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Abstract: The S-System formalism provides a popular,
versatile and mathematically tractable representation of
metabolic pathways. At steady-state, after a logarithmic
transformation, the S-System representation reduces
into a system of linear equations. Thus, the maximization
of a particular metabolite concentration or a flux subject
to physiological constraints can be expressed as a linear
programming (LP) problem which can be solved explic-
itly and exactly for the optimum enzyme activities. So far,
the quantitative effect of parametric/experimental uncer-
tainty on the S-model predictions has been largely ig-
nored. In this work, for the first time, the systematic
quantitative description of modeling/experimental un-
certainty is attempted by utilizing probability density dis-
tributions to model the uncertainty in assigning a unique
value to system parameters. This probabilistic descrip-
tion of uncertainty renders both objective and physi-
ological constraints stochastic, demanding a probabilis-
tic description for the optimization of metabolic path-
ways. Based on notions from chance-constrained
programming and statistics, a novel approach is intro-
duced for transforming the original stochastic formula-
tion into a deterministic one which can be solved with
existing optimization algorithms. The proposed frame-
work is applied to two metabolic pathways characterized
with experimental and modeling uncertainty in the ki-
netic orders. The computational results indicate the trac-
tability of the method and the significant role that mod-
eling and experimental uncertainty may play in the opti-
mization of networks of metabolic reactions. While
optimization results ignoring uncertainty sometimes vio-
late physiological constraints and may fail to correctly
assess objective targets, the proposed framework pro-
vides guantitative answers to questions regarding how
likely it is to achieve a particular metabolic objective
without exceeding a prespecified probability of violating
the physiological constraints. Trade-off curves between
metabolic objectives, probabilities of meeting these ob-
jectives, and chances of satisfying the physiological con-
straints, provide a concise and systematic way to guide
enzyme activity alterations to meet an objective in the
face of modeling and experimental uncertainty. © 1997
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INTRODUCTION

Cell metabolism is a complex structure of biochemical re-
actions characterized by several levels of regulation. Recent
studies have shown that cell metabolism is close to an op-
timal state aimed at satisfying a set of particular objectives,
for example minimum energy production (Savinell and Pal-
son, 1992), minimum NADH synthesis (Savinell and Pal-
son, 1992), enhanced oxygen transport (Bailey et al., 1990),
etc. This optimal state has been implicitly achieved through
the evolutionary process aimed at maximizing the chances
of survival with respect to the current environmental con-
ditions. However, in a biochemical industrial process, under
defined medium and controlled environment, the full poten-
tial of the catalytic activity of the utilized microorganism is
frequently not achieved because the wild strains have not
adapted to their new objective (Bailey et al., 1990). This
new objective is maximum production or selectivity of a
desired biochemical product. Recent developments and the
new understanding of the regulatory mechanism of cell me-
tabolism promises a way for a manifold increase in the
productivity of virtually every biotechnological process by
employing genetically engineered microoragnisms. The cel-
lular metabolic controlling mechanism is two-fold: It in-
volves translational regulations where the amount of an en-
zyme present in the system is controlled, and reaction level
regulations where the activity of an enzyme is modified, by
a present modulator (Sanwal et al., 1971; Stephanopoulos
and Valino, 1991). A remarkable characteristic of cell me-
tabolism is the “complex” response to simple changes in the
control mechanism. For example, a single change in only
one controlling step can result in a decline of its flux control
and in increase in the flux control of other steps, which
limits the extent to which the flux can be increased. In such
cases, “aggregated” modeling of the system under consid-
eration is preferred, as opposed to looking at each control-
ling step separately (Bailey et al., 1990).

There has been considerable effort spent in the math-
ematical modeling of biochemical processes. For a long
time, the dominant models used to describe enzyme kinetics
in complex metabolic pathways have been the Michaelis-
Menten formalism and various linear representations. The
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latter is appealing because of its simplicity and mathematithe availability of a detailed kinetic description, Shiraishi
cal tractability, while the former fairly accurately describesand Savageau (1992c) concluded that the model is ill-
the kinetics of enzymatic reactions carried out in vitro. Bothdefined because of the unrealistically narrow interval in
of these models fall into the category of Conventional Massvhich steady-state can be achieved. This example shows
Action (CMA) models (Shiraishi and Savageau, 1992a)that considering only “best-estimate” values without quan-
While the precision of the linear representation can be intifying their “reliability” may not always provide a complete
sufficient away from the steady-state, Michaelis-Mentenand useful description.
kinetics, even though nonlinear, may fail to account for While the presence of model and experimental uncer-
allosteric effects (Shiraishi and Savageau, 1992a; Savageatajnty and its effect on the predictive power of the S-System
1995), and can be mathematically intractable (Shiraishi anchodel has been recognized (Torres, 1994a; Hatzimanikatis
Savageau, 1992a). et al., 1996a), its quantitative description has not yet been
Synergetic or S-Systems were developed based on treddressed. It is the objective of this paper to quantitatively
Biochemical Systems Theory (BST) formalism introduceddescribe the effect of model/experimental uncertainty of the
by Savageau and co-workers (Savageau 1969a, 1969kinetic orders of the S-System on the optimization of meta-
1970, 1976; Savageau et al., 1987a, 1987b). In this mathzolic pathways. We propose to describe this uncertainty
ematical formalism, the change in each metabolite is reprewith probability density distributions. The resulting proba-
sented by two competing power-law functions describingbilistic metabolic pathway optimization problem is then
aggregation and consumption. The advantage of this repreéransformed into an equivalent problem that can be solved
sentation is that, while it preserves some of the nonlineawith available optimization algorithms. Finally, two ex-
characteristics of the real system at steady-state, after @amples are included to highlight the proposed framework of
logarithmic transformation it reduces into a linear system ofanalysis and optimization under kinetic orders uncertainty.
equations which can be solved efficiently for the unique
solution. This enables enzyme level optimization by the
means of linear programming (Voit, 1992; Regan et al. THE S-SYSTEM FORMALISM
1993; Torres et al., 1996) and recently regulatory control
structure optimization by mixed-integer linear programming
(MILP) (Hatzimanikatis et al., 1996a, 1996b). Background
While mathematically appealing, the predictive power of
the S-System representation of metabolic pathways graddrhe S-System formalism is based on BST which proposes
ally diminishes away from the nominal steady-state, bethe use of power-law functions to describe the nonlinear
cause the values for the model coefficients, calculated at theature of biochemical processes Savageau (1976, 1990).
nominal steady-state, change. An example of such a case lignder the S-System formalism, the change in every me-
the application of the S-System formalism to the optimiza-tabolitex; is represented as a sum of “accumulation” flux,
tion of the citric acid production byAspergillus niger V.*, and of “consumption” fluxV,”, expressed as an aggre-
(Torres et al., 1996). The authors observed that when thgated power-law function of the metabolite concentrations
predicted optimal steady-state deviated significantly fromx; and the enzyme activitieg, wherei orj = 1,...,N
the nominal one, the predictions of the mathematical modefienote the metabolites, akd= 1, ...,M denote the en-
became unrealistic. To overcome this difficulty, the authorszymes catalyzing the metabolic network at hand.
proposed the introduction of additional constraints based on
stoichiometric relations between particular fluxes. How- dx
ever, this action does not provide a complete answer, since ot Vi =V;
the expressions for these fluxes are still calculated using the
S-System parameters evaluated at the nominal steady-state. N "
Therefore, when enzyme levels and their regulatory struc- Viza H i H Yok
ture are changed over a wide range, it becomes important to K

