least as good as the best current
upper bound U.

min/max  zy, ¢ =1,...,N

subject to  Gj(z) <0, y=1,...,.M
Go(z) < U
ZZL < z < ZZU, r=1,...,N.

However, this is a nonconvex problem of equivalent difficulty with the initial problem
(DC). Instead, one can solve a relaxation of this problem by replacing all nonlinear
constraints and objective function with their respective convex relaxations.

min  zy, ¢ =1,...,N (BR)
subject to  G"(z) < 0, j=1,...,.M
Gy (z) < U
A< < ZZU, r=1,...,N.

K3

The solution of these convex bound reducing (BR) problems provide valid lower /upper
bounds on all z; so that all relaxed nonlinear constraints are feasible and the relaxed
objective function is less than some upper bound U. Note that if (BR) is infeasible
this implies the intersection of the feasible region of problem (DC) with the domain
where the objective function is at least as good as some prespecified bound U is the
empty set. In this case, the corresponding rectangular partition can be eliminated
because the global solution is guaranteed not to be situated inside it. As shown in
Figure 1 by minimizing/maximizing all z;, the feasible region of (R) is inscribed inside
the smallest possible rectangle defining a new refined set of bounds for z. Because
the reduction of the set of box constraints results in tighter underestimating functions
G (z) and GG (z) the minimization/maximization of all z; can be repeated by dy-
namically updating the bounds 2zl 2% for more than one iteration until no further

significant improvement on the bounds is achieved. This defines the following bound
improving procedure:



STEP 0. Set ¢/ «— 1

STEP 1. Solve

min 2t
subject to  G"(z) < 0, j=1,...,.M (BRmin)
G5 (o) <
ZZL < z < ZZU, r=1,...,N
STEP 2. Set
ZiL/,old — ok
STEP 3. Solve
max 2t
subject to  GY"(z) < 0, y=1,...,.M (BRmax)
Gy (a) <
ZZL < z < ZZU, r=1,...,N.
STEP 4. Set
U,old
2 Zi
STEP 5. If // < N then ¢/ «+— ¢ + 1. Go to STEP 1.
N
I1(=F—=7)
STEP 6. If ——=———— > r then go to STEP 0. Otherwise END

( L,old U,ozd)
|| e .

2 2

i=1

Parameter r < 1 typically r & 0.6 — 0.9, is simply the minimum hyperectangle vol-
ume reduction per iteration which is required to further continue the bound improving
procedure. It must be noted, however, that with this procedure 2N convex program-
ming problems must be solved per iteration. In this work this procedure is applied
only in the initial partition. For intermediate rectangular partitions a relaxation of
this procedure is utilized for detecting whether the current partition element can be
fathomed. This alternative check is based on first deriving a lower bound for the ob-
jective function and every constraint of formulation (R) using monotonicity analysis
principles. If the lower bound of the objective function is greater than U or if the
lower bound of any of the constraints is greater than zero then the corresponding

10



partition element can be eliminated since it is guaranteed either not to include the
global minimum solution or to be infeasible. Note that the form of the objective and
constraints in formulation (R) is

N N
Gi™(z) = ) cjrexp (Zij) — > cik [Ajk + By (Zyjk)] ; J=0,..., M
=1

-+ = =1
ke]&] ke]&]

Note that because the function exp(x) is monotonically increasing, a lower bound
G;OM’L of G (z) can be obtained by fixing all Y}, k € K]T" at their lower bounds
Yj%, and all Yy, k € K at their respective upper bounds ng since B, > 0.

N N
G;O””’L = Z Cjk eXp (Z Y]];;) — Z Cik [Ajk + Bik (Z YJZ)] , J=0,...,M
=1

keKt keK T i=1
The corresponding partition element can be eliminated if
GSOM’L > U, or 45=1,..., M such that G;OM’L > 0.

These feasibility checks can be applied to every subdivision element before the convex
minimization of problem (R) is performed and the associated computational effort is
negligible. Note that the relaxation of the bounding procedure is a computationally
efficient check for detecting infeasibility of the constraint set especially at earlier stages
of the algorithm. Computational experience has shown that this results in significant
reduction in the number of required convex minimizations (10% — 50%).

2.6 Monotonicity Analysis

Monotonicity analysis principles can be utilized to improve the convex relaxation of
(DC) by dictating that some nonlinear inequality constraints must be satisfied as
equality constraints at the global minimum solution.

leiﬂ Go(Z)
subject to  Gj(z) < 0, j=1,....M (DC)

Hansen et al. [37] pointed out that if there exists a global minimum solution for
(DC) and the objective function Gy(z) is monotonically increasing(decreasing) in
some z;, then at least one constraint which is monotonically decreasing(increasing)
with respect to z; will be active at the global minimum solution. Note also that if z;
is not present in the objective function then at least one constraint involving z; will
be active at the global minimum solution. The conclusions from the monotonicity
analysis can be more conveniently expressed by associating a boolean variable «; for
every constraint 7 = 1,..., M. If the constraint j is active at the global minimum

11



solution then a; = 1, otherwise a; = 0. Let also J, J*, J? denote the sets of indices of
constraints j involving variables z; which are monotonically decreasing, monotonically
increasing, and not monotonous or with unknown monotonicity in z; respectively. The
monotonicity principles can then be expressed mathematically as follows:

Z a; > 1, if Go(z) is monotonically decreasing in z;
jeJfFug?

Z a; > 1, if Go(z) is monotonically increasing in z;

JEJTUJ?
> a; > 1or > a; > 1, if Go(z)isindependent of z;
j€Jtug? jeIug?

Clearly, the smaller the sets J?, the less the number of a;’s that will participate in
inequality relations, and therefore it will be more likely to have some a;’s fixed at one.
Note that if a; = 1, then the corresponding constraint j is satisfied as an equality.
This can lead to elimination of a variable or addition of an extra constraint.

A constraint Gi;(z) of formulation (DC),
Z Cik €XP (Z oz”kzz) > cjrexp (Z oz”kzz)
kEIx keK

is guaranteed to be monotonic in z; if

(0791 Z 0, \V/ k € [X’]-I_ and (0791
or yjg < 0, \V/k € [X’]-I_ and (0791

0,VkekK;

<
>0, Vkek;

However, by appropriately replacing the initial constraint (;(z) with one from the
family G;

Gi(z,d;) = > cipexp li (cvijr + dij) ] Y Cjrexp [Z (cvij +dzj)zz’]7

keRF =1 kEKT =1
one can come up with less restrictive conditions for monotonicity. More specifically,

Gj(z,dj) is monotonically increasing in z; if, min «;;; > max o
i, keKH keK T

and d;; € |max g, min o
| RERT ]‘"

Gj(z,dj) is monotonically decreasmg in z; if, ]fn}ax aijr < kmjig ik
e * eEx
J

and d;; € max oj, min ok
ek} (-

These monotonicity analysis principles can be utilized to eliminate variables or further
constraint formulation (DC). In the next section, a branch and bound type global
optimization algorithm is introduced for solving problem (DC).

12



3 Global Optimization

3.1 Description

A global optimization algorithm is proposed for locating the global minimum solution
of (DC) based on the refinement of converging lower and upper bounds through the
solution of convex programming problems (R). Clearly the value of the objective
function Gy(z) at any feasible point z provides an upper bound on the global minimum
G. Lower bounds on Gf within some box constraints are derived by solving the
convex lower bounding optimization problem (R).

Since (R) is convex, its single global minimum within some box constraints
can be routinely found with a commercially available optimization algorithm (e.g.
MINOS 5.4 [38]) and will always underestimate the global minimum of (DC) within
the same box constraints. Assuming that this global minimum solution of (R) is a
feasible point for (DC), an upper bound on G can then be obtained by simply cal-
culating Go(z) at the global minimum point of (R). Based on the analysis performed
in subsection 2.2, the gap between the upper bound and the lower bound on G} will
be at most,

exp (bor) —1  exp(bor) — 1 exp (bor) — 1
Ao ez = Z Cop €XP (YOI;;) [1 _ D (8or) 4 p (éox) log p (bok) ]
keKy dok bok dok
0
where bor = Y5 —YE
N N
ot 1= Somin (st ¥ = S mas ot o)
i=1 =1

Note that Ag 45 goes to zero as all éi, £ € K approach zero. Furthermore, because

lim bop = 0, Y ke K
51‘225]—2% —0t, Vi=1,...,.N

we have

lim AO,max = 0.
§;=20 2L —0%,vi=1,. N

This implies that as the current box constraints [z',z"] collapse into a point the
maximum separation Ag nq between the original objective function of (DC) and its
convex relaxation in (R) becomes zero. Because Ag 4, is a continuous function of
oo > 0, k € Kj and thus of 6; >0, e =1,..., N, for every positive number €. there
will always be a positive number ¢* such that if all dgr < 6* we have Ag 0 < €.
This result reflects the fact that by reducing the bounds [z”, z"] the objective function
Glo(z) of (DC) can become arbitrarily close to its convex relaxation G57"(z) of (R).

By following the same argument the maximum separations A; ., between con-

straints (;(z) and the corresponding convex relaxations 57" (z)

exp (6j5) — 1 N exp (6j5) — 1 log exp (6j5) — 1
6 6 6

Njmae = 3 crexp(Y) [1-

ke KJ—
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_ U L
where ok = Y =Y

N N
L . L U U L U
and Y]k = me (ozijkzi L QU ), Y]k = Zmax (ozijkzi L QU )
go to zero as all 6, V& € K or alternatively ¢; = Mk S0t Vi=1,...,N

approach zero. Furthermore, A; .., are continuous functions of ¢;, k € K and also
of 6;, v =1,..., N. This implies that for every positive number ¢; there will always
be a positive number 6* such that by selecting 6, < 6* we have

max Aj 4 < €5,

JEKT
The interpretation of this result is that by reducing the bounds [z',z"] on z, dif-
ferences between the feasible region of the original problem (DC) and its convex
relaxation (R) become arbitrarily small. Therefore, any feasible point z° of problem
(R) (even the global minimum solution) becomes at least e;—feasible for problem
(DC) by sufficiently tightening the bounds on z around this point.

After establishing upper and lower bounds on the global minimum inside some
rectangular domain, the next step is to tighten them. This is accomplished by re-
stricting the rectangular size. Tighter box constraints can be realized by partitioning
the rectangle that the initial box constraints define into a number of smaller rectan-
gles. The minimum number of variables along which subdivision is required is equal
to the number of linearly independent Y} s, 7 = 0,..., M, k € K;. Typically this
number is equal to the number of z; participating in any of the terms G (z). This
defines the following set of variables where branching is required.

Z = {z  Jowp # 0, j=0,.... M, andk € K}

In the great majority of cases the number of z; € Z is much smaller than the total
number of terms Yy, k € K in formulation (DC). Therefore in this work subdivision
is performed on the set of variables z; belonging in Z.

One way of partitioning is to successively divide the current rectangle in two
subrectangles by halving on the middle point of the longest side of the initial rect-
angle (bisection). Presumably, at each iteration the lower bound of G is simply the
minimum over all the minima of problem (R) in every subrectangle composing the
initial rectangle. Therefore, a straightforward (bound improving) way of tightening
the lower bound is to halve at each iteration, only the subrectangle responsible for the
infimum of the minima of (R) over all subrectangles, according to the rules discussed
earlier. This procedure generates a nondecreasing sequence for the lower bound of G7,.
Furthermore, we construct a nonincreasing sequence for the upper bound by selecting
it to be the infenum over all the previously recorded upper bounds. Clearly, if the
single minimum of (R) in any subrectangle is greater than the current upper bound
we can safely ignore this subrectangle because the global minimum of Go(z) cannot
be situated inside it (fathoming step).
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The next question is how small these subrectangles must become before the upper
and lower bounds of Gy(z) are within e, and also the feasible region of (DC) is €;—
close to the feasible region of (R). Because €. and ¢; are very small numbers the
maximum separations A; ..., will be proportional to the square of the diagonal ¢ of
the current subrectangle (&~ O(é?)). This means that the required for convergence
value of 6 is proportional to the square root of e.. Therefore, if for example €., ¢; are
set to be 0.0001, it suffices for 6 to be proportional to 0.01.

The basic steps of the proposed global optimization algorithm are summarized in
the following section.

3.2 Steps of the Global Optimization Algorithm

STEP 1 - Initialization

A convergence tolerance ¢, and a feasibility tolerance ¢; are selected and the
iteration counter Iter is set to one. Appropriate global bounds zFBP VBD
z;’s are calculated based on the bound improving procedure discussed in subsection 2.5
and local bounds z"7" 221" for the first iteration are set to be equal to the global
ones. The initial constraints Gj(z), j = 1,..., M are replaced by an appropriately
selected (based on the analysis of subsection 2.3) set of constraints (7j(z,d;) € G. In
this description of the algorithm the parameters d; are omitted from the constraints
for the sake of simplicity. Finally, lower and upper bounds GEPP, GYBD on the global

.. R .o . Tter -
minimum G} are initialized and an initial current point z;""*" is selected.

on the

STEP 2 - Feasibility Check and Update of Upper Bound G§BP

If the maximum over all constraints G; calculated at the current point Zf’lm is

less than ey,

]:f{laXM Gj(zc,fter) S €

then the constraint set is e;—feasible at the current point. If so, the objective function
GYBP is updated as

c,Iter

(g 1s calculated at the current point z and the upper bound

follows,
GgBD — min (GgBD7GO(Zc,IteT))

STEP 3 - Partitioning of Current Rectangle

Lyjter U, Iter
: z

3 » <7

The current rectangle [Z ] , t=1,..., N is partitioned into the follow-

ing two rectangles (r = 1,2):
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[ _L,Iter U, Iter ] [ _L,Iter U,Tter 7
z z 21 21
L,Iter U,Iter L,Iter U,Iter
L,Iter ZlIter + ZlIter R ZlIter + ZlIter U7Ite7,
[Iter 2 2 [Iter
L,Iter U, Iter L,Iter U, Iter
~N ~N ~N ~N

where [1*¢" corresponds to the variable with the longest side in the initial rectangle,

U, Iter L,Iter

Tter )
) = argmax (ZZ -z )

STEP 4 - Feasibility Checks of Convexr Relazation (R)
Update in both subrectangle (r = 1,2) the parameters Y]%, ng, Aji, Bjj as follows:

N N
Y]% = Zmin (ozijsz,ozijsz]), Y][,j = Zmax (ozijsz,ozijsz])
=1 =1
L YHewh - Yiew () o en(VH) - e ()
ik = ik =
' Vie =Yk C Y=Yk

If there exists j = 0,..., M such that one of the lower bounds

N
COML Z Cjk €Xp (Z )— > < [AijrBjk (ZY%)], J=0,....M

keIx kEK i=1

satisfy
GconvL GgBD or G;OHU’L Z 07 for some ] - 17 .. ‘7M

then the corresponding subrectangle is eliminated (fathoming), go to STEP 6.
Otherwise, proceed with STEP 5.

STEP 5 - Solution of Convexr Problems Inside Subrectangles

Solve the following convex optimization problem (R) in both subrectangles (r =
1,2) by using any convex nonlinear solver (e.g. MINOS 5.4 [38]).

min G5 (z)
subject to G5 (z)
zZ

7zl <

<
< U

If a solution GL™" is less than the current upper bound, G5BP then it is stored along

0,s0l
with the value of the variables z at the solution point ZfsljfT
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STEP 6 - Update Iteration Counter Iter and Lower Bound GEPP
The iteration counter is increased by one,

Iter «—— Tter + 1

and the lower bound GLPP is updated to the minimum solution over the stored ones
from previous iterations. Furthermore, the selected solution is erased from the stored

set.
LBD r! ITter!
GO — 0,s0l
here GIT = min G0Y =1,2, I=1,... Iter—1
where 0,s0l - IITHIH 0,s0l» r=1,2, — Ly ey er .

STEP 7 - Update Current Point 25" and Current Bounds z"" zV1*" on g
The current point is selected to be the solution point of the previously found minimum

solution in STEP 6,

r! ITter!

c,Iter
4 7,50l

and the current rectangle becomes the subrectangle containing the previously found
solution,

L,Iter _U,Iter
< ) %5

L,Ilter _U,Iter
2 ) %

| =

r_L,Iter’
21

L,Iter!

lIter/

L,Iter!
L N

r_L,ITter’
71

L,Iter/
z
lIter/

U,Iter!
21

L,Iter/
z
lIter/

_|_

lﬂ]ter/
z
lIter/

U,Iter!
~N

lﬂ]ter/
z
lIter/

2

L,Iter’
L N

STEP 8 - Check for Convergence

U,Tter’ 7
21

U,Iter!
lIter/

U,Iter!

IF (GgBD — GOLBD) > €., then return to STEP 2
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Otherwise, e.—convergence has been reached and the global minimum solution, and
solution point are:

GS - GO(ZC,IteT”)

H
7 Zc,IteT

where [ter” = arg{Go(zc’I) = GYBP, ]zl,...,]ier}.
I

In the following section, a mathematical proof that the proposed global optimiza-
tion algorithm converges to the the global minimum is given based on the analysis of
a standard deterministic global optimization algorithm presented in [39].

3.3 Proof of Convergence to the Global Minimum

Convergence properties of a global optimization algorithm depend on:

(i) the limit behavior of the difference G?BD—GfBD, J =0,..., M for unfathomed
successively refined partitions,

(ii) the subdivision process of the current partitions, and

(iii) the employed selection process of the partition(s) that have to be further
refined.

In the employed global optimization algorithm, a lower bound Gy,
the solution of the convex minimization of (R) for every partition element (r, Iter).
Also an upper bound Gy e i obtained as the value of Gy at the single solution
of problem (R) assummg that it is an es—feasible point for (DC). The partition

r,Iter

It . .
T s obtained as

is selected for further refining

according to the bisection rule and partition elements whose lower bound Gy e s

greater than the current upper bound GYPP are fathomed. A sufficient Condltlon
for a global optimization algorithm to be convergent to the global minimum, stated
n [39], requires that the bounding operation must be consistent and the selection

element involving the minimum lower bound G

operation bound improving.

A bounding operation is called consistent if at every step any unfathomed par-
tition can be further refined, and if any infinitely decreasing sequence of successively
refined partition elements satisfies,

. It r. I ter
lim (G g — Gor ) = 0,
Iter—oo

where G P s a lower bound of G inside the (r, [ter) partition element and Géfff is
the best upper bound at iteration [ter not necessarily occurring inside the (r, [ter)

partition element. In practice, the requirement lim (G“” G”m) = 0 for

Tter—oo

any infinitely decreasing sequence of successively refined partition elements is difficult
to verify because G“” is not necessarily attained at the partition element (r, [ter).

Therefore, in view of the inequality Gy Ater G“” > Gyp 1er the following, at least
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equally strong condition, suffices to be shown:

. r,Iter r,Iter
Gl - ) -0
In subsection 3.1 we have shown that by reducing the size of the partition element
[zl zY] where we assume that (R) is feasible then (DC) is ¢;feasible and the objec-
tive function Gy(z) becomes arbitrarily close to its convex relaxation Gi§"’(z). This
means that,
lim GT,IteT _ GT,IteT — 0
6=z -zl —0t,vi=1,. N ou 0.L

;=

Therefore, it suffices to show that

lim max 6 = 0
Iter—oo %

This is equivalent with requiring that any unfathomed infinitely decreasing sequence
of successively refined partition elements is ezhaustive [39]. The employed subdivision
process is the bisection where every partition element (r, [ter) is subdivided into two
subrectangles r = 1, 2 of equal volume by halving at the midpoint of the longest side.
By scaling all sides of any partition element with the sides of the rectangle that the
initial global constraints define, the scaled sides of the initial rectangle are all equal
to one. Therefore, the condition of always subdividing along the longest side can be
satisfied by simply subdividing first along the side & = 1, then along the side k& = 2,
etc. until the last side &k = K is encountered when the subdivision starts again from
k = 1. By partitioning in this orderly manner each side of every successively refined
partition element is halved ezactly once every K subdivisions. Consequently, after A’
subdivisions the diagonal of the resulting partition elements is one half the diagonal
of the original partition element. Therefore, as the number of successive subdivisions
of a partition element goes to infinity, the diagonals of the resulting partition elements
go to zero. This implies that the employed subdivision process is exhaustive.

Consequently, for any infinitely decreasing sequence of successively refined parti-
tion elements

(63— G31) =
meaning that the employed bounding operation is consistent.

A selection operation is called bound improving it at least one partition element
where the actual lower bound is attained is selected for further partition after a finite
number of refinements. Clearly, the employed selection operation is bound improving
because the partition element where the actual lower bound is attained is selected for
further partition in the immediately following iteration.

In summary, we have shown that the bounding operation is consistent and that
the selection operation is bound tmproving, therefore according to Theorem IV.3. in
[39] the employed global optimization algorithm is convergent to the global minimum.
In the next section the proposed global optimization algorithm is applied to a number
of example problems.
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4 Computational Results

First, a prototype generalized geometric problem is addressed and the effect of rescal-
ing on the total number of required for convergence iterations is examined and shown
to follow the theoretical predictions. Next, a number of engineering design problems
are addressed, two of them in detail, and e-convergence to the global minimum is
achieved in all cases. Finally, in the last subsection a model for checking the sta-
bility of given control strategies is presented which requires the solution of (GGP)
problems and a number of stability analysis examples are considered. The proposed
deterministic global optimization algorithm has been implemented in GAMS and
computational times are reported for all examples on a HP-730 workstation. More
efficient implementations in C are expected to result in significant CPU reductions.

4.1 Motivating Example

The following motivating example, taken from [40], involves the minimization of a
single variable subject to two nonlinear constraints.

min
T1,T2
) 1 1 1 1
subject to T + F%2~ Ex% — Ex% -1 <0 (P)
1 1 3 3

These two nonlinear constraints define a nonconvex crescent—shaped feasible region
shown in Figure 2 and even though the objective function is linear there still exists
three distinct KKT points A,B and C. Therefore, local optimization approaches can
converge to either one of them at best depending on which basin of attraction the
initial point is inside.

The following linear variable scaling is then applied on both z1, x5 and its effect
is measured on the total number of iterations for convergence.

4.5 4.5

£y — 14+ —— (" =1) a9 — 14+ —— (a3 —1).

U-1 U-1

This transformation defines a one to one mapping of the original variables x, x5 onto

the new variables 7", 25 whose upper bound U is a manipulated parameter.

U—1 U—1
5 o) =14 s

7™ = 1+ (2 —1)
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I <2, x5 < U

Y

After substituting the expressions for z11, 5 into (P) we obtained the following trans-
formed problem, parametric in U:

1.
l,;zgul}xr;lzew 1 —I_ U _51 (x?ew - 1)
. 63 + 18U 27 4 54U 81
b tt new new new\2 P
subjectto o Tt T — e o —er ) (P
81 , 21 448U + 120
M ramewN2 <0
AR 20 -12 -~
81 o 81 oy 1T 456U + 8U?
s — 12 ) T s o) 23(U — 1)2
454360 . ASEB6U L

U 12t TR 1 =

1 < afvapr < U

Clearly, for any value of the new upper bound U > 1, problem (P ) has the same solu-
tion with (P). Furthermore, the performed variable scaling does not affect the scaling
of the constraints. Note that even though the scaling of the new variables a7, 27"
depends on U, the value of the objective function and constraints remains unchanged
in (Py). However, the solution of the convex relaxation (Ry) of (Py) is a function of
U. This implies that different values for U yield different number of required for con-
vergence iterations for (Py). After selecting the convergence as well as the feasibility
tolerances to be equal to €, = ¢; = 10™*, the proposed global optimization procedure
is applied and convergence to the global minimum point (27 = 1.178, 23 = 2.178) is
achieved from all starting points for different values of UU. The average number of
iterations as a function of U are summarized in Table 2. It appears that the total
number of iterations for solving (Py) is a monotonically increasing function of U.
This implies that the tighter the rescaling, the better the underestimation will be.
This is consistent with the theoretical results presented in subsection 2.2. Note that
as U approaches one, numerical stability problems offset the benefits of marginally
better underestimators.

4.2 Alkylation process design

This example involves the design of an alkylation unit [41]. The objective is to improve
the octane number of some olefin feed by reacting it with isobutane in the presence of
acid. The product of the reaction is distilled and the unreacted isopropane is recycled

21



back to the reactor. All equality constraints are eliminated and the problem has been
formulated as a signomial optimization problem.

min ¢ @y + c2T1T¢ + €373 + C4T2 + €5 — CT3T5

subject to crag + csry @ — Cog
C1o=’1?151?§1 + cn:z;l:z;gl:z;g; — 012:1?1:1:51:1;?5

013:]1;?i + 1475 — 1574 — C1676

017:1;5_1 + 018:1?5_151?6 + C199€49€5_1 - 0201’5—19‘;?&
cnr + coaaxs wy — cozaxy!

02495;1 + 02551?251?5151?;1 - 0265”23;??13;;13;;1
027:1?5_1 + 02851?5_151?7

Co9T5 — C30%7

C31T3 — C3201

03351?151?51 + 0341’51
Ca5Toxy Tyt — CagToTy
c3rs + 33wy T3y

C301T6 + C40T1 — C4173

(/AN VAN VAN V/ANR VAN VAN /AN /AN VAN VANS VANR VANS VANR VAN
e T S e G S O S e S = S = S S G S S S G Y

-1 -1
C4277 X3 + C43T] — C44%¢

1500 < =z < 2000
1 <z <120
3000 < a3 < 3500
85 < a4 < 93
90 < x5 < 95
3 < 24 < 12
145 < 2z, < 162
where ¢;, ¢ = 1,...,44 are positive parameters given in Table 3. This problem involves

seven nonlinear variables subject to 12 nonlinear and two linear inequality constraints.
Note that there exists a large number of bilinear, trilinear, and even fractional terms
in the objective function and constraints. First, the bound improving procedure yields
the following reduced variable bounds:

1660.00 < 2; < 2000.00
2354 < 2y < 120.00
3000.00 < =z3 < 3278.68
85.00 < x4 < 93.00
92.18 < a5 < 95.00
3.7 < 2 < 10.68
145.00 < 27 < 153.53
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Convergence to the global minimum point,

ry = 1698.18
r3 = 53.66
x% = 3031.30
xy =90.11
x: =95

xg = 10.50
¥ = 153.53

having an objective function value of f* = 1227.00 is reached from every initial point
in about 200 iterations requiring 30 seconds of CPU time.

4.3 CSTR Sequence Design with Capital Cost Constraints

This example was first proposed in [42] and involves the design of a sequence of two
CSTR reactors where the consecutive reaction A — B — ( takes place. The con-
centration Cy; of B in the outlet stream of the second reactor needs to be maximized
subject to an upper bound on the investment cost. First order kinetics are assumed
for both reactions and the reaction constants for the first (a) and second (b) reaction
in reactors (1) and (2) are
1

b

1
’

1
’
1

ka1 = 9.6540 1072 s~
by = 3.5272 1072 s~
kgo = 9.7515 1072 5~
kpo = 3.9191 1072 s~
The inlet concentration of A is ¢,o = 1.0/, mol/l, and zero for both B and C. If V4, V;
are the residence times for the two reactors and ¢4, ¢p1, €42, cpo are the corresponding
exit concentrations then the reactor design problem can be formulated as the following
nonconvex optimization problem:.

min  —cp

subject to (a1 — €a0) + karcaaVs = 0

(Ca2 - cal) + kaQCaQ‘/Q = 0

(b1 + a1 — Ca0) + knenVa = 0

(b — Cb1 + Caz — Ca1) + kpacr2Va = 0
‘/10.5 _I_ ‘/20.5 S 4 (2)
0 < Cal,s Chbls Ca2y Ch2 < 1 (3)
1 < W,V <100 (4)
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Assuming that the capital cost of a reactor is proportional to the square root of its
residence time, constraint (2) provides an upper bound on the total investment costs.
Also constraints (3) and (4) define some initial bounds on the variables. This problem
has been reported to involve two local minima [42].

First, by applying the bound improving procedure described in subsection 2.5 the
initial bounds are refined into the following:

0.4090 < ¢, < 09119
0.2128 < ¢ < 0.8309
0.0845 < ¢ < 0.4501
0.0571 < ¢ < 0.7099
1.0000 < V3 < 9.0000
1.0000 < V, < 9.0000

Application of the proposed global optimization procedure yields the following global
optimum solution

s, = 0.6587
¢, = 05161
¢, = 0.2869
¢, = 0.3866
Ve = 5.3666
Vy = 2.8338

from every initial point in about 400 iterations and CPU of 20 seconds with conver-
gence and feasibility tolerances of 1077,
Next, the bounds of the reactor volumes are expanded to:

107 < V4,1, < 16

and all concentration variables c¢,1, ¢42, ¢p1 and ¢y are eliminated from the initial for-
mulation for the reactor design problem. The resulting compact formulation involves
only two variables Vi, V5.

e koo Vo (1 4+ ki Vi) + ko Vi (1 + ka2Vi)
14 kay Vi) (14 ko Vi) (1 + Ea2Va) (1 + kyaVa)

min —cpy =

4
16

subject to V10'5 + V20'5

<
107 < W, 1e <
Note that unlike methods based on the bilinearization of the original problem [42, 43]
the proposed approach can readily handle ratios of polynomial expressions and thus
take advantage of the reduction of the total number of variables from six to only
two. After transforming the fractional objective into a signomial form it takes only
about 282 iterations and 17 seconds of CPU to locate the global optimum solution
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(Vi = 15.992 =~ 16,V = 107°% = 0). This corresponds to over an order of magni-
tude reduction in the computational requirements over those reported in [42], (7950
iterations and 7950 seconds on an Apollo DN10000). This is attributed to the fact
that not only no additional variables are introduced but also elimination of existing
variables is possible. Consequently, the obtained lower bounds are much tighter and
the branch and bound procedure is performed on a smaller set of variables.
Recently, Ryoo and Sahinidis [43] solved globally the same problem by convex
lower bounding the bilinear terms for a different set of reaction constants. A number
of variations on the main algorithm were considered and the best one yielded a CPU

of 23 seconds on a SPARC 2.

-1
’
-1

ka1 = 9.755988 1072 s
fopy = 3.919080 1072 s,
far = 9.658428 1072 571,
fepy = 3.527172 1072 s~L.

The approach proposed here, converged to the global optimum (V;* = 3.037,V)* =
5.096) after 299 iterations and about 20 seconds of CPU time. This is competitive
with the CPU requirements in [43].

Computational results on a number of additional examples corresponding to op-
timal reactor design, heat exchanger design as well as standard test examples are
shown in Table 4.

4.4 Robust Stability Analysis of Nonlinear Systems

Robust stability analysis of nonlinear systems involves the identification of the largest
possible region in the uncertain model parameter space for which the controller man-
ages to attenuate any disturbances in the system. The stability of a feedback structure
is determined by the roots of the closed loop characteristic equation:

det (1 + P(s,q)C(s,q)) = 0

where q is the vector of the uncertain model parameters, and P(s),C(s) the transfer
functions of the plant and controller respectively. After expanding the determinant
we have:

P(s,q) = an(q)s” + au-1(q)s"™ + -+ ai(q)s + ao(q) = 0

where the coefficients a,;(q), ¢ = 0,...,n are typically multivariable polynomial func-
tions. The “zero exclusion condition” (ZEC) implies that a system with characteristic
equation P(q,s) = 0 is stable only if it does not have any roots on the imaginary axis
for any realization of the q’s in the uncertain model parameter space Q.

0 ¢ Pjw,q), Yqe Q, andVw € [0,00]
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A stability margin k,, can then be defined as follows:
kn(jw) = inf{k : P(jw, q(k)) =0, Vq € Q}
Robust stability for this model is then gnaranteed if and only if:
b > 1

Geometrically, k,, expands the initial uncertain parameter region Q as much as pos-
sible without loosing stability (See Figure 3). Note that, typically real parameter
uncertainty is expressed as bounds on the real parameters of the model.

Checking the stability of a particular system with characteristic equation P(jw, q)
involves the solution of the following nonconvex optimization problem.

min k (S)

qi,k>0,w>0

subject to  Re[P(jw,q)] =
Im [P(jw,q)] =

@ ANk < ¢ < ¢NHAGTE i=1,....n

where gV is a stable nominal point for the uncertain parameters and Aq*t, Aq~
are estimated bounds. Note that it is important to be able to always locate the
global minimum of (S), otherwise the stability margin might be overestimated. This
overestimation can sometimes lead to the erroneous conclusion that a system is stable
when it is not. Because for most problems without time delays a;(q), ¢ = 0,...,n
are multivariable polynomial functions, formulation (S) corresponds to a generalized
geometric problem. In the following, a number of stability analysis examples are
considered.

4.4.1 Stability Analysis Examples

Problem 1

This example was studied in [45] and [46]. The plant has three uncertain param-
eters and the characteristic equation is:

P(s,q1,q2,93) = s"+(10 4 g2 + 3) s +(g2g3 + 10¢2 + 10g3) s”+(1 — gags + q1) s+2q
The nominal values of the parameters of the system are
g =800, g3 =4, ¢3 =6

26



and the bounded perturbations
Agi = Agr =800, Agy = Agy =2, Agi = Ags =3
After eliminating w the zero exclusion formulation becomes:

min &

subject to  10¢2%¢5 + 10¢5¢5 + 200452 + 10045 g3
+100q2435 + 19205 + 414595 + 1000g2¢5
+8¢1¢5 + 1000¢5 g5 + 8¢145 + 6¢1¢243
+60q1 g3 + 60¢1g2 — i — 200g; < 0

800 — 800k < ¢ < 800 + 800k
42 < ¢ < 4+ 2%k
6-3k < g3 < 6+3k

The stability margin is found to be equal to k,, = 0.3417 which implies that the
system is unstable. Furthermore, the first instability occurs at:

¢ = 10734
¢ = 3.318
g5 = 4975

Computational requirements were 15 iterations and 0.5 seconds of CPU time.
Problem 2

This example examines the [, stability margin for the closed—loop system de-
scribed in [47]. The characteristic polynomial is:

P(s,q1,q2,43) = 5"+ (Qf%) 57+ (qu;%) 5%+ (%ngg) s+ q;
The nominal parameter values are
@ =14, ¢¥ =15, ¢ =08
and the bounded perturbations
Aqf = Agy = 0.25, Agf = Aqy = 0.20, Agf = Agz = 0.20
Again after eliminating w the zero exclusion formulation becomes:
min k
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subject to  ¢iq; — ¢ — gaqs = 0

14-025k < ¢ < 1.4+0.25k
15— 020k < ¢ < 1.5+ 0.20k
0.8—020k < g5 < 0.8+ 0.20k

The stability margin is found to be equal to k,, = 1.089 implying that the system is
stable. Furthermore, the closest to the nominal point unstable point is:

¢ = 1.1275
¢ = 1.2820
¢ = 1.0179

Computational requirements were 26 iterations and 1.4 seconds of CPU time.
Problem 3

This example involves affine coefficient functions and it was fist proposed by [48].
The closed-loop characteristic polynomial is:

P(s,q1,q2,93) = 165" + (16g1 — 24) 5” + (=9.625¢; — 16¢; + 78) s
+ (19¢1 +8¢2 4 g3 — 44) s + (g3 — 2 — 41 + 12)

The nominal parameter values are
¢ =225, ¢ =15 ¢ =15
and the bounded perturbations
Aqf = Agy = 0.25, Agf = Aqy = 0.50, Agf = Agz = 1.50
In this example w is not eliminated and therefore the formulation becomes:
min k

subject to g3 + 9.625¢ w0 + 16¢ow + 160* + 12 —4¢; — gy — 8w =
16w + 44 — 19¢1 — 8q3 — g3 — 24w =

2.25 - 0.25k < q < 2.25+0.25k
15— 050k < ¢ < 1.5+ 0.50k
15— 1.50k < ¢5 < 1.5+ 1.50k
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The stability margin is found to be equal to &, = 0.8175 which means that the system
is stable. Note that application of a local solver [38] consistently overestimated the
stability margin as k,, = 0.8765. The critical parameter values for instability are:

gr = 2.4544
¢ = 1.9088
¢ = 2.7263
w* = 1.3510

Computational requirements were 51 iterations and 5 seconds of CPU time.
Problem 4

This example studies the stability of the mechanical system proposed in [49]. The
corresponding closed—loop characteristic polynomial is:

P(s,q) = as(q)s” + as(q)s’ + aa(q)s® + a1(q)s' + ao(q)

where as(q) = ¢3¢2 (42 + Tq1)
(@) = Tqqiq2 — 64.918¢5¢2 + 380.067¢5¢2 + 3¢50z + 3¢5
g(q) = 3 (—9.81q3q§ —9.81¢3¢192 — 4.312q§q2 + 264.896¢3q92 + q4q5 — 9.274q5)
(q)
(q)

a3

)

@
o]

1
- 5 (—147.15¢4q3¢2 + 1364.67g5q2 — 27.72¢5)

1

aolq

The nominal parameter values are
@ =100, ¢ =1.0, ¢ =1.0, ¢} =0.2, ¢} =0.05
and the parameter perturbations
Agf = Aqi =1.0,Aqf = Ag; =0.1,Aqf = Ag; =0.1,Aqf = Ag; = 0.01,AqF = Ag; = 0.005

The zero exclusion formulation is:
min &

subject to as(q)w* — aa(q)w? + ao(q)

GB(Q)w2 —ai(q)
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10,0 — 1.0k < ¢¢ < 10.0+ 1.0k
1.0-0.1k < ¢ < 1.0+0.1%
1.0-0.1k < ¢3 < 1.0+0.1%

02—-0.01k < g < 0240.01%

0.05 —0.005k < g5 < 0.05+ 0.005k

Computational requirements were 3076 iterations and 485.75 seconds of CPU time.
Problem 5

This example addresses the stability of a wire guided Daimler Benz 0305 bus [48].
The transfer function of the linearized system is

q1 (48280¢; + 3886005 + 609.8¢1¢25?)

G =
(5,01,42) (16.8¢3q2 + 270000 4 1077q1 g25 + ¢ig3s?) s3

The transfer of the controller is

9375 + 10938s + 23445*

C(s) = .
(5) = 15625 + 12505 £ 5052 + &

The closed-loop characteristic polynomial is

8
P(s,qi,q2) = > ai(q1,q2)s
=0

(1,q2) = 45310%¢;

( ) = 52810%;7 + 364010°¢
(¢1,92) = 5.7210%7 ¢ + 11310%¢; + 4250 10°¢
( ) = 6.9310°% ¢ +91110°¢; + 4220 10°

as(qi,q2) = 1.4510%qy +16.810°¢1 ¢, + 338 10°
( ) = 15.610°¢;q5 + 8407 g2 + 1.3510%¢1¢2 + 13.510°
( ) = 1.25 103q1q2 +16.8¢1¢2 + 53.910°¢, ¢ + 270 107
(q1,92) = 50611 5 + 1080¢1 g2
(¢1,02) = 4ig;

The nominal parameter values are
¢y =175, ¢} =20.0
and the parameter perturbations
Aqf = Agy =14.5, A¢f = Aq; =15
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The zero exclusion formulation is:
min &

subject to  as(q)w® — as(q)w” + as(q)w’ — az(q)w’ + ao(q)

ar(q)w’ — as(q)w’ + as(q)w’ — ai(q)

175 —14.5k < ¢ < 17.5+ 14.5k

20.0 = 15.0k < ¢ < 20.0 + 15.0k

The system was found to be stable, k, > 1.0, for the given range of uncertain
parameters. Computational requirements were 109 iterations and 22 seconds of CPU
time.

Problem 6

In this example, an analysis of the stability margin of the spark ignition engine
Fiat Dedra [50, 51] is carried out for a continuous range of operating conditions
involving seven uncertain parameters. The closed—loop characteristic polynomial of
seventh degree is:

P(s,q) = Y ai(q)s’

i=0

where the characteristic polynomial coefficients a;(q), ¢ = 0,...,7 are polynomial
functions of ¢;, ¢ =0,....,7.

ar(q) = ¢

ag(q) = 0.1586q1¢2 + 2q202 + 2¢5q7 + 0.1826¢5q7 + 0.0552¢2

as(q) = 0.0189477¢1¢7 + 0.11104g2¢7 + 0.1826¢5q6 + 0.1104¢5¢7 + 0.0237398¢sq7

+q2q2 + 0.158641 g2g2 + 0.0872q1 gaq7 + 0.0215658¢1 gsq7 + 0.3652¢2¢s47
+2¢3q4G7 — 0.0848¢3q6q7 + g2 + 7.61760 10~*¢2 + 0.3172¢1 457
+4q2q597

as(q) = 0.1586¢;¢7 + 4.02141 107 q1¢2 + 2¢2g2 + 0.00152352¢5¢2 + 0.0237398¢5¢s
+0.00152352¢5¢7 + 5.16120 10" gsgr + 0.0552¢5 ¢ + 0.01898477¢1 g247
+0.0872¢1 ¢4q5 + 0.034862¢1 qaq7 + 0.0215658¢1 ¢s¢6 + 0.00287416¢ gegr
+0.0474795¢2gsq7 + 2¢3q4qgs + 0.1826¢3¢4qg6 + 0.1104¢3q4¢7 — 0.0848¢3q5¢s

—0.00234048¢3 9697 + 2q§q5q7 + 0.1826q§q6q7 + 0.0872¢192q4q7 + 0.3172¢1 g2q5 4~

40.0215658¢1 g2g697 + 0.1586¢1 ¢3q497 + 2¢2G3G4q7 — 0.0848¢2¢39697 + 0.0552q§
+0.3652¢2¢5q96 + 0.0378954¢1 g5q7 + 0.2208¢2¢597
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as(q) = 0.0189477¢1 ¢ + 0.1104¢5¢2 + 5.16120 10" ¢5q6 + ¢2¢2
H7.61760 107" ¢2¢2 + ¢2¢% + 0.1586¢1 g2g2 + 4.02141 10~ ¢1¢2¢2
+0.0872¢1 g3q; + 0.034862¢1 q4qs + 0.00336706¢1 g4q7 + 0.002874164, ¢5qs
+6.28987 107 167 + 0.00103224¢5 gsq7 + 0.1104¢3¢4¢5 + 0.0237398¢3 446
+0.00152352¢3¢4q7 — 0.00234048¢3¢5¢6 + 0.1826¢5¢596 + 0.1104¢3 ¢5¢7
+0.0237398¢2 goqr — 0.0848¢2 qaqs + 0.0872¢1 ¢2q4q5 + 0.034862¢1 g2q4q7
+0.0215658¢1 ¢2¢5qs + 0.0378954¢; ¢2qsq7 + 0.00287416¢, q2qeqr
+0.1586¢1 ¢3g4¢5 + 0.0215658¢1 ¢3g4q6 + 0.0189477q¢1 g3q197 + 29239445
40.1826¢2¢3G496 + 0.1104¢2¢3G497 — 0.0848¢2¢3¢596 — 0.00234048¢5 ¢3g697
+7.61760 107 g2 + 0.0474795¢2q5q6 + 8.04282 107 *¢1¢5g7 + 0.00304704¢2 ¢5q7

