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Abstract: The S-System formalism provides a popular,
versatile and mathematically tractable representation of
metabolic pathways. At steady-state, after a logarithmic
transformation, the S-System representation reduces
into a system of linear equations. Thus, the maximization
of a particular metabolite concentration or a flux subject
to physiological constraints can be expressed as a linear
programming (LP) problem which can be solved explic-
itly and exactly for the optimum enzyme activities. So far,
the quantitative effect of parametric/experimental uncer-
tainty on the S-model predictions has been largely ig-
nored. In this work, for the first time, the systematic
quantitative description of modeling/experimental un-
certainty is attempted by utilizing probability density dis-
tributions to model the uncertainty in assigning a unique
value to system parameters. This probabilistic descrip-
tion of uncertainty renders both objective and physi-
ological constraints stochastic, demanding a probabilis-
tic description for the optimization of metabolic path-
ways. Based on notions from chance-constrained
programming and statistics, a novel approach is intro-
duced for transforming the original stochastic formula-
tion into a deterministic one which can be solved with
existing optimization algorithms. The proposed frame-
work is applied to two metabolic pathways characterized
with experimental and modeling uncertainty in the ki-
netic orders. The computational results indicate the trac-
tability of the method and the significant role that mod-
eling and experimental uncertainty may play in the opti-
mization of networks of metabolic reactions. While
optimization results ignoring uncertainty sometimes vio-
late physiological constraints and may fail to correctly
assess objective targets, the proposed framework pro-
vides quantitative answers to questions regarding how
likely it is to achieve a particular metabolic objective
without exceeding a prespecified probability of violating
the physiological constraints. Trade-off curves between
metabolic objectives, probabilities of meeting these ob-
jectives, and chances of satisfying the physiological con-
straints, provide a concise and systematic way to guide
enzyme activity alterations to meet an objective in the
face of modeling and experimental uncertainty. © 1997
John Wiley & Sons, Inc. Biotechnol Bioeng 56: 145–161, 1997.
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INTRODUCTION

Cell metabolism is a complex structure of biochemical re-
actions characterized by several levels of regulation. Recent
studies have shown that cell metabolism is close to an op-
timal state aimed at satisfying a set of particular objectives,
for example minimum energy production (Savinell and Pal-
son, 1992), minimum NADH synthesis (Savinell and Pal-
son, 1992), enhanced oxygen transport (Bailey et al., 1990),
etc. This optimal state has been implicitly achieved through
the evolutionary process aimed at maximizing the chances
of survival with respect to the current environmental con-
ditions. However, in a biochemical industrial process, under
defined medium and controlled environment, the full poten-
tial of the catalytic activity of the utilized microorganism is
frequently not achieved because the wild strains have not
adapted to their new objective (Bailey et al., 1990). This
new objective is maximum production or selectivity of a
desired biochemical product. Recent developments and the
new understanding of the regulatory mechanism of cell me-
tabolism promises a way for a manifold increase in the
productivity of virtually every biotechnological process by
employing genetically engineered microoragnisms. The cel-
lular metabolic controlling mechanism is two-fold: It in-
volves translational regulations where the amount of an en-
zyme present in the system is controlled, and reaction level
regulations where the activity of an enzyme is modified, by
a present modulator (Sanwal et al., 1971; Stephanopoulos
and Valino, 1991). A remarkable characteristic of cell me-
tabolism is the “complex” response to simple changes in the
control mechanism. For example, a single change in only
one controlling step can result in a decline of its flux control
and in increase in the flux control of other steps, which
limits the extent to which the flux can be increased. In such
cases, “aggregated” modeling of the system under consid-
eration is preferred, as opposed to looking at each control-
ling step separately (Bailey et al., 1990).

There has been considerable effort spent in the math-
ematical modeling of biochemical processes. For a long
time, the dominant models used to describe enzyme kinetics
in complex metabolic pathways have been the Michaelis-
Menten formalism and various linear representations. The
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latter is appealing because of its simplicity and mathemati-
cal tractability, while the former fairly accurately describes
the kinetics of enzymatic reactions carried out in vitro. Both
of these models fall into the category of Conventional Mass
Action (CMA) models (Shiraishi and Savageau, 1992a).
While the precision of the linear representation can be in-
sufficient away from the steady-state, Michaelis-Menten
kinetics, even though nonlinear, may fail to account for
allosteric effects (Shiraishi and Savageau, 1992a; Savageau,
1995), and can be mathematically intractable (Shiraishi and
Savageau, 1992a).