=1 k=1
account for uncertainty (imprecision) in the optimization :
model. Furthermore, model parameters may be subject to N M
considerable experimental error due to either (i) our inabil- Vi =b, H X H yhik
ity to measure certain quantities with sufficient precision; j=1 k=1

(ii) the varying nature of the measured quantity, or (iii)

because the measurements are taken under different enWote that, after specifying the enzyme activitigsthe me-
ronmental conditions. For example, in the analysis of thaabolite concentrations are uniquely specified by the solu-
tricarboxylic acid cycle inDictyostelium discoideunde-  tion of system of ODE’s. Therefore the metabolite concen-
tailed kinetic data have been compiled (Wright et al., 1992afrationsx, are denoted adependentariables and the en-
1992b) and alternative kinetic formalisms for integratedzyme activitiesy, asindependentThe model parameteg;,
biochemical systems have been examined (Shiraishi ani;, gi, andhj, are thekinetic ordersand the constantg and
Savageau, 1992a, 1992b, 1992c, 1992d). However, despite are therate constantsThe kinetic orders are defined as,
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X vy These formulations involve the maximization of an objec-
0 :\Fa_xj tive functionf(x;, y,) which can be a particular metabolite
! concentration, a flux, or any other metabolic property that is
oYk B\ linear or expressible in BST format, as a function of me-
gik_v_ra_yk tabolite and enzyme concentrations which are subject to
steady-state flux balances and to lower and upper bounds on
h = X Vi metabolite concentrations and enzyme activities. Linear op-
TV o timization problems of the above form have been previously
B used to solve metabolic pathway optimization problems
/ :E% (Voit, 1992; Regan et al., 1993; Torres et al., 1996). Lower
« Vi 9k and upper bounds on metabolite concentrations are typically

and are closely related to the elasticity coefficients of theQetermmed from physiological considerations (e.g., toxic-

enzymes in the metabolic control analysis (MCA) frame-1%Y» €C.). Bounds 0&10-20% around the nominal steady-
work (Savageau et al., 1987a). The rate constants can state values have been_suggested as reasonable (Voit, 1992;
be calculated from flux data. The S-System representation i£0"eS €t al., 1996). Niederberger et al. (1992) suggested
obtained by representing all functional relationships (i.e. @t ranges between 0.1 and 50 times the basal enzyme
rate laws, conservation relations, and fluxes) by first-orde@Ctivity are feasible. In addition, upper and lower bounds
Taylor expansion in logarithmic space (Savageau, 1990yMay be placed on some fluxes, bearing in mind that fluxes
The advantage of Taylor expansion in logarithmic space agannot be increased indefinitely. In particular, fluxes di-
opposed to Taylor expansion in linear space is that the inverging from the pathway under consideration must be kept
herent nonlinearity of the system is somewhat preserved arfelose to their basal values to avoid disturbing the rest of the
this seems to extend the range over which the S-Systeg€ll metabolism. Finally, Torres et al. (1996) described ad-
representation is valid (Voit, 1990). The kinetic orders canditional constraints in the form of relationships between
be evaluated from kinetic data in vitro (Savageau, 1976metabolic fluxes aimed at preserving the stoichiometry of
Voit et al., 1991), from steady-state experiments in situthe process.
(Voit et al., 1991), or from dynamic experiments (Voitetal., Based on this linear metabolic pathway representation at
1991; Sorribas et al., 1993). steady-state, the optimization of metabolic pathways has
At steady-state (i.edx /dt = 0) the S-System reduces to been studied by several researchers. Voit (1992) utilized
a set of algebraic nonlinear equations: linear programming (LP) to optimize the yield in xanthine
monophosphate and guanosine monophosphate production.

N M
b. - L
— ) In(x) + CZhO) In(v)) = In <_'> Regan et al. (1993) utilized LP for the optimization of the
=1 (G =y InC g (G = Pid Intvd & toluene degradation pathway. Later, Dervakos and Dean
i=1,...,N (1994) formulated the metabolic system addressed earlier in
By performing the following logarithmic variable transfor- (VOit, 1992) as a mixed-integer linear programming (MILP)
mations, problem by constraining the number of enzyme levels that

can be manipulated. The optimal enzyme manipulations
were derived depending on how many enzyme levels were
validated by the monotonicity of the logarithmic function, allowed to change. Recently, Torres et al. (1996) applied
the nonlinear system of equations can be recast in a linedinear programming techniques to the optimization of citric

form: acid by Aspergillus niger.Finally, Hatzimanikatis et al.

N M (19964, 1996b) proposed a novel mixed-integer linear pro-
2 (g = hy)% + 2 (G — NS = In (E) i=1,....N gramming approach to optimize not only the enzyme levels
=1 k=1 &; but also the entire control superstructure of metabolic path-

This implies that optimization studies under the logarithmi-Ways- The encouraging results from all these contributions

cally transformed S-System formalism yield linear optimi- indicate that manifold improvements are achievable, usually
zation formulations (Voit, 1992): by the modification of several enzyme levels and control

structures. However, there still exists doubt about how re-
max (%, %) liable these estimations are and whether the model predic-
tions will be validated in practical applications.

X =In(x),j=1,...,Nand§, =In(y), k=1,...,M

N M
subject to E (g5 — hy% + E (i — hi %=
k=1

=1

o(2) i1

L <In(x”)

N Sources of Uncertainty in the
' S-System Formalism

A major concern in optimization studies of S-Systems is

In(x") <
)< that this formalism is docal representationThis is a con-

%
In(y,) < 9, < In(yY)
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sequence of the fact that the S-System representation is@PTIMIZATION OF METABOLIC PATHWAYS
first-order Taylor expansion in logarithmic space around theACCOUNTING FOR UNCERTAINTY

original (nominal) steady-state of the real system. There-

fore, while the values for the S-System parametgrshy Description

are “exe}ct” at the original stea(.dy'-state, thei'r prec?sion tendsrhe S-System representation is based on the assumption
to deteriorate away from the original operating point. DUe oy kinetic ordersemain unchangeébr different metabo-
the employed aggregation procedure, pathways with differjjie concentrations and enzyme activities (local representa-
ent control or regulatory structures may sometimes yield th¢jon). However, discrepancies between S-model predictions
same S-System representation (Cascante et al., 1991), syghd actual experimental data imply that this assumption is
gesting that system information is sometimes lost during thenly partially correct and that in reality there are always
formulation of the S-System model. In addition, kinetic or- some differences between experimental measurements and
ders are sometimes directly determined from experimentahodel predictions. These discrepancies can be reconciled
data which are subject to experimental error (Sorribas et alhy recognizing that the values of the kinetic orders are not
1993). Especially when the metabolite concentrations areonstant (independent of metabolite concentrations and en-
very low, the uncertainty associated with the employedzyme activities), but may vary around some nominal values
measuring techniques is typically very high. For examplecalculated at the nominal steady-state. This viewpoint im-
the reported concentration 2.9 -40M (Torres, 1994a) of plies that the kinetic order parameters may sample more
the key metabolite oxaloacetate #spergillus nigerin-  than one value for different metabolite concentrations and
volves an experimental scatter as high as 25 to 30%.  €nzyme activity levels. In this paper, this intuitive abstrac-
This suggests that any result obtained by S-System modion is expressed mathematically by utilizing probability
eling is typically subject tanodelingand/orexperimental den_5|ty_d|str|but|ons_ to _descnbe the likelihood of different
uncertainty. Several attempts have previously been made {§2lizations of the kinetic orders.
evaluate the performance of the S-System as applied to
metabolic pathway modeling. Voit and Savageau (1987Mathematical Representation

compared the performance of different representationsrh . . .
L . ) e S-System representation, as derived above, is:
within BST as opposed to the Generalized Mass Action y P

(GMA) of metabolic pathways described by the Hill equa- N M

tion or Michaelis-Menten kinetics. It was concluded that the E (g5 = hy) In () + > (G~ i
S-System is valid over a wider range of metabolite concen- = b o
trations. Cascante et al. (1991) utilized a second-order Tay- In(y,) =In (;) i=1,...,N

lor expansion to address the problem of having different
metabolic systems sharing the same S-System represent&fter subtracting the nominal steady-state description,
tion. The problem of the S-System accuracy away from the N v
original state is troubling, considering that after genetic en- _ "
gineering of some enzyme levels, metabolite concentrations ,:21 (G =) In (669 + ; (Gh = M
and fluxes might differ by orders of magnitude. N\
In summary, the following are some of the sources of In(yg) =In (a) i=1,...,N
uncertainty in the optimization of metabolic pathways rep-

resented by the S-System formalism: we obtain
N M
1. Model uncertainty away from the steady-state (Torres et .
al. 1996) y away Y ( EAinj+kZBikYk:0,|:1,...,N
.y ’ j=1 =1
2. ldentical S-System representation for different control or
regulatory structures (Cascante et al., 1991); ere
3. Experimental error in the kinetic parameters of the S- Aj=g; —hy
System or the associated non-linear kinetic model (Sor- B.=q.—h
ribas et al., 1993); e = G ™ i
4. Experimental error in the measured metabolite concen- X = In(xj/>q*s)

trations in the original steady-state (Torres, 1994a). Y, = In(yy

Failure to consider these sources of uncertainty in theand the superscrigisstands for nominal steady-state value.
mathematical description of the metabolic process may renn the latter representation, the reaction coefficients are no
der the predictions of the optimization process unreliabldonger present and the metabolite concentrations and en-
and in disagreement with the attributes of the real systermyme activities are represented by the natural logarithm of
after the genetic manipulation. their steady-state scaled values.
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This representation involves a number of important fea-distribution. This probabilistic description yields the follow-
tures: ing stochastic metabolic pathway optimization problem
(SMOP) under probabilistically described uncertainty of the

1. The metabolite flux balance (i.eV," = V,7) at the o .
kinetic orders:

nominal steady-state is satisfied for any realizatioApf
and B;, maintaining internal consistency of the model.

2. The reaction rate coefficiengsandb, which are strongly
correlated with the reaction orders and steady-state
fluxes (Sorribas et al., 1993) are eliminated.

3. The metabolite concentrations and enzyme activities are N
expressed as logarithmic deviations from their steady- E
states values. This provides a natural scaling and de-
couples the problem of modeling uncertainty from un-
certainty due to errors in the experimental measurements Prixt <X < XY =B,,j=1,...,N
of the steady-state concentrations. . J X ’ '

max f'

subjectto Pr(f=f") =«

M
A+ D2 BY,=0,i=1,...,N
j=1 k=1

Assuming that modeling and experimental uncertainties Privit = Vs Vv =g,,i =1,...,N
are mutually statistically independent, the variance of each
kinetic order,g;, hy, g, or hj, can be represented as the YesYesY, k=1....M

sum of the modeling uncertainty and experimental uncer-
tainty. For example, the uncertainty of the kinetic orderFormulation SMOP involves a set of constraints imposing a
g; is, probability of at leastx satisfying the performance objec-
tive, and of the probabilitiegy and B,, maintaining the
Var(g;) = Varm°d(gij) + Var™ig;) metabolite concentrations and fluxes between some lower
where Var™4g;) is the variance due to modeling and and upper bounds. These constraints are catleahce-
Var®qg;) due to experimental uncertainty. Thus, the vari-constraints.Apart from the chance-constraints, a steady-
ances of the elementy; = g; — h; andB, = gj, - hj, are state flux equilibrium equality is included which must be
equal to satisfied for every realization of the uncertain parameters
A;, By andX;. In addition, lower and upper bounds on the
Var(A;) = Var(g;) + Var(hy) - 2Co\(g;, hy) enzyme activitiesy, (deterministic variables) are imposed.
Var(By) = Var(g;) + Var(hy) - 2Coug;. hi Formulation SMOP identifies the maximum value of the
where Coug;, h;) and Cougj, h) are the covariances Performance targdt—that the stochastic performance ob-
betweerg;, h; andgj,, h, respectively. Finally, covariances jectivef, whichis a function ok;, i, A;, andB;—can meet
between different elements of the two-dimensional arraydVith probability of at leastx (e.g., 90%), and at the same

A; andB,, are given by: time maintain all metabolite concentrations and fluxes
within their respective lower and upper bound, with prob-
CouAy, Ary) = Cougy, Gyr) + Couhy, hyy) ability greater than or equal tB, and B, respectively.
= Cov(gy, hyj) = CoUhy, gij) Therefore, the solution of SMOP will have at least @n
CoMBy, Biy) = CoMgl, Gne) + CoMh,, ho) chance of meeting_ thg performance objectivg ant_j at least a
— CoVd.. h.w) = Covh.. o By chance of satisfying all imposed physiological con-
Owglk! |’k') 0\( ik gl'k') % . . ) .
straints. For example, fox = 0.5, there is a fifty-fifty
Cov(A;, B = Co(g;, g/ + Covhy, hy) chance of meeting the performance objecfivédigher val-
- CoM(g;, ) — Coxhy, gy ues ofa reflect a more conservative attitude. Note that the

values ofﬁxj can be specified separately for each constraint
based on the importance of maintaining feasibility. For ex-
ample, upper bounds on toxic intermediate concentrations
The probabilistic description of uncertainty in kinetic ordersmust be satisfied with a high probability, while lower and
described above renders both metabolite concentrations amgbper bounds on metabolites which are not involved in ad-
fluxes stochastic. Therefore, unless a particular realizatiojacent pathways or regulatory superstructures may be “re-
of the uncertain parameter§;, By is specified, questions laxed” by specifying a smaller value fg. By solving
regarding the satisfaction of physiological constraints andSMOP for different values o& and 8, trade-offs between
performance objectives cannot be answered. Whileathe the performance objective targé}, the probabilitya of
priori identification of the realization of the uncertain pa- meeting this performance target, and the probabﬂgpyof
rametersd;, By, and consequently of metabolite concentra-satisfying all physiological requirements can readily be es-
tions and fluxes, is impossible, the evaluation of the prob+ablished. By manipulating the values of the probability
ability of meeting a performance objective or a physiologi-levelsa andp the relative importance of meeting a perfor-
cal constraint is computable, if the uncertain paramegrs mance target as opposed to satisfying the physiological con-
B, assumes values from some known probability densitystraints can be adjusted.

Stochastic Formulation
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Deterministic Equivalent Representation square root of the variance Ef ax the chance-constraint

] ) ] __under consideration can equalently be written as
The solution of SMOP requires the evaluation of probability

terms whose calculation for each realization of the deter- n n

ministic variablesy, requires the integration of multivariate E ax —p (E aixi>

probability density distributions. Many integration methods Pr ‘ !

exist, but in general, they all exact a heavy computational [ < n )]1’2
Var 2 X%

penalty due to the employed multidimensional discretiza-

tion (Watanabe and Ellis, 1994), and thus so far have been

restricted to optimization problems with only a few uncer- 0

tain parameters. However, the number of uncertain param- Bl 2 &%
eters in optimization of metabolic pathways is as higiNas < - 7
(N + M). For example, a metabolic pathway problem in- Var E -
volving N = 10 metabolites an = 5 enzymes involves i &%

as many as 150 uncertain parameters, without counting the

metabolite concentrations. In this study, to deal with such @&ecause the normal distribution is stable, the left hand side
high number of possibly correlated uncertain kinetic orderspf the inequality under the probability sign is a normally
the transformation of the original stochastic constaints intaistributed random variable with a mean of zero and a vari-
equivalent deterministic ones is sought without having toance of one (standardized form). Thusdifis the standard-
rely on computationally intensive discretization of the un-ized normal cumulative density distribution, then the
certain parameters. To this end, the deterministic equivalenthance-constraint can be replaced by the following deter-
representation of the chance-constrained formulations baseuinistic equivalent expression

on the ideas pioneered by Charnes and Cooper (1959, 1960,

=

1963) is pursued.
Based on the work of Kataoka (1963), assuming that the KB (.E axi>
uncertain parameterd; and By, follow stable probability P = 7 | =«
density distributions, (e.g., normal, Poisson, Chi-square, bi- [Var (E ax )]
nomial, Cauchy, Levy, etc.), chance-constraints which are

linear in terms of the uncertain parameters can be trans-

formed into equivalent deterministic constraints (Vajda,BY applying the i inverse of the cumulative normal distribu-

1970; Allen et al., 1974). Note that a probability density tion function ®*, which is a monotonically increasing

distributiond is stable if it can be completely specified with function, on both sides of the last relation upon rearranging

up to two parameters and the convolution of any two dis-We get:

tribution functions is of the same form. For example, the 1o

convolution of the two parameter stable distributiohs -

(X~ Uy/vy) and® (x - uv,) has to be again of the fore (2 M) @ [Var (E A% ) ] =0

(x—ulv) (Vajda, 1970). Due to its widespread acceptance

and simplicity, the normal distributionu(= w andv = o) After applying the definition for the mean and the variance

is selected in this work to describe the probability associate@f the linear combination of stochastic parameters we have

with each realization of the kinetic ordegg, h, gj andhy. N

Nevertheless, the proposed framework is general enough -1

account for any stable distribution. Becaugeand B, are Iz (@) X + (o)

equal to the difference of two kinetic orders they are also

described by normal probability distributions. n nAn 12
First, a linear chance-constraint is addressed, to highlight [E Var(a) X +2 E E xCoua;, ) Xi’] <0

the basic steps of the deterministic equivalent representation - =2 =1 =

of chance-constraints: The inverse of the cumulative density normal distribution
N &1, for different probability levelsy, is tabulated and ap-

Pr (E ax < 0) > proximated with an analytical formula in Abr_amowitz and

- Stegun (1972). As goes to zero or one, the inverse of the

cumulative normal distribution goes to minus or plus infin-
Herea; denotes the uncertain (stochastic) parameters (i.eity, respectively. It is a strictly monotonically increasing
A;, By) and x are deterministic variables (such ¥g, not  function of a, negative fora less than 0.5 and positive for
to be confused with the metabolite concentrations.ji(ef) a greater than 0.5. Inspection of the deterministic equivalent
denote the expected value af, Var(g) the variance of, constraint reveals that it is composed of the mean of the
andcoua;, ;) the covariance between uncertain parametersriginal constraint augmented by the square root of its vari-
a; and a,.. By subtracting the mean and dividing by the ance timesb™ (). Typically, « is greater than 0.5 and thus
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®Y(«) = 0. This implies that the variance term penalizes detAl

the deterministic constraint, making it more restrictive than X = detA’J = ..».N
the original constaint. This is consistent with the intention to
satisfy the original constraint not only at the mean point but Ay A - Agy

for other realizations with probability greater or equabto
Note that as the imposed probability of satisfying the
constaint increase® *(«) increases as well, implying that
the stricter (more conservative) the imposed probability lev-
els are, the more difficult it will be to satisfy the chance- e
constraint. In the limit ofx = 1, ® *(«) diverges to plus At Aw A
infinity and the chance-constraint becomes rigorously infea-

sible for any values of the deterministic variablgs 544 detal =
Kataoka (1963) showed that the squared root of the vari-
ance,

A21 A22 T 'A2N

where defA =

M
Ay - A _2 BuY, Aujr - A
)

ol$nd

Ay - Aojq - E ByY, Asjsr - Aoy
k=1

is a convex function inx. Therefore, the deterministic
equivalent constraint is convex far= 0.5 and concave for

a < 0.5. Convexity of the deterministic equivalent repre-
sentation of the chance-constraint carries great significance
in optimization studies because it greatly facilitates the

. o > ) Acr - Ay — A
identification of the optimum solution. N1 N1 é BruiYic Anjea NN

j
DETERMINISTIC EQUIVALENTS FOR Fe:ﬁA IS eisq:aret:]‘t"‘;”x with Ie'eme”@g ??OLA d's etﬂ“t"’;]'
SMOP EORMULATION o the matrixA with the j™ column substituted with the

elements of the vector

The SMOP formulation involves the following sets of con-
straints having uncertain parameters: - E B Yk

N Both detA and detAl involve nonlinear products of the

@) 2 Ay X+ E BiY,=0,i=1,...,N uncertain parametew;, which cannot be handled by the
= Kt deterministic equivalent representation described in the pre-
vious subsection. To remedy this situation the linear ap-
proximation of defA and detd is sought with respect to the
uncertain parametew;. The expansion of deA (ignoring

2 Prf=1)=a

L U HE—
©) PrXr < X% < X7) = By, ] = 1,....N products betweer®;’s) around the nominal steady-state
sl _ Ut ) yields (Babbar, 1955),
(4)  Prvit=sVvisVYH =By, i=1,...,N
N N
Each one of these constraints demands a different course of detA LdetA+ Z Z AA; Cofy(A
action for transforming it into an equivalent deterministic R =
form. WhereA; is the nominal steady-state (mean) valueApf
Ai' = Aij - Aij
Metabolite Flux Balance Constraints and A is the matrix of the mean valueégl of A;, and

Cof; (A) is theij™" cofactor ofA

Constraint set (1) is unique because it must be satisfied with Cof, (A) — (1) detM,
probability one for every realization of the uncertain param-
etersA;, By, X if the consumption/production fluxes for Matrix MIJ is derlved from the original matrix After eras-
each metabolite are to match at steady-state. Constraint seg thei' row andj™ column. This approximation is valid
(1) forms a linear square system of equations with un-only if the deviationsAA; are small compared with the
knowns the metabolite concentratioks The solution of mean valuegy;. For example, if an error term is 10%, then
this system yields the product of two errors is only 1% of the product of the
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means. The appropriate expansion of éétin cofactors
yields:

N

M
detA\J == E <_ E BikYk> COfIJA
k=1

i=1

Mz
M= 21

‘s

1 1=1

14

FImFI’m’aijm'j'CO\(Almi Al’m’)

N
n

1 m'=1

Mz
Mz

- (YO A)(FirBm) COMA L, Byo)

1}
[y
ry

1

After applying the same rules to the expansion of the co-

factorsCof; A we obtain

Cof, AOCOf;A+ E E AA,.Cofl A

WhereCofl A denote the cofactors of matriafter elimi-
nating row i and column j. After combining the last two
results we get,

N

M
detlAJ = E - E BikYk
k=1

i=1

Cof, A+ E E AA,,Cof,l A

i=1 m=1
I#i m#j

which after rearranging yields:

N M
detA=> [ - > B,Y, | Cof;A
i=1 k=1
N N N M
w22 D -2 By |cofi A | AA,,
=1 m=1 i=1 k=1
m#j | i#l

The quality of the Babbar (1995) approximation is veri-
fied for the determinant of matriA in Example 1 Monte
Carlo (MC) simulation (Tong, 1990) was used to generate
random normal variate&; with meansA; and variances of
1%, 2.5% and 5% times the mean values respectively. This
allowed the derivation of the “exact” probability distribu-
tion of detA. The comparison between the Babbar (1955)
approximation and the MC simulation exact results (see
Table I) demonstrates that the Babbar (1955) approximation
describes reasonably well the cumulative probability distri-
bution of detA.

Metabolic Objective Chance-Constraint

In this work, two different metabolic objectives are consid-
ered: (i) maximization of the steady-state concentration of a
specific metabolite, and (ii) maximization of a particular
flux. The first objective involvesf(= X, f' = X)) and
yields the following chance-constraint,

Pr(X =X)=a

wherej is the metabolite whose concentration needs to be
maximized and?(jt is the metabolite concentration target to
be met with probability of at least. After substituting the

This expression can be simplified by introducing the aux-&PProximation forX; and rearranging we get,

iliary variablesF,,, andd,,; as follows:

i EBY Coft A o=l "
= kY | Cofpy A By = 1 m#j
il

The expression for de¥ then further simplifies to
N M N N
detA = > ( -> BikYk> Cofy A+ > > FimdmiAAm
i=1 k=1 =1 m=1

After applying the mean and variance operatores toAdet
and detAl we obtain:

W (detA) = det A
N N N R
Var (detA) = 2 > > (Cof A)(Cof.; JCoWAy , A ;)
i=1 j=1i'=1j'=1
N M R
w (detA) = > ( > ,kYk> Cof;A
i= k=1
Var (detA) =

N M
> > (Y,Cof A(Y, Cof ; AICOUBy, B)

i'=1k'=1

V=

>

i=1

Pr(X detA - detA < 0) = «

Because uncertain parameters appear linearly in this
chance-constraini{ is deterministic), based on the analysis
presented in subsection 3.4, its deterministic equivalent is,

R(X detA - detA) + @7Y(a) [Var(X detA
- detA)]¥2< 0

After substituting the expressions for the means of the linear
approximations of def and detA' we have:

w(X; detA - detA)
Table I. Comparison of the cumulative probability distribution values of

det A obtained by Monte Carlo (MC) simulation and estimated with the
approximation of Babbar (1955).

o=1% o= 25% o = 5%
MC Appr. MC Appr. MC Appr.
0.442 0.577 0.599 0.651 0.544 0.622
0.737 0.720 0.805 0.758 0.683 0.693
0.921 0.913 0.923 0.844 0.885 0.814
0.985 0.960 0.996 0.948 0.970 0.901
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-

t i - . _
(detA) — . (detA) vt
W M P E i detAJ + 2 (glk detA)Yk e detA

[ j=1

t R
= X! detA - 2( EBkYk> Cof,A = wor

i
i=1

The substitution of the variance expressions yields: [ o Vi i
, Pr| > hy detA + > (hj detA)Y, =In [ —= | detA
Var (X detA - detA) | j=1 k=1 Vi _

-

N N N N =
= ; ngl z mz (X‘CoﬁmA Fimdmy) ,:ﬁe_;r:(etﬂlqcipg the nonlinear tproduog@ detA andhj, det
~ Wi eir linear approximations,
(XCOf A = Fi ) COMAy, Avy) pproxt .
N M N M gllk detA Dgi’k det\A + gi’k (detA - detA)
+ 2 2 > > (%Cof A, Cot, ACOWBy, Byy) + detAldi~ 8 )
i=1 k=1 =1 k'=1 i’k detA Dhi’k det\A + hi’K\ (detA - detA)
N M N N + detA(hj, -
Ao .
2 ; g ; "21 (VL0 AYX[COlmA = Firndin) the resulting chance-constraint is linear in the uncertain pa-
CoMA,, B,,) rameters and deterministic variables; thus its deterministic

. . _ equivalent representation is convex to== 0.5 and can be
Note that despite the complexity of the expressions pregptained as shown earlier.
sented above, the deterministic equivalent representation of

the chance-constraint objective, is convex foe= 0.5 as

shown in (Kataoka, 1963). Lower and Upper Bounds on

The second type of a metabolic objective involves theMetabollte Concentations

maximization of a metabolite flux,f(= Vi, f* = V*')  Constraint set (3) implies that the metabolite concentrations
which either consumes (=) or produces (+) metabdlite must be within some lower and upper bounds with some

Based on the S-System representation we have, designated probabilitf, :
N M PriX- < X < X7) =
Vi = [ %o T v . PIOG=X=XDZ R
e 1 Unlike constaint (2) which imposes a probability target on a
N v ;ipgle const_r_aint, congtr_gint set (3) impos_es a limit on the
V —a 1—[ i H yh:k Jo_l_nt _probab_lllt_y of feasibility of two constrglnts. The proba-
' ! ) ko bilistic restriction on the chance-constraint set (3) can be

_ o ) decoupled as follows. Because,
After performing the logarithmic transformation and sub-

L — Uy _ _ Ly _ U
tracting the nominal steady-state flux balance we have: PriXr <= X < X7) = 1 - Pr(X < X7) - Pr(X% = X7)
and
(V-l-ss) le 9y % + E Gik Yic OF PriX, < X) = 1 - Pr(X- < X), Pr(X, = X")
= 1-Pr(X < X)

M
> 2 hIJ j + E hi,k Yk we have
k=1

PrXr < X, < X)) = Pr(X- < X) + Pr(X, < X)) - 1
After subsntutmg in the chance-constraint designating the
metabolic objective, Therefore, the original joint probability on the left hand side

of the chance-constraint decomposes into the sum of two

PV = Vi = « non-jointed probability expressions:
the previous expressions we obtain: PriXt < X)) + Pr(X, < XY) = 1 + Bx
N M t+ ..
Vy By defining,
= =~ VA B = Pr(X- < X) andp;’ = Pr(X; < X

\Vide )] and performing the following transformation of variables,
=
V;se

t}‘ = q)_l(Bj") andtjU = q)_l(BjU)

M
[z h; % +2 hi Y, = In (
k=1

After replacing the metabolite concentrations with their lin-the deterministic equivalent representation of the “de-
ear approximation and rearranging we have: coupled” chance-constraint on the metabolite bounds is:
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pO¢ = X) + tvar(X)]*2<0,j = 1,...,N
p(X - X)) + t[Var(X)]*2< 0,j = 1,...,N
D) + D) = 1+ By

L
Y= D In(i)za k=1, ... ,M
|

L
However, this representation is nonconvex due to the pres- E zg=1,k=1,....M
ence of the product§[Var(X;)]¥2 and t’[Var(X)]"2. Al- !
though multiple local optima may exist in theory, this was 7 = {0,1}

not observed in practice after employing multiple starting

points. Of course, this is only indicative and not a rigorouswherez, is a binary variable assuming values of only zero
proof for the existence of a unique optimum. Note that byor one. The second constraint requires that only one of the
utilizing a global optimization algorithms, such a8B  binary variables,, 7., . . ., %_is equal to one. Thus, the
(Androulakis et al., 1995) the identification of the global logarithmic deviation of the enzyme levelg, can assume

optimum can be guaranteed. Alternately, by considering th&nly values equal to one of the discrete levels. Note that the
lower and upper bounds separately, addition of these constraints in the SMOP model transforms

L_ _ — WUy = it into a mixed integer nonlinear programming (MINLP)
PriXj =< X)) = Bx, andPr(X < X7) = Bx problem which, however, can be solved using existing
the nonconvexities are eliminated. MINLP solvers.

Lower and Upper Bounds on Metabolite Fluxes COMPUTATIONAL RESULTS

Constraint set (4) imposes lower and upper bounds on M& o metabolic pathway optimization studies are addressed

e o s e a0 NG he proposed famewor of anaiss nd ot
. By, ysIs p _ ization of metabolic pathways under experimental and/or
Fhodeling uncertainty. First, an introductory example is con-
sidered where reasonable values for the variance of the ki-
N M netic orders are selected to reflect the experimental uncer-
< E g; X + 2 AP tainty in the S-System kinetic orders. The characteristics of
=1 k=1 the model and the significance of the obtained results are
briefly discussed. Next, the framework of analysis and op-
v - timization is applied to a reference pathway described by
Vs =By known Michaelis-Menten kinetics. The sources of model
uncertainty in the S-System kinetic orders are identified and
L N M a comparison between the deterministic S-System optimi-
Vi ) 2 h. X + E h.Y, zation, the nonlinear optimization using the known rate ex-
= ij 7N ik Tk ! . .
=1 k=1 pressions, and the proposed framework is drawn. All opti-
mization models have been implemented with General Al-
VT gebraic Modeling System (GAMS) (Brooke et al., 1988)
vV;ss = ij_ and run on a RS6000-43P-132 IBM workstation.

concentrations and enzyme activities:

vt
1

\[F,SS
I

Pr] In

<In

Pr| In

V_—,SS

<In

Following the same line of analysis presented in the previ-
ous subsection the deterministic equivalent representatio
can be obtained.

xample 1: Yield Optimization in XMP and
MP Production

In this example, the sum, of the concentrations of xanthine

Modeling Discrete Enzyme Expression Levels monophosphate (XMP) and guanosine monophosphate
GMP) is maximized. A schematic of the simplified meta-

So far we have assumed that the enzyme levels can take aé%lic pathway is shown in Figure 1. A complete description

value between a lower and an upper bound. This requiresg\f the metabolic pathway can be found in (Voit, 1992). The
currently nonexistent level of precision for the genetic ma’S-System representation of the pathway is: ’

nipulations. A more realistic description of the enzyme lev-
els can be accomplished by assuming that they can assumedx; e IO
only a finite number of values (Hatzimanikatis et al., Ezgomso'sﬁo'syl‘10(2'55(20'&30'2&0'2)/2
1996b). Therefore, enzymie may assume only,1..,L
different levels denoted by,,. For example, if the level of d_X2
enzymek can be changed by only +20% or £50%, the set of (t
feasible enzyme level manipulationsyjge {0.5, 0.8, 1, 1.2, q
1.5}. This discrete enzyme level manipulation can be ex- 9% - -

) y P 200(2'5X30'5y3 - 10’(2'37(35413/4

= 10057567 ya¥ays ~ 1006567 % Yoy

pressed mathimatically with the following constraints, dt
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Figure 1. Diagram of the simplified pathway of XMP and GMP synthe-

alpha=99% -4---
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Objective, X4
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600

500 L L
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 095 1
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Figure 2. Objective value target for different specificationscofand 8.

sis. Solid lines denote reactions and dashed lines denote regulatory inter-

actions.

d

= 30856, - 100Gy,
The nominal steady-state concentrationsxgfe= 5.42,x5°
= 213,x3° = 2,417 andxj® = 482. The nominal enzyme
concentrationsy;, and their kinetic orders are equal to one.
The optimization problem to be solved is defined as:

1. Objective: Maximize the concentratiog.
2. Constraints:

uncertainty can be tolerated the only “feasible” choice is
the nominal steady-stat@he effect of the probability level

« on the achievable objective target is not quite as pro-
nounced as the effect @, but it acts in the same direction.
This implies that the effect of uncertainty is to penalize the
prediction of the derterministic model.

Plotted in Figure 3 are the optimal enzyme activities for
different values of3 with « = 0.5. Clearly, the optimum
enzyme activity profile is “strongly” dependent on the
choice of B, implying thatthe answer to the question of
what are the best enzyme activity levels depends on how

(&) The enzyme activities can be varied between 0.2 andften physiological constraints are allowed to be violated.

5 times their nominal steady-state values.
(b) The concentrations of;, x,, and X; must remain
within £10% of their nominal steady-state values.

As B moves towards one, all of the enzyme activities tend
to “aggregate” towards their nominal steady-state values.
The “speed” of this aggregation for different enzymes illus-

trates the relative sensitivity of physiological constraints on

Based on the analysis procedure described in the previousifferent enzymes. Figure 4 addresses the sensitivity of en-

section, the deterministic equivalent representation of theyme activities for different values of the probability lewel
chance constrained formulation is first obtained. A numbefyhile keepingB = 0.95. Clearly, the optimal enzyme ac-

of optimization runs were performed for different values oftjvity profile appears to be largely unaffected (far <

the probability levelsx and B to vary the relative impor-

tance of meeting the objective target as opposed to satisfy-
ing the physiological constraints. The variance of the pa:
rametersA; and B is assumed to be 2% of their mean
values. The mean values are taken from Voit (1992). A 2% .,
variance for a normally distributed uncertain parameter im- £
plies that 99% of the times the realization of the uncertairj:1
parameter will be, (£0.02 - 2.58 - mean), away from the:
mean value (Kreyszig, 1993). Figure 2 illustrates the opti-
mization results. Clearly, the higher the valuep{more
likely to satisfy the physiological constraints), the lower is
the value of the achievable with probabilitytarget onx,.
Note that if uncertainty is ignored, a maximum concentra-™
tion of x, = 3,972 is predicted. However, for probability
levels as low asx = B = 0.5, this value appears to be
unachievable (violates physiological constraints more thai
50% of the time). AsB approaches unity, the achievable

TCSS

nzyme Exp

objective target approaches the original steady-state valugigure 3. Optimal enzyme levels for different values pfwith «
50%.

This is consistent with the fact thanless a finite level of
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- T T T metabolic pathway is shown in Figure 6. The predictions of
15t ;’; DR the proposed stochastic framework are compared with those
P L4l ¥3 e ignoring modeling uncertainty. To check the validity of
g ’ y4 o both predictions, we assume that the irreversible Michaelis-
= 13 ¢ zg ] Menten kinetics model provides the “true” description of
2 the metabolic pathway. The predictions of the S-System
2 1.2 ¢ . . . . .
= - with and without considering uncertainty are thus contrasted
&5 Ly e 1 against the Michaelis-Menten representation. The relevant
g L | kinetic parameters and nominal steady-state properties are
5 given in Table Il. The S-System representation of this meta-
= 09 1 bolic pathway yields:
08 ' : . : L : . . A d—Xl = 91591 — . x i iayPis
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 095 1 gt = e~ Bty
Alpha
e gy h_Jh,
Figure 4. Optimal enzyme levels for different values afwith g = Tt~ QpXg?Y 5%~ b2)(222)(424)/223
95%.
% —a Xg31Xg32Xg34ygésy93,4 -b Xh33W,5
0.9999) by the value of the probability level This means de o T2 T Is e 5
that physiological constraints are more strongly affected by dx,
uncertainty. Figure 5 illustrates the effect of the extent of the —= = axJuydis — byl

uncertainty on the objective target by considering uncertain dt
parameter variances equal to 1,2,5 and 10% of the mean The parameters of the S-System were calculated from the
values. The results indicate, as expected, that the quantitagte equations based on the approach outlined in (Torres,
tive effect of the extent of parameter uncertainty on achiev1994a)_ By following the analysis described in Appendix A
able objectives is very pronounced and changes rapidly ifhe S-System modeling uncertainty, represented by the vari-
the 1-2% range. ance-covariance terms of the kinetic ordegs by, is esti-

The optimization runs described above indicate that eveiated in Appendix B.
a 2% variance in the S-System parameters may have a The optimization task considered is defined as:
profound effect on the reliability of the obtained optimiza- o o
tion results with respect to satisfying physiological con-1- Objective: Maximize the flux\G; or V)

straints and meeting the objective target. 2. Constraints: o _
(&) Maintain enzyme activities between 0.1 and 10 times

_ o their nominal steady-state values.
Eﬂxgcggﬁ:?gzUr?ch;{g;ﬁ?)t/lon under (b) Keep all metabolite concentrations within 20% of
their nominal steady-state values.
In this example, a reference metabolic pathway proposed by (c) Fix the activity ofy, at the nominal steady-state
(Sorribas et al., 1993) is examined. The diagram of the value.