ax(q) = 4.02141 107 ¢1¢2 + 0.00152352¢5¢2 + 0.0552¢2 ¢2 + 0.0552¢3 ¢
+0.0189477¢1 g2¢2 + 0.034862¢1 ¢3¢2 + 0.00336706¢1 q4¢s
+6.82079 10> q1qagr + 6.28987 10 q1q5q6 + 0.00152352¢5 qaqs
+5.16120 10" ¢3¢495 — 0.00234048¢2 qugs + 0.034862¢1 ¢2¢445
+0.0237398¢2 g5¢6 + 0.00152352¢2 ¢5q7 + 5.16120 1071 ¢2¢eqr
+0.00336706¢; ¢2qa¢- + 0.00287416¢1 ¢2¢sqs + 8.04282 10™* g1 ¢2q5¢~
+6.28987 10™°¢142¢6q7 + 0.0189477¢1 ¢3q4q5 + 0.00287416¢1 ¢3¢4s
+4.02141 107 ¢1¢3qag7 + 0.11042¢3q4q5 + 0.0237398¢2 ¢5¢4¢s
40.00152352¢2 ¢3q4¢7 — 0.00234048¢ g3¢s5¢6 + 0.00103224¢2 546

ar(q) = T7.61760 107*¢3¢2 4+ 7.61760 10~ *¢3¢; + 4.02141 10 ¢ 427
+0.00336706¢; 3> + 6.82079 10™°q1qaqs + 5.16120 107 *¢3¢54s
+0.00336706¢1 g2q4q5 + 6.82079 107°¢1¢2q4q7 + 6.28987 107" ¢1¢2q54s
+4.02141 10_4q1q3q4q5 + 6.28987 10_5q1q3q4q6 4+ 0.00152352¢2g3q4¢s
+5.16120 10~ ¢2¢3¢44s

ao(q) = 6.82079 107°q1¢3¢; + 6.82079 107" ¢1G24qs

The nominal parameter values and perturbations are

gV = 34329, Ag¢f = 0, Agi = 1.2721
Y = 0.1627, Agf = 0, Ag; = 0.06
¥ = 0.1139, Agf = 0, Ags; = 0.0782

¥ = 02539, Ag¢f = 03068, Ag¢gi = 0
¥ = 0.0208, A¢f = 0, Ags = 0.0108
¢ = 20247,  A¢h = 24715, A¢ = 0

g = 1.0000, Ag¢f = 9.0000, Agr = 0
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The zero exclusion formulation yields:

min &

subject to — a6(q)w6 + a4(q)w4 + —ag(q)w2 +ao(q) =
ar(q)w’® — as(q)w’ + az(q)w? —ai(q) =

3.4329 — 1.2721k < ¢ < 3.4329
0.1627 — 0.06k < g2 < 0.1627
0.1139 — 0.0782k < ¢35 < 0.1139
0.2539 < ¢4 < 0.2539 + 0.3068%
0.0208 — 0.0108% < ¢5 < 0.0208
2.0247 < go < 2.0247 + 2.4715k
1.0000 < ¢ < 1.0000 4 9.0000%

The system was found to be stable k,, > 1.0, throughout the entire range of the
uncertain parameters. Computational requirements were 4,896 iterations and about

10,000 seconds of CPU time.

5 Summary and Conclusions

In this paper a deterministic branch and bound type global optimization algorithm
was proposed for solving generalized geometric problems (signomials) (GGP). This
class of optimization problems has been extensively used to model a host of different
engineering design and robust stability problems. An exponential variable transfor-
mation was employed to the initial nonconvex problem (GGP) to reduced it into
a (DC) programming problem. A convex relaxation (R) of problem (DC) is then
obtained based on the linear lower bounding of the concave parts of the objective
function and constraints. The proposed algorithm was shown to attain finite e-
convergence to the global minimum through the successive refinement of a convex
relaxation of the feasible region and/or of the objective function and the subsequent
solution of a series of nonlinear convex optimization problems. A number of proce-
dures aimed at improving the efficiency of the proposed approach are also discussed.
The proposed approach was applied to a number of small to medium size engineering
design problems and a number of test as well as real size robust stability analysis prob-
lems. In all cases, convergence to the global minimum was achieved. Convergence
was particularly expedient for problems with a small number of variables participat-
ing in negative monomial terms and preferably a small number of negative monomial
terms.
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Table 1: Maximum separation as a function of interval width

=YY YL A, exp (YL)

0.00026 1078
0.00275 1076
0.02808 1074
0.26449 1072
1.75079 1

2 1.51572
3 71.2807
10 14752.3

Table 2: Number of Iterations as a function of U

U Iterations
1.1 17
1.5 18
2 19
5.5 20
10 21
100 27
1000 58
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Table 3: Coefficients for alkylation example

¢

7 C; 7 C; C;

1 1.715 16 0.19120592 E-1 31 0.00061000

2 0.035 17 0.56850750 E4+2 32 0.0005

3 4.0565 18 1.08702000 33 0.81967200

4 10.000 19 0.32175000 34 0.81967200

5 3000.0 20 0.03762000 35 24500.0

6 0.063 21 0.00619800 36 250.0

7 0.59553571 E-2 22 0.24623121 E+4 37 0.10204082 E-1
8 0.88392857 23 0.25125634 E+2 38 0.12244898 E-4
9 0.11756250 24 0.16118996 E43 39 0.00006250
10 1.10880000 25 5000.0 40 0.00006250
11 0.13035330 26 0.48951000 E46 41 0.00007625
12 0.00660330 27 0.44333333 E42 42 1.22
13 0.66173269 E-3 28 0.33000000 43 1.0
14 0.17239878 E-1 29 0.02255600 44 1.0

15 0.56595559 E-2 30 0.00759500

Table 4: Computational results on additional examples.

Example # Var. # Neg. Mon. Solution Iter. CPU
Heat exchanger design [44] 8 5 7049.24 1600 100
Optimal reactor design [41] 8 2 3.9511 71 6.8
Colville’s test problem [20] 5 4 1.1436 30 2.0
Problem 10 of [20] 3 2 -83.254 50 17
Problem 11 of [20] 4 1 -5.7398 T 04
Problem 12 of [20] 8 2 -6.0482 82 12
Problem 14 of [20] 10 2 1.1436 290 22
Problem 17 of [20] 11 5  0.1406 2950 427
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Figure 1: Initial bounds and feasible region, convex relaxation and improved bounds
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Figure 2: Feasible region and KKT points of motivating example
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Figure 3: Stability Margin
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