Synergetic or S-Systems were developed based on the
Biochemical Systems Theory (BST) formalism introduced
by Savageau and co-workers (Savageau 1969a, 1969b,
1970, 1976; Savageau et al., 1987a, 1987b). In this math-
ematical formalism, the change in each metabolite is repre-
sented by two competing power-law functions describing
aggregation and consumption. The advantage of this repre-
sentation is that, while it preserves some of the nonlinear
characteristics of the real system at steady-state, after a
logarithmic transformation it reduces into a linear system of
equations which can be solved efficiently for the unique
solution. This enables enzyme level optimization by the
means of linear programming (Voit, 1992; Regan et al.,
1993; Torres et al., 1996) and recently regulatory control
structure optimization by mixed-integer linear programming
(MILP) (Hatzimanikatis et al., 1996a, 1996b).

While mathematically appealing, the predictive power of
the S-System representation of metabolic pathways gradu-
ally diminishes away from the nominal steady-state, be-
cause the values for the model coefficients, calculated at the
nominal steady-state, change. An example of such a case is
the application of the S-System formalism to the optimiza-
tion of the citric acid production byAspergillus niger
(Torres et al., 1996). The authors observed that when the
predicted optimal steady-state deviated significantly from
the nominal one, the predictions of the mathematical model
became unrealistic. To overcome this difficulty, the authors
proposed the introduction of additional constraints based on
stoichiometric relations between particular fluxes. How-
ever, this action does not provide a complete answer, since
the expressions for these fluxes are still calculated using the
S-System parameters evaluated at the nominal steady-state.
Therefore, when enzyme levels and their regulatory struc-
ture are changed over a wide range, it becomes important to
account for uncertainty (imprecision) in the optimization
model. Furthermore, model parameters may be subject to
considerable experimental error due to either (i) our inabil-
ity to measure certain quantities with sufficient precision;
(ii) the varying nature of the measured quantity, or (iii)
because the measurements are taken under different envi-
ronmental conditions. For example, in the analysis of the
tricarboxylic acid cycle inDictyostelium discoideumde-
tailed kinetic data have been compiled (Wright et al., 1992a,
1992b) and alternative kinetic formalisms for integrated
biochemical systems have been examined (Shiraishi and
Savageau, 1992a, 1992b, 1992c, 1992d). However, despite

the availability of a detailed kinetic description, Shiraishi
and Savageau (1992c) concluded that the model is ill-
defined because of the unrealistically narrow interval in
which steady-state can be achieved. This example shows
that considering only “best-estimate” values without quan-
tifying their “reliability” may not always provide a complete
and useful description.

While the presence of model and experimental uncer-
tainty and its effect on the predictive power of the S-System
model has been recognized (Torres, 1994a; Hatzimanikatis
et al., 1996a), its quantitative description has not yet been
addressed. It is the objective of this paper to quantitatively
describe the effect of model/experimental uncertainty of the
kinetic orders of the S-System on the optimization of meta-
bolic pathways. We propose to describe this uncertainty
with probability density distributions. The resulting proba-
bilistic metabolic pathway optimization problem is then
transformed into an equivalent problem that can be solved
with available optimization algorithms. Finally, two ex-
amples are included to highlight the proposed framework of
analysis and optimization under kinetic orders uncertainty.

THE S-SYSTEM FORMALISM

Background

The S-System formalism is based on BST which proposes
the use of power-law functions to describe the nonlinear
nature of biochemical processes Savageau (1976, 1990).
Under the S-System formalism, the change in every me-
tabolitexi is represented as a sum of “accumulation” flux,
Vi

+, and of “consumption” flux,Vi
−, expressed as an aggre-

gated power-law function of the metabolite concentrations
xi and the enzyme activitiesyk, where i or j 4 1, . . . , N
denote the metabolites, andk 4 1, . . . , M denote the en-
zymes catalyzing the metabolic network at hand.

dxi

dt
= Vi

+ − Vi
−

Vi
+ = ai )

j=1

N

xj
gij )

k=1

M

yk
g8ik

Vi
− = bi )

j=1

N

xj
hij )

k=1

M

yk
h8ik

Note that, after specifying the enzyme activitiesyk, the me-
tabolite concentrations are uniquely specified by the solu-
tion of system of ODE’s. Therefore the metabolite concen-
trationsxi are denoted asdependentvariables and the en-
zyme activitiesyk asindependent.The model parametersgij ,
hij , gik8 , andhik8 are thekinetic ordersand the constantsai and
bi are therate constants.The kinetic orders are defined as,

146 BIOTECHNOLOGY AND BIOENGINEERING, VOL. 56, NO. 2, OCTOBER 20, 1997



gij =
xj
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+

­Vi
+

­xj

g8ik =
yk

Vi
+

­Vi
+

­yk

hij =
xj

Vi
−

­Vi
−

­xj

h8ik =
yk

Vi
−

­Vi
−

­yk

and are closely related to the elasticity coefficients of the
enzymes in the metabolic control analysis (MCA) frame-
work (Savageau et al., 1987a). The rate constantsai, bi can
be calculated from flux data. The S-System representation is
obtained by representing all functional relationships (i.e.,
rate laws, conservation relations, and fluxes) by first-order
Taylor expansion in logarithmic space (Savageau, 1990).
The advantage of Taylor expansion in logarithmic space as
opposed to Taylor expansion in linear space is that the in-
herent nonlinearity of the system is somewhat preserved and
this seems to extend the range over which the S-System
representation is valid (Voit, 1990). The kinetic orders can
be evaluated from kinetic data in vitro (Savageau, 1976;
Voit et al., 1991), from steady-state experiments in situ
(Voit et al., 1991), or from dynamic experiments (Voit et al.,
1991; Sorribas et al., 1993).

At steady-state (i.e.,dxi /dt 4 0) the S-System reduces to
a set of algebraic nonlinear equations:

(
j=1

N

~gij − hij ! ln~xj! + (
k=1

M

~g8ik − h8ik! ln~yk! = ln Sbi

ai
D,

i = 1, . . . ,N

By performing the following logarithmic variable transfor-
mations,

x̂j = ln~xj!, j = 1, . . . ,N andŷk = ln~yk!, k = 1, . . . ,M

validated by the monotonicity of the logarithmic function,
the nonlinear system of equations can be recast in a linear
form:

(
j=1

N

~gij − hij !x̂j + (
k=1

M

~g8ik − h8ik!ŷk = ln Sbi

ai
D, i = 1, . . . ,N

This implies that optimization studies under the logarithmi-
cally transformed S-System formalism yield linear optimi-
zation formulations (Voit, 1992):

max f~xi , yk!

subject to (
j=1

N

~gij − hij !x̂j + (
k=1

M

~g8ik − h8ik!ŷk =

ln Sbi

ai
D, i = 1, . . . ,N

ln~xi
L! ø x̂i ø ln~xi

U!

ln~yk
L! ø ŷk ø ln~yk

U!

These formulations involve the maximization of an objec-
tive function f(xi, yk) which can be a particular metabolite
concentration, a flux, or any other metabolic property that is
linear or expressible in BST format, as a function of me-
tabolite and enzyme concentrations which are subject to
steady-state flux balances and to lower and upper bounds on
metabolite concentrations and enzyme activities. Linear op-
timization problems of the above form have been previously
used to solve metabolic pathway optimization problems
(Voit, 1992; Regan et al., 1993; Torres et al., 1996). Lower
and upper bounds on metabolite concentrations are typically
determined from physiological considerations (e.g., toxic-
ity, etc.). Bounds of±10–20% around the nominal steady-
state values have been suggested as reasonable (Voit, 1992;
Torres et al., 1996). Niederberger et al. (1992) suggested
that ranges between 0.1 and 50 times the basal enzyme
activity are feasible. In addition, upper and lower bounds
may be placed on some fluxes, bearing in mind that fluxes
cannot be increased indefinitely. In particular, fluxes di-
verging from the pathway under consideration must be kept
close to their basal values to avoid disturbing the rest of the
cell metabolism. Finally, Torres et al. (1996) described ad-
ditional constraints in the form of relationships between
metabolic fluxes aimed at preserving the stoichiometry of
the process.

Based on this linear metabolic pathway representation at
steady-state, the optimization of metabolic pathways has
been studied by several researchers. Voit (1992) utilized
linear programming (LP) to optimize the yield in xanthine
monophosphate and guanosine monophosphate production.
Regan et al. (1993) utilized LP for the optimization of the
toluene degradation pathway. Later, Dervakos and Dean
(1994) formulated the metabolic system addressed earlier in
(Voit, 1992) as a mixed-integer linear programming (MILP)
problem by constraining the number of enzyme levels that
can be manipulated. The optimal enzyme manipulations
were derived depending on how many enzyme levels were
allowed to change. Recently, Torres et al. (1996) applied
linear programming techniques to the optimization of citric
acid by Aspergillus niger.Finally, Hatzimanikatis et al.
(1996a, 1996b) proposed a novel mixed-integer linear pro-
gramming approach to optimize not only the enzyme levels
but also the entire control superstructure of metabolic path-
ways. The encouraging results from all these contributions
indicate that manifold improvements are achievable, usually
by the modification of several enzyme levels and control
structures. However, there still exists doubt about how re-
liable these estimations are and whether the model predic-
tions will be validated in practical applications.

Sources of Uncertainty in the
S-System Formalism

A major concern in optimization studies of S-Systems is
that this formalism is alocal representation.This is a con-
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sequence of the fact that the S-System representation is a
first-order Taylor expansion in logarithmic space around the
original (nominal) steady-state of the real system. There-
fore, while the values for the S-System parametersgij , hij

are “exact” at the original steady-state, their precision tends
to deteriorate away from the original operating point. Due to
the employed aggregation procedure, pathways with differ-
ent control or regulatory structures may sometimes yield the
same S-System representation (Cascante et al., 1991), sug-
gesting that system information is sometimes lost during the
formulation of the S-System model. In addition, kinetic or-
ders are sometimes directly determined from experimental
data which are subject to experimental error (Sorribas et al.,
1993). Especially when the metabolite concentrations are
very low, the uncertainty associated with the employed
measuring techniques is typically very high. For example,
the reported concentration 2.9 · 10−4mM (Torres, 1994a) of
the key metabolite oxaloacetate inAspergillus nigerin-
volves an experimental scatter as high as 25 to 30%.

This suggests that any result obtained by S-System mod-
eling is typically subject tomodelingand/orexperimental
uncertainty. Several attempts have previously been made to
evaluate the performance of the S-System as applied to
metabolic pathway modeling. Voit and Savageau (1987)
compared the performance of different representations
within BST as opposed to the Generalized Mass Action
(GMA) of metabolic pathways described by the Hill equa-
tion or Michaelis-Menten kinetics. It was concluded that the
S-System is valid over a wider range of metabolite concen-
trations. Cascante et al. (1991) utilized a second-order Tay-
lor expansion to address the problem of having different
metabolic systems sharing the same S-System representa-
tion. The problem of the S-System accuracy away from the
original state is troubling, considering that after genetic en-
gineering of some enzyme levels, metabolite concentrations
and fluxes might differ by orders of magnitude.

In summary, the following are some of the sources of
uncertainty in the optimization of metabolic pathways rep-
resented by the S-System formalism:

1. Model uncertainty away from the steady-state (Torres et
al., 1996);

2. Identical S-System representation for different control or
regulatory structures (Cascante et al., 1991);

3. Experimental error in the kinetic parameters of the S-
System or the associated non-linear kinetic model (Sor-
ribas et al., 1993);

4. Experimental error in the measured metabolite concen-
trations in the original steady-state (Torres, 1994a).

Failure to consider these sources of uncertainty in the
mathematical description of the metabolic process may ren-
der the predictions of the optimization process unreliable
and in disagreement with the attributes of the real system
after the genetic manipulation.

OPTIMIZATION OF METABOLIC PATHWAYS
ACCOUNTING FOR UNCERTAINTY

Description

The S-System representation is based on the assumption
that kinetic ordersremain unchangedfor different metabo-
lite concentrations and enzyme activities (local representa-
tion). However, discrepancies between S-model predictions
and actual experimental data imply that this assumption is
only partially correct and that in reality there are always
some differences between experimental measurements and
model predictions. These discrepancies can be reconciled
by recognizing that the values of the kinetic orders are not
constant (independent of metabolite concentrations and en-
zyme activities), but may vary around some nominal values
calculated at the nominal steady-state. This viewpoint im-
plies that the kinetic order parameters may sample more
than one value for different metabolite concentrations and
enzyme activity levels. In this paper, this intuitive abstrac-
tion is expressed mathematically by utilizing probability
density distributions to describe the likelihood of different
realizations of the kinetic orders.

Mathematical Representation

The S-System representation, as derived above, is:

(
j=1

N

~gij − hij ! ln ~xj! + (
k=1

M

~g8ik − h8ik!

ln~yk! = ln Sbi

ai
D, i = 1, . . . ,N

After subtracting the nominal steady-state description,

(
j=1

N

~gij − hij ! ln ~xj
ss! + (

k=1

M

~g8ik − h8ik!

ln~yk
ss! = ln Sbi

ai
D, i = 1, . . . ,N

we obtain

(
j=1

N

AijXj + (
k=1

M

BikYk = 0, i = 1, . . . ,N

where

Aij = gij − hij

Bik = g8ik − h8ik

Xj = ln~xj/xj
ss!

Yk = ln~yk/yk
ss!

and the superscriptssstands for nominal steady-state value.
In the latter representation, the reaction coefficients are no
longer present and the metabolite concentrations and en-
zyme activities are represented by the natural logarithm of
their steady-state scaled values.
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This representation involves a number of important fea-
tures:

1. The metabolite flux balance (i.e.,Vi
+ 4 Vi

−) at the
nominal steady-state is satisfied for any realization ofAij

andBik maintaining internal consistency of the model.
2. The reaction rate coefficientsai andbi which are strongly

correlated with the reaction orders and steady-state
fluxes (Sorribas et al., 1993) are eliminated.

3. The metabolite concentrations and enzyme activities are
expressed as logarithmic deviations from their steady-
states values. This provides a natural scaling and de-
couples the problem of modeling uncertainty from un-
certainty due to errors in the experimental measurements
of the steady-state concentrations.

Assuming that modeling and experimental uncertainties
are mutually statistically independent, the variance of each
kinetic order,gij , hik, g8ij , or h8ik, can be represented as the
sum of the modeling uncertainty and experimental uncer-
tainty. For example, the uncertainty of the kinetic order
gij is,

Var(gij) 4 Varmod(gij) + Varexp(gij)

where Varmod(gij) is the variance due to modeling and
Varexp(gij) due to experimental uncertainty. Thus, the vari-
ances of the elementsAij 4 gij − hij andBik 4 g8ik − h8ik are
equal to

Var(Aij) 4 Var(gij) + Var(hij) − 2Cov(gij , hij)
Var(Bik) 4 Var(g8ik) + Var(h8ik) − 2Cov(g8ik, h8ik)

where Cov(gij , hij) and Cov(g8ik, h8ik) are the covariances
betweengij , hij andg8ik, h8ik respectively. Finally, covariances
between different elements of the two-dimensional arrays
Aij andBik are given by:

Cov(Aij, Ai8j8) 4 Cov(gij , gi8j8) + Cov(hij , hi8j8)
− Cov (gij , hi8j8) − Cov(hij , gi8j8)

Cov(Bik, Bi8k8) 4 Cov(g8ik, g8i8k8) + Cov(h8ik, h8i8k8)
− Cov(g8ik, h8i8k8) − Cov(h8ik, g8i8k8)

Cov(Aij, Bi8k) 4 Cov(gij , g8i8k) + Cov(hij , h8i8k)
− Cov(gