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Abstract 

A significant multi-stage financial planning problem is posed as a stochastic program 
with decision rules. The decision rule - called dynamically balanced - requires the pur- 
chase and sale of assets at each time stage so as to keep constant asset proportions in 
the portfolio composition. It leads to a nonconvex objective function. We show that the 
rule performs well as compared with other dynamic investment strategies. We special- 
ize a global optimization algorithm for this problem class - guaranteeing finite E-optimal 
convergence. Computational results demonstrate the procedure’s efficiency on a real-world 
financial planning problem. The tests confirm that local optimizers are prone to erroneously 
underestimate the efficient frontier. The concepts can be readily extended for other classes 
of long-term investment strategies. 

Keywords: Global optimization algorithm; Financial planning problems; Fixed-Mix problem 

1. Introduction 

This paper addresses a significant problem in planning under uncertainty: 

the allocation of financial assets to broad investment categories over a long-run 
horizon (10 to 20 years). The long-term asset allocation problem plays a critical 

role in successful investing. It has been the subject of research over many years. 
For example, see Berger and Mulvey (1996), Dantzig and Infanger (1994), Davis 
and Norman ( 1990), Grauer and Hakansson (1985), and Merton (197 1). In many 
of these studies, the problem is posed as a multi-stage stochastic program and 
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solved using efficient solution algorithms. Unfortunately, traditional multi-stage 

stochastic programs are difficult to solve. Not only does the problem size grow 
exponentially as a function of the number of stages and random variables, but 
the precision of the recommendations is difficult to measure since it is costly to 
perform out of sample experiments. 

We investigate an alternative approach. The basic idea is to set up the invest- 
ment problem as a stochastic program with a popular decision rule. Time is dis- 

cretized into n-stages across the planning horizon. Investment decisions are made 
at the beginning of each time period. The optimal parameters for the decision rule 

are then determined by means of a global optimization algorithm. Although the 
model results in a nonconvex optimization problem, we have developed a special- 
ized global solver to handle this problem class. The approach extends the ideas of 
Maranas and Floudas ( 1993, 1994), and Floudas and Visweswaran (1990, 1993). 

Due to nonconvexities, multiple local solutions exist which render the loca- 

tion of the global one a very difficult task. Traditional local algorithms can only 
guarantee convergence to a local solution at best, thus failing sometimes to lo- 
cate the optimal recommendation. Since the proposed algorithm finds the global 
solution, the best tradeoff between risk and expected profit can be established for 
the multi-period investment problem. As a consequence, stochastic programming 

with decision rules (SPDR) provides a viable alternative to multi-stage stochastic 
programming (MSP) (see, e.g. Garstka and Wets, 1974; Mulvey, 1996). Whereas 
the MSP may lead to outstanding decisions under uncertainty, there are several 
impediments to be overcome. First the size of the MSP must be considered. The 

number of decision variables grows exponentially as a function of the number 
of time stages and random coefficients. The stochastic program represents condi- 
tional decisions for each branch of the scenario tree. Efficient algorithms exist for 
solving these problems, for instance, see Dantzig and Infanger (1994), Dempster 
and Thompson (1995), Mulvey and Ruszczynski (1992), Rockafellar and Wets 
( 199 1 ), and Zenios and Yang ( 1996). Regardless, the resulting optimization prob- 
lem can be long running for most multi-stage examples. 

An important consideration for MSP and SPDB models involves the generation 
of scenarios. This area has received attention by researchers who have applied 
importance sampling and other variance reduction methods (e.g. Dantzig and 
Infanger, 1994). Others have developed probabilistic algorithms, e.g. Higle and 
Sen (1991) for stochastic programs with fixed recourse. Also see Mulvey (1996), 
who designed a scenario generation system for the consulting company Towers 
Perrin. Because of the need to perform sampling when generating scenarios, it 
is critical that the precision of the recommendations be ascertained. The SPRB 
approach has a distinct advantage in this regard since it can be easily tested 
with out a sample data - thereby providing confidence that the recommendations 
are robust. A similar test is much harder in the case of MSP. For an example, 
see Worzel et al. (1994), who evaluated multi-stage stochastic programs in the 
context of a rolling-horizon simulation. 
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The decision rule-based model SPDR may appear more intuitive at least to 

some investors, perhaps since the concepts are closer to the way that indivi- 

duals handle their own affairs. Unfortunately, the use of SPDR model hinges on 
discovering policies that are intuitive and that will produce superior results. The 
modelers must thoroughly understand the application in order to find an appro- 

priate set of decision rules. This step can be hard to carry out. Also, decision 
rules may lead to nonconvexities and highly nonlinear functions. The noncon- 

vexity barrier may become less constraining, however, as algorithms such as the 
one proposed in this report becomes available. 

2. The dynamically balanced strategy 

In this section, we give a mathematical description of the decision rule we 

consider, namely the dynamically balanced (DB) investment policy. We also 
show through empirical test on historical data that the DB decision rule compares 

favorably to a stochastic optimal control approach and another decision rule. Also, 
the DB rule and its variants are based on considerable theoretical results (e.g. 
Davis and Norman, 1990; Merton 1971; Taksar et al., (1988). 

2. I. Model dejinition 

First, a set of discrete time steps 

t = {1,2,...,z-} 

in which the portfolio will be rebalanced is selected. We are interested in long 
planning horizons - 10 to 20+ years. Second, a number of assets 

i = {1,2 ,..., Z}, 

where I is in most cases between 3 and 15, is selected where the initial wealth 
will be distributed at each stage during the planning horizon. A given set of 
scenarios 

s = {1,2,...,S} 

is generated based on the method presented in Mulvey (1996), depicting plausible 
outcomes for the uncertainties across the planning horizon. Five hundred to one 
thousand scenarios are typically required for adequately capturing the uncertain 
future trends in realistic portfolio problems. 

The following parameters specify the DB model. 

we: initial wealth (in dollars) 
rf,: return (in %) for asset i, in time period t, under scenario s 

bs: probability of occurrence for scenario s, (note that Cf__, pS = 1). 
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The decision variables are defined as follows: 

w;: wealth (in dollars) at time period t, and according to scenario S. 
Ii: fraction of wealth invested in asset category i (constant across time). 

Note that 0 _< li 5 1, Vi = 1,. ..,I and c;=, li = 1. At the beginning of 
each period, the investor rebalances his portfolio. The rule ensures that a fixed 
percentage of one’s wealth is invested in each asset category - at least at the 
beginning of each period. 

Wealth wf at the end of the first period will be 

wf=&(1+,sl)l;, s= I,2 ,...) S. (1) 
i=l 

Accordingly, the relation in wealth for scenario s between any two consecutive 
periods t - 1 and t is given by 

s WI = ws_l~(‘+$J;li, r=1,2 )...) T, s=1,2 )...) S. 
i=I 

(2) 

By utilizing (1) and (2), and assuming no transaction costs, we express the 
wealth wf for scenario s at the end of the last period T as a function of only 
Xii, i= l,... ,I after eliminating all ws. 

T I 

WT s = wo 
rI[cc 

1 +r[t)li 
I 

3 S= l,...,S (3) 
[=I i=l 

By considering all scenarios, the expected wealth Mean at the end of the 
last period T is 

The goal of the planning system is a multi-period extension of Markowitz’s 
mean-variance model. Two competing terms in the objective function are needed: 
(1) the average total wealth Mean and (2) the variance var(wr) across all 
scenarios s of the total expected wealth at the end of the planning horizon T. 
More specifically, 

u(wr) = p Mean - (1 - B) var(wr), 

where 

Mean = 2 psdT, (5) 
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Var(wr) = 2 ps [IV; - Mean(w 
s= I 

(6) 

and 

Mean( wr ) measures expected profitability of the particular investment strategy 
and Var(wr) represents the inherent risk. Clearly, Mean is desired to be 
as large as possible whereas Var(wr) to be as small as possible. Parameter /I 
provides multiple weightings for the competing objectives. By varying fi from 

zero to one, the multi-period ejficient frontier of the investment problem can be 
obtained. The problem of selecting an optimal dynamically balanced decision rule 
can now be formulated as the following nonlinear optimization model (for each 
/I with 0 5 /I 5: 1). 

T I 

s.t. w; = wo rI[m l+r;,)Aj ) s= l)...) S, 
t=l i=l I 

c Ai = 1, 
i=l 

OS& 2 1, i=l,..., I. 

(7) 

(8) 

The set of nonlinear equality constraints (7) along with the variables w;, s = 
1,. . ,S, Mean( Var(wr) can be eliminated by substituting relations (7), (5) 
and (6) into the objective function f. For convenience, the maximization of U 
is replaced by minimization of -U = f. 

n-II f=-/?wo$P” fi k( 
s=l [*=, (i=, l +rfJJA1)l 

(DB) 

S.t. C/Ii = 1, 
i=l 

O<Ai 5 1, i=l,..., I. 
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This results in an optimization problem involving a single linear equality con- 

straint (8) and a modest number of variables li, i = 1,. . . ,/. The compensating 

cost is a more complicated objective function. The function f is a nonconvex 
multivariable polynomial function in li involving multiple local minima. 

To see why function f is nonconvex, let us give a small example. Say, we 
have two assets - stock and bond. We consider two time periods. In each time 

period, there is only one possible scenario for the return of each asset. Hence, in 
this example, I = T = 2, and S = 1. Let us assume that the possible returns of 

the assets are as follows: r;,, = ri,2 = a, and rd,, = ri32 = b, for some a, b > 0. 

Since there is only one scenario, it follows that p’ = 1. Suppose that /I = 1 and 
wo = 1. Then the objective function of (DB) is 

= - [( 1 + a)il + (1 + b)&]' . 

It is easy to verify that the above f is not a convex function of (Ai, AZ). In fact, 

it is a concave function. This shows that the objective function f in (DB) is not 
convex even in a very special situation and hence it is not convex in general. 

The (DB) model can be readily modified to address other measures of risk 
aversion across time. For example, we could maximize the expected utility of 
wealth at the end of the planning horizon; or we could conduct a multi-objective 
decision analysis. The proposed global optimization algorithm can be extended 

for these alternative models. 
In Section 3, we introduce a global optimization algorithm which guarantees 

s-converge to the global optimum solution in a finite number of iterations. 

2.2. Empirical results 

In this subsection, we test several popular versions of the dynamically balanced 
decision rule based on the lo-year historical data (January 1982 - December 
1991) of monthly returns in three asset categories: cash, bond and stock. The 
investment problem involves a monthly decision on what portion to hold on each 
of the three asset categories. We examine seven variants of the DB rule, namely, 
mix 1, mix 2, . . . . mix 7, as shown in Table 1. These mixes are often proposed in 
the literature and by investment advisers as benchmarks for comparative studies. 
We conducted a backtest of the seven specified dynamically balanced decision 
rules as follows: At the beginning of each month, we examined the portfolio and 
re-balanced it to the target mixes. Thus, we sold (bought) stock and bought (sold) 
bonds if the equity market outperformed (underperformed) the bond market. Geo- 
metric means of monthly returns (p), standard deviations (c) and turnover (p) 
of the seven rules as well as the 100% stock rule computed based on the given 
data are illustrated in Table 2. 
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Table 1 

Composition of the seven mixes tested 

mix1 mix2 mix3 mix4 mix5 mix6 mix7 

Cash 0% 0% 0% 0% 0% 0% 0% 
Bond 20% 30% 40% 50% 60% 70% 80% 
Stock 80% 70% 60% 50% 40% 30% 20% 

Table 2 

Means (p), standard deviations (0) and turnovers (p) of the seven DB rules and the 100% stock rule 

during 1982-199 I period 

DB 100% stock mix1 mix2 mix3 mix4 mix5 mix6 mix7 

P 1.5% I .48% 1.46% 1.45% 1.42% I .40% 1.35% 1.33% 

0 4.7% 4.0% 3.6% 3.3% 3.2% 3.1% 3.0% 2.8% 

P 0% 1.10% 1.10% 1.08% 1.05% 1 .OO% 0.93% 0.86% 

Table 3 
Means (p) and standard deviations (u) of scl, sc2 and sc3 during 1982-1991 period (from Brennan 

et al., 1996) 

SC1 SC2 SC3 

P 1.3% 1.5% I .4% 

0 2.8% 3.1% 3.1% 

Using the same data, Brennan et al. (1996) computed monthly mean of return 
(p) and standard deviation (a) by a stochastic optimal control approach. They 
employed three slightly different stochastic optimal control strategies, denoted 
here as scl, sc2, and sc3, and obtained three pairs of p and 0, as exhibited in 
Table 3. Comparing our result (Table 2) to the result of the stochastic optimal 
control (Table 3), as shown in Fig. 1, we can see that (1) rule mix7 has the 

same standard deviation as strategy scl but with higher return; (2) rule mix5 has 
identical mean and standard deviation as strategy sc3; and (3) although rules mix2 
and mix3 are dominated by sc2, they have much lower standard deviations than 
the 100% stock rule while they have quite close means to the 100% stock rule. 

It is worth noting that the trading turnover involved in the BLS strategies 
are much higher than the dynamically balanced decision rules, as can be easily 
observed by the fact that their asset proportions vary greatly with time (see figures 
illustrated in their paper) while the turnover of our rules are very low - less than 
1.2% on average, as exhibited in Table 2. This indicates that in the presence of 
transaction costs, their strategies will pay much higher amount of commission 
fee than ours. Thus, the geometric returns of strategy sc2 would be considerably 
reduced once the transaction costs are included in the results. 
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Fig. 1. Dynamically balanced vs. stochastic optimal control 

Table 4 

Means (IO and standard deviations C(r) of the seven B&H rules 

B&H b&h1 b&h2 b&h3 b&h4 b&h5 b&h6 b&h7 

P 1.46% 1.44% 1.43% 1.39% 1.38% 1.33% 1.31% 

u 4.0% 3.65% 3.35% 3.24% 3.14% 3.01% 2.8% 

We also compare the DB decision rule with the standard Buy and Hold (B&H) 
decision rule. Using the same initial mixes: mixl, mix2, . . . . mix7, we can have 
seven corresponding B&H rules, called here b&hl, b&h2, . . . . b&h7, respectively. 
Using the same IO-year data, we calculate the means and standard deviations for 
the seven B&H decision rules, as illustrated in Table 4. The comparison between 
the DB decision rules and the B&H decision rules is more clearly exhibited in 
Fig. 2, where 1 represents ‘mix1 ’ and 1’ b&hl, and etc. These results clearly 
indicate that each DB decision rule dominates the corresponding B&H decision 
rule for the indicated time period. 

3. Global optimization algorithm 

The solution of optimization problems that possess nonconvexities requires con- 
siderable care. A standard approach is to employ a nonlinear programming soft- 
ware system (e.g. CONOPT System, Drud, 1994) in conjunction with a method 
for restarting the algorithm at widely separated points. Then, the best solution 
found becomes the recommended investment strategy. Of course, there is no 
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Fig. 2. Dynamically balanced vs. buy and hold 

assurance that such a solution is the global optimum. Adaptive memory pro- 
gramming (AMP) (also called Tabu Search) provides an alternative approach 
to the solution of stochastic programs with decision rules. Berger and Mulvey 
(1996) applied AMP to financial planning for individual investors. Again, there 

is no guarantee that the optimal solution has been found. 
This section describes a third approach to the solution of stochastic program 

with decision rules. It is the first algorithm for solving nonconvex optimization 
problems for the dynamically balanced decision rule that provides global opti- 
mality guarantees. As such, the method generates bounds on the optimal solution. 

The global optimization algorithm is based on a convex lower bounding of the 
original objective function f and the successive refinement of converging lower 

and upper bounds by means of a standard branch-and-bound procedure. 

3. I. Convex lower bounding and properties 

A convex lower bounding function 2 of f can be defined by augmenting f 
with the addition of a separable convex quadratic function of /li as proposed in 

Maranas and Floudas (1994). 

Y = f + c1 k(i.F - Li)(Lu - /li), 
i=l 

where 

tL 2 max 

{ # 

max 0, 

( ,) 

- f eigf . 
if 5 ;.; 5 / IJ 
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Note that i$, Ry are the lower and upper bounds of li initially set to # = 0 and 
Lu = 1. Also, CY is a nonnegative parameter which ensures convexity and must 

be greater or equal to the negative one-half of the minimum eigenvalue of f 

over RF 5 Ai < JLU. The parameter cx can be estimated either through the solution 
of an optimization problem or by using the concept of the measure of a matrix 

(Maranas and Floudas, 1994). The effect of adding the extra term, 

’ c( c (1: - i,i)(/lv - Ai) 
i=l 

to f is to make _!? convex by overpowering the nonconvexity characteristics of 

f with the addition of the term 2a to all of its eigenvalues, 

eig” = eigf + 2cr, i = I,...,1 

Here eigiY,eigf are the ith eigenvalues of .P’, f respectively. This function Y 
defined over the box constraints [I$, I~?] , i = 1,. . . , I involves a number of 

properties which enable us to construct a global optimization algorithm for finding 
the global minimum of f. These properties, whose proof is given in Maranas 
and Floudas ( 1994) are as follows. 

Property 1. Y is a valid underestimator of f, 

V ;ii E [2~,2~] 9 mY(Ai) < f (/Ii). 

Property 2. _.Y matches f at all comer points. 

Vii such that J.i = 1: or I.i = $, I = f (Ai). 

Property 3. Y is convex in [#, Ai”]. 

Property 4. The maximum separation between LZ and f is bounded and propor- 
tional to a and to the square of the diagonal of the current box constraints. 

Property 5. The underestimators constructed over supersets of the current set 
are always less tight than the underestimator constructed over the current box 
constraints for every point within the current box constraints. 

Property 6. LZ’ corresponds to a relaxed dual bound of the original function f 
(see Floudas and Visweswaran, 1990, 1993). 
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3.2. Highlights of the algorithm 

Based on the aforementioned properties, the global optimization algorithm lo- 

cates the global minimum f * by constructing converging lower and upper bounds 

on f*. A lower bound on j’*, denoted as fL, within some box constraints is 
derived by invoking Properties (1) and (3). Based on these properties 9 is 
a convex lower bounding function of f. Therefore, its single global minimum 
within some box constraints is a valid lower bound fL on the global minimum 

solution f * and can be guaranteed to be found with available local optimization 
algorithms. An upper bound on f*, denoted as f”, is then simply the value of 
f at the global minimum point of 8. 

The next step, after establishing an upper and a lower bound on the global 
minimum, is to refine them by using Property (5). This property implies that the 
value of 2 at every point, and therefore at the global minimum, is increased by 
restricting the box constraints within which it has been defined. Tighter box con- 
straints occur by partitioning the rectangle defined by the initial box constraints 

into a number of smaller rectangles. One way of partitioning is to successively 

divide the current rectangle in two subrectangles by halving on the middle point 
of the longest side of the initial rectangle (bisection). At each iteration the lower 
bound of f* is simply the minimum over all the minima of 2 in every sub- 

rectangle composing the initial rectangle. Therefore, a straightforward (bound 
improving) way of tightening the lower bound f L is to halve at each iteration 
only the subrectangle responsible for the infimum of the minima of 2 over all 
subrectangles, according to the rules discussed earlier. This procedure generates 
a nondecreasing sequence for the lower bound f L of f *. Furthermore, we con- 
struct a nonincreasing sequence for the upper bound fU by selecting it to be 
the infimum over all the previously recorded upper bounds. Clearly, if the global 

minimum of 2’ in any subrectangle is greater than the current upper bound f” 

we can ignore this subrectangle because the global minimum of f cannot be 

situated inside it (fanthoming step). 
Property (4) addresses the question of how small these subrectangles must 

become before the upper and lower bounds of S inside these subrectangles are 
within s. If 6 is the diagonal of the subrectangle, 

and E is the convergence tolerance, from Property (4) we have the following 
condition for convergence, 
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which means that if the diagonal 6 of a subrectangle is 

then s-convergence to the global minimum of f has been achieved. In practice, 

however, not only s-convergence to the global minimum is required, but con- 

vergences in a finite number of iterations. By analyzing the structure (sparsity) 
of the branch-and-bound tree resulting from the subdivision process, finite upper 
and lower bounds on the total number of required steps for s-convergence can 

be derived (see Maranas and Floudas, 1994): 

Iter,i, = I log, 
xi=, (2: - 1:)’ 

J@ --l. I 

The basic steps of the proposed global optimization algorithm are as follows: 

3.3. Outline of algorithmic steps 

Step I: Initialization. A convergence tolerance E is selected 

counter Iter is set to one. Lower and upper bounds on the 
f LBD, fUBD are initialized. 

and the iteration 
global minimum 

Step 2: Update of upper bound f UBD If the value of f at the current point is . 
less than fUBD, then fUBD is set equal to the value of f at the current point. 

Step 3: Partitioning of current rectangle. The current rectangle is partitioned 

into two rectangles by halving along the longest side of the initial rectangle. 

Step 4: Solution of convex problems in two subrectangles. The following convex 
nonlinear optimization problem is solved in both subrectangles using a standard 
convex nonlinear solver. 

Iyin 9=f +@)!JA~-&) (/I~-j.i> 
i=l 

I 

s.t. c li= 1, 
i=I 

1: 5 Ai<$, i= l,..., I. 



C. D. Muranas et al. I Journul of Economic Dynamics and Control 21 11997) 1405-1425 1417 

If a solution is less than the current upper bound, it is stored along with the 

value of the variable 3&j at the solution point. 

Step 5: Update iteration counter Iter and Lower Bound fLBD. 

The iteration counter is increased by one, and the lower bound f LBD is updated 
to be the incumbent solution. Further, the selected solution is erased from the 
solutions set. Stop if iteration limit is reached. 

Step 6: Update current point and variable bounds. The current point is selected 

to be the solution point of the previously found minimum solution in Step 5, and 
the current rectangle is updated to be the one containing the previously found 

solution, 

Step 7: Check for convergence. 

IF (fUBD - fLBD) > E, then return to Step 2 

Otherwise, E-convergence has been reached. 
A detailed description of the algorithmic steps as well as a mathematical proof 

of a-convergence to the global minimum for the employed global optimization 

algorithm can be found in Maranas and Floudas (1994). 

3.4. Geometric interpretation 

A geometric interpretation of the proposed algorithm when applied to a one- 

dimensional problem is shown in Fig. 3. The objective is find the global mini- 
mum F(X* ) of a nonconvex function F in a single variable X within the interval 
[XL,Xu]. F involves two distinct local minima and thus traditional local opti- 

mization algorithms might miss the global minimum of F. Based on the proposed 
approach the initial interval [XL,Xu] is partitioned into two subintervals [XL,Xo], 
[X0,X”] and the convex lower bounding function 

L(X) = F(X) + c1 (XL - X) (X” - X) 

is constructed in both subintervals. Since L(X) is convex, its single global minima 

L(X’ ),L(X2) in each subrectangle can be found with currently available convex 
solvers. Clearly, the value of the function F at X0 is an upper bound on the global 
minimum solution F(X*) and the minimum over L(X’),L(X2) a lower bound on 
F(X*). Therefore, at the end of the first iteration we have UB = F(X”) and LB 
= _qx’ ). 

In the second iteration, since L(X’) < L(X2) we further partition the first 
subinterval [XL,Xo] into two new subintervals [XL,X’] and [X*,X0] and two 
new convex lower bounding functions L are constructed one for each subinterval. 
The global minima of L in these two new subintervals are, respectively, L(X3) 
and L(X4). Since F(X’) < F(X”) the new upper bound on F(X*) is UB = 
F(X’). Also because L(X4) = min (L(&),L(X3),L(&)), the new lower bound 
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Fig. 3. Geometric interpretation. 

on F(X*) is LB = &Y4). Note how tightly the upper and lower bounds UB, 

LB are bracketing the global minimum solution F(X* ). 
In the next section, the proposed approach is applied to the DB financial plan- 

ning problem. 

4. Computational results 

The global optimization algorithm is applied to a DB investment problem in- 

volving I = 9 assets, T = 20 time periods and S = 100 scenarios. The following 
investment choices represent the I = 9 assets: (1) cash equivalent; (2) treasury 
bonds; (3) large capitalization stocks; (4) international bonds; (5) small capital- 
ization stocks; (6) venture capital; (7) international stocks; (8) real estate; and (9) 
a government/corporate bond index. According to the mean-variance model the 
expected return Mean quantifies the profitability of the particular investment 
and the variance Var(wr) measures the associated risk. The initial wealth wo is 
set equJ1 to one so as the profit Mean and the risk Var(wr) are normal- 
ized. I he multi-period efficient frontier (risk vs. profit) at the end of the planning 
horizon for the particular investment fixed-mix problem is then generated by suc- 
cessively varying /I from zero to one and solving the global optimization problem 
for each value of p. 



As in Mulvey (1994) the probabilities of occurrence for scenarios s = 1.. , S 
are equal. Thus, we have 

ps = ; = 0.01, ‘ds = 1,.,.,X 

Next, by applying the scenario generation technique introduced in Mulvey ( 1996), 
the (I = 9) x (T = 20) x (S = 100) = 18000 returns Y:,, for asset i, in time 
step t, and scenario s are estimated. To provide some insight on their numerical 

values, their respective minimum and maximum value as well as their mean and 
standard deviation are as follows: 

Minimum = -0.70, 

Maximum( r:, ) = 1 .oo, 

Mean = 0.10, 

Std Dev(ri,) = 0.18. 

In the next step, we solve the nonconvex problem (DB) with different values 
of the parameter 8. Three different alternatives for the absolute convergence tol- 

erance ei = 0.05, EZ = 0.03 and ~3 = 0.01 are considered. Regardless of the 
initial point, convergence to the c-global minimum solution is achieved. Exact 

convergence to the global minimum f’ is then achieved by slightly perturbing 
the obtained solution f" with a gradient-based optimization algorithm until the 

KKT conditions are satisfied. 
For different values of fl the value of the objective function at the global 

minimum solution f * as well as the associated profit 

Profit=Mean(wr*)=waep’ 
5=l 

and risk 

Risk = Var(wr*) = wi { $PS [G (&1+01:)]’ 

along with the required number of iterations Iter and CPU (seconds) time on a 
HP-730 workstation at Princeton University are shown in Table 6. Three cases 

of absolute tolerances of ai = 0.05, ~2 = 0.03 and ~3 = 0.01 are considered. More 
specifically, the progress of the upper and lower bounds on the global optimum 
solution for the case p = 0.5 is shown in Table 5. In Table 7 the global optimum 
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Table 5 

Upper and lower bounds on global optimum for /I = 0.5 

Iter f LBD f UBD CPU (s) 

1 -2.534569 -2.466187 

2 -2.527700 -2.468392 

3 -2.517993 -2.468392 

3.340 

4.960 

6.560 

(Convergence for q = 0.05) 

4 -2.508569 -2.468392 

5 -2.501949 -2.468392 

6 -2.499233 -2.468392 

7 -2.498880 -2.468392 

8 -2.495425 -2.468591 

8.210 

9.410 

10.790 

12.470 

14.410 

(Convergence for ~2 = 0.03) 

9 -2.495425 -2.468597 

10 -2.492574 -2.468915 

II -2.487626 -2.468915 

12 -2.482876 -2.468915 

13 -2.482548 -2.468915 

14 -2.479623 -2.468915 

16.350 

18.540 

20.260 

22.350 

24.220 

25.640 

(Convergence for 83 = 0.01) 

values of the ii’s are illustrated for different values of p. These values show the 
evolution of the global optimum ii’s as the parameter /I changes. By plotting risk 
vs. profit of global minimum solutions corresponding to different values of /3 the 
efficient frontier of the particular investment strategy is obtained (See Fig. 4). 

The generated efficient frontier for this example forms a bounded continuous 
concave curve. The lower bound of this curve (risk=0.22) corresponds to the 
minimum possible risk attainable for the particular investment model which can- 
not be further reduced not even by accepting lower than (expected profit=3.40) 
returns. The upper bound (expected profit=16.03) is the absolute maximum ex- 

pected return for the investment model at hand for which it is impossible to 
increase not even by withstanding higher than 662.35 level of risk. The impor- 
tance of this curve lies in the fact that by choosing a value for the risk within 
0.22 5 Risk 5 662.35 the global maximum expected profit can be found and 
vice versa by selecting a desired expected profit within 3.40 5 Profit 5 16.03 the 
global minimum expected risk can be obtained. As expected, at the beginning of 
the efficient frontier substantial increases in the expected profit can be achieved 
by accepting higher than the minimum level of risk. However, after about (Risk 
N” 50) this trend seizes and only marginal improvements on the expected profits 
are derived even for substantially higher levels of risk. 

A comparison of the efficient frontier generated with the global optimization 
approach with the one obtained using a local solver (Lasdon et al., 1978) is 
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Fig. 4. Efficient frontier 

shown in Fig. 5. Clearly, the local solver fails to correctly generate the efficient 
frontier instead yielding a suboptimal curve. 

The proposed global approach has been implemented in C providing an et%- 
cient portable investment allocation tool GLOFP, (Global Optimization in Finan- 
cial Planning). Computational results show that GLOFP can be used in an on-line 
fashion to construct the efficient frontier of even large-scale multi-stage invest- 
ment models. Work is under way to accommodate several alternative financial 
planning models and other nonlinear dynamic policies. 

5. Conclusions 

The deterministic global optimization tool GLOFP obtains the efficient frontier 
of dynamically balanced investment problems with no transaction costs over a 
multi-stage planning horizon. Computational results suggest that the approach 
can be applied in an online fashion even for large-scale investment problems - 

guaranteeing always convergence to the global optimum point. When applied to 
real-life dynamically balanced investment problems an improved efficient frontier 
over the one generated with a widely used local solver (Lasdon et al., 1978) 
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Fig. 5. Comparison with local solver. 

was found. The presented global optimization algorithm readily generalizes for 
von Neumann Morgenstem expected utility functions, other financial planning 
models and decision rule-based strategies such as constant proportional portfolio 
insurance (e.g. Perold and Sharpe, 1988). Work in this direction is currently 
under way. In addition, we are exploring the intergration of stochastic programs 
with decision rules and traditional stochastic programs for long-term financial 
planning problems. 
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