The last restriction was introduced to break the symmetry of

4000 T T T ‘St D' _ 1"7 ' the pathway and eliminate some of the multiple solutions.
3500 | St Dav=2% . 1  This multiplicity of solutions is also observed elsewhere
St. Dev.=5% & (Dervakos and Dean, 1994; Hatzimanikatis et al., 1996b)
3000 ¢ St. Dev.=10% - 1 and is due to the imposed lower and upper bounds on the
S 2500 | enzyme levels.
& First, the nonlinear programming (NLP) problem based
g 2000 - on the Michaelis-Menten rate expressions is optimized as-
= 1500 suming that the latter provides a “perfect” description of the
5 L
1000 |
Y1 —mmTTTs
s00 T X5 X1 \Yi _ .
Y5 o Y6
0 L e X3 ——=—— X4 ————
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 ,
Beta X6—2 X2 /g - '
.~
Figure 5. Objective value target for different variance values of the
S-System parameters. Figure 6. Reference metabolic pathway of Example 2.
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Table Il.  Nominal steady-state values and kinetic parameters for Ex-1.2

ample 2.

1 -
X Conc. Vi Vmax Km Kia

0.8 1/

X, 2 A 3 100 —
X, 3 Yo 3 250 — 0.6 -
Xg 1 Vs 5.33 6.67 6.67
X4 2 Va 5.50 15 2 0.4 4
Xg 50 Vs 3 1 —
X 50 Yo 3 2 — 02

0 4

metabolic pathway. These solutions are summarized i1, "1 P14 h22 h24 h33 hd4 g31 g32 g34 g43 33 g34

Table Ill. The tabulated ranges of val_u_e_s, instead of Smgl%igure 7. Magnitude of the S-System parameters of Example 2: (white)-
values, for some of the enzyme activities and metabolitéhe S-System parameters at the original steady-state; (black)-the same pa-
concentrations, imply that the optimal objective value isrameters estimated at the new steady-state using second-order Taylor ex-

unaffected by changing the enzyme levels or metabolitdansion; (grey)-the S-System parameters recalculated at the new steady-
concentrations within these ranges. The values of the gate.

System kinetic orders are (i) recalculated and (ii) estimated

using second-order Taylor expansion at the new optima]I. . . . .
steady-state obtained from the optimization of the Micha- Ite concentrations, a number of p_hysmlogu:al_ constraints

elis-Menten representation. These results are plotted in Fi are violated. Thes_e res_ults, sho_w_n n Table_IV, indicate th‘fﬂ
ure 7. The first bar (white), denotes the values of the gSome of the physiological restrictions are violated. Specifi-

' ! I 0, 0,
System kinetic orders at the original steady state. The Se&al(ljy,igoe/villuis de;:ved fr?rz.’ X3 andx4. are.SOA), 153&
ond bar (black), gives the values of the S-System kineti n d _T_ \gher tI arigtg:'r respectéved(ljmpose. hqpper
orders at the new steady-state estimated with a second-ord punds. 1orres etal. ( ) suggested adding stoichiomet-
Taylor expansion (see Appendices A,B). The third bariC constraints for the dependent fluxes to reduce the S-
(grey), represents the values of the S-System kinetic orde ystem. errors away from the steady-state. After introducing
recalculated at the new steady-state. Clearly, the new valudd® stoichiometric constraints Mp = V; and 1.5/, =

of some of the S-System kinetic orders significantly differo'?]\_lf3 'Phthe mode![,_ thel nelwt_r esu_lts are shown in 'It'_abletr\]/ '
from the ones at the original steady-state. The greatest diIW ie the new optimal Solution 1S more consefvative, e
hysiological constraints are again violated by as much as

ference is observed for the kinetic orders which depend O'L1?7(V N hat th bility of all soluti firmed
enzyme levels (i.egas, Gsn Gss Ghe aNdgsy). This is ex- 6. Note that the stability of all solutions was confirme

pected because the range within the enzyme concentratiort?g eigenvalue analysis of the steady-state description based

are allowed to vary is much wider than the one for theonNthe I\/;:chael]:s-Menten rfatﬁ expressmdns. hasti o
metabolite concentrations. Error bars denote the 99% inter- ext the performance of the proposed stochastic optimi-

val of confidence for the second-order Taylor expansionzation of the S-System representation is evaluated. The re-

estimates of the kinetic orders. Note that the recalculate('iUItS from th.e splutlon of the SMOP formglauon for the
values of the kinetic orders at the new steady-state ar&*PeCted objective values and corresponding enzyme ex-
within these confidence intervals pression levels at = 0.5 and severgb values are shown

To measure the effect of neglecting modeling error on th in Table VI. The predicted optimal enzyme levels (see Table

optimization of S-Systems the metabolic pathway was op- [) are then substituted back into the Michaelis-Menten

timized based on the S-System representation at the originginetiC description to check whether the proposed approach

steady-state. The resulting optimum objective function ir|_successfully hedged against uncertainty. The results, which

volved a value of 7.62 for the flux/;. However, after
substituting the obtained optimal enzyme activities in the

. . i . Table IV. Optimal enzyme levels obtained by solving the S-System op-
Michaelis-Menten descnptlon and solvmg for the metabo'timization problem without accounting for modeling uncertainty. The

listed objective value and metabolite concentrations are estimated by sub-

Table Ill.  Optimal enzyme levels and metabolite concentrations for Ex-stituting the enzyme levels in the Michaelis-Menten description of the
ample 2 based on the Michaelis-Menten formalism. pathway.
Objective Enzyme Metabolite Objective Enzyme Metabolite
flux levels conc. value levels conc.

Vi = 10.64 y, = 10.0y, X, = [0.95 - 1.20k,**>  V = 10.65 y, = 10.0y, X, = 1.16¢°°
Yo = 1.29,% X = 1.206%° Y2 = 1.3,% X = 1.80¢
y; = [8.34 — 10.0¥5°° X3 = [0.80 — 1.20%;>° ys = 10.0y5°° Xz = 3.28°°
Vs = 1.00/,% Xs = 0.80¢ Ya = 1.00/,% Xy = 167,
Ys = [6.51 — 7.94¥5° Vs = 4.64/5°
Yo = 7.9%6™ Yo = 5.68/5™
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Table V. Optimal enzyme levels and resulting metabolite concentrations The implementation of metabolic optimization based on
obtained for the S-System optimization with stoichiometric constraints. {ha S-System formalism, or for that matter any other math-

Objective Enzyme Metabolite ematical formalism, faces several difficulties. The first one
value levels conc. is the scarcity of experimental data. Though kinetic infor-
mation on many biochemical reactions exists, it is either
V; = 3.57 y, = 2.91y,%® X, = 1.25¢° . Lo o .
v — 13,5 Yo — 12905 obtaln_ed in vitro or the enzyme activity is ghqractensuc for
Va = 2415 x, = 1.40¢> @ particular microorganism. When the definition of a meta-
Yy, = 1.00y,% x, = 0.9,  bolic pathway is compiled from data from different sources,
Vs = 2.095> the discrepancies due to different experimental techniques
Yo = 2496 and different environments may lead to ill-defined models.

In addition, some of the experimental measurements are

prone to significant experimental error. The systematic op-
were proven to be stable, are shown in Table VII. Thesaimization of metabolic pathways based on mathematical
results demonstrate that while the predicted optimal objecmodeling, however, provides a valuable tool for identifying
tive values are more conservative than those for the detepromising directions of enzyme activity alterations in meta-
ministic S-System, all physiological constraints are satisfietholic pathways which are typically characterized by highly
if a high enough value of is selected. Specifically, all complex responses. It was the objective of this work to
physiological constraints are satisfied fogreater than 0.8. enhance the practical value of these predictions by coupling
Variation ofa, as in the previous example, did not affect the these optimization studies with a quantitative description of
optimal enzyme levels significantly. While no general con-uncertainty.
clusions can be drawn from this example, the results are While the approach so far has been focused on continu-
indicative that in certain cases the optimization procedureus enzyme activity alterations within the S-System repre-
carried out without considering model uncertainty may leadsentation formalism, it is general enough to handle discrete
to misleading results. However, by modeling kinetic orderenzyme level manipulation and/or the optimization of the
uncertainty and selecting a large enough value3fdieasi-  regulatory structure of enzymatic pathways (Hatzimanikatis
bility of all physiological constraints in the face of kinetic et al. (1996a,b)) as well as other mathematical formalisms
order uncertainty can be guaranteed. used to describe metabolic pathways.

SUMMARY AND CONCLUSIONS APPENDIX A: ESTIMATION OF THE VARIANCES
In this paper, a probabilistic description of the S-SystemAND COVARIANCES OF THE KINETIC ORDERS

coefficients was introduced for quantitatively evaluating gjyen sufficient experimental data on metabolite concen-
and optimizing metabolic pathway S-System models assoyations, enzyme activities, and fluxes, rigorous regression
ciated with modeling and/or experimental uncertainty. Theechniques can be applied to derive unbiased estimates of
selection of the S-System formalism was based on its relgyeans, variances and covariances as described in (Maranas,
tive popularity and mathemgtical tractability.. Based on N0-1997) in the context of optimal molecular design. However,
tions from chance-constrained programming and mathtor most metabolic pathways such detailed information is
ematical statistics, a novel approach was introduced fopqt gyailable. Therefore, a second-order Taylor expansion
trans_fqrming the o_riginal stochastic formulati_0f1_ into a d_e'around the nominal steady-state is employed to estimate the
terministic one which can be solved with existing optimi- yodel uncertainty in the kinetic orders within the imposed
zation algorithms. The deterministic transformation waspounds of the metabolite concentrations and enzyme levels.
based on two assumptions: (i) the approximation introducegote that the S-System representation stops at the first-order
by Babbar (1955) which neglects second and higher ordefayjor expansion. A second-order Taylor expansion was
products of error terms in the calculation of the metabolitetjjized by Cascante et al. (1991) to improve predicting the
concentrations, and (ii) the description of uncertain paraMiesponse of a metabolic system to perturbation. The second-

eters (kinetic orders) with stable probability distributions. orger Taylor expansion of the flux; in log-log space
While optimization results ignoring uncertainty may violate yields:

physiological constraints and yield unrealistically optimistic

estimates for the objective targets, the proposed framework X oV
provides quantitative answers to questions regarding how (V) = In(VE=) + > <Vj+a—'> X
likely it is to achieve a particular objective without violating J 5 /s
any physiological constraints. Trade-off curves between Vi OV

metabolic objectives, probabilities of meeting these objec- E <—a—> Yy

tives, and chances of satisfying physiological constaints < AV M/ s

provide a concise and systematic way to guide enzyme ac- 1 wx, 92"

tivity alterations to meet an objective in the face of model- — E E ﬁ_'> XX,
ing and experimental uncertainty. 204\ v oaxax )

+
+
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Table VI. Optimal solutions of the (SMOP) formulation far = 0.5 and a number of values
for B.
B \) Y1 Y2 Y3 Ya Ys Ye
0.50 5.4319 18.110 3.914 26.613 5.500 10.974 12.146
0.60 4.2483 12.871 3.707 19.351 5.500 8.583 9.214
0.70 3.5337 9.948 3.570 15.192 5.500 7.140 7.507
0.80 3.0406 8.051 3.472 12.435 5.500 6.144 6.361
0.90 2.6474 6.615 3.395 10.312 5.500 5.349 5.470
0.95 2.4498 5.921 3.357 9.272 5.500 4.950 5.031
1 Y 92V Y 02V,
3[BT ey S X
ik VI 3)(j(9yk ss Vi aykax ss
2\F d V
A (D 3 () v,
k
20 4 A\ v ooy ) 2 Vi WYYk )
1 Ve VT In this work the S-System parameters are described as nor-
o > ( v — ] Y.Ye mal random variables whose variability results from the fact
koK Vi Wi ) s that the magnitudes of the enzyme and metabolite concen-

o =G5 2(“ v )

i 0%0%;

2\ 7+
L (ﬂ”) y
21 4=\ V] 90y -

Vi 92V}
9y

gI’k = grSS 2| <
<YkYk
e\ V) 9YidYi

2
hy = hess 2(xjx ERYA

2!

o).
0.
).

j/

k

%

k’

After recastingV;" in the usual power-law form the kinetic
orders are no longer functions only of the steady-state bu
also depend on the deviations of the metabolic concentra-
tions and enzyme levels from the steady-state values:

trations at the optimal state will be different from those at
he nominal (original) steady-state. Thus, the variance of the
-System parameters may be described as the sum of the
allowable deviation of these quantities. For example, in Ex-
ample 2 the enzyme levels are allowed to vary between 0.1
and 10 times the nominal steady-state. Thus, varigpall
range between In(0.1F -2.3026 and In(10)= 2.3026. If
this range is assumed to represent the 99.99% confidence
interval, the variance contribution of, to the S-System
parameters which depend on it will be (2.3026/3.98%)
0.3345, because the quantile of the double sided probability
interval of 99.99% is equal to 3.981 (see Kreyszig (1993)).
Based on the second-order Taylor expansion, the kinetic
orders are expressed as linear functions of the deviapns
andY;. This enables the evaluation of the covariances be-
tween the S-System parameters. For example, the covari-
ance betweeg; andh;., is

Cowug;, hyj)
2\ /+ 2\ /-
IS (90 V(a7
B 2 (V* %0 Vo 0% SSVar(X,)

Vi 9%0%;
M 2\ /+
+_ <X1yk d V ) +1—2 <Xij a7V, ) (ijk Vi ) var(y,)
k
2! Vi %0k ) 44\ VS 0x0Yy s \ Vi %00y )
Table VII.  Optimization results of (SMOP) substituted into the Michaelis-Menten model and the
maximum per cent violation of the imposed lower and upper bounds.
Max.
B Vi Xq Xo X3 X4 viol.
0.50 6.6889 2.676 4.493 1.561 2451 30.1%
0.60 4.9079 2.549 4.061 1.335 2.280 12.8%
0.70 3.9110 2.470 3.798 1.211 2.175 4.7%
0.80 3.2622 2.415 3.621 1.132 2.106 0.6%
0.90 2.7707 2.372 3.485 1.074 2.053 0.0%
0.95 2.5330 2.352 3.421 1.048 2.028 0.0%
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The second-order derivative terms in the above equationReferences
can be evaluated from kinetic data or known kinetic laws in

the form of Hill's equation or generalized Michaelis-
Menten kinetics.

APPENDIX B: ESTIMATION OF KINETIC ORDER
UNCERTAINTY IN EXAMPLE 2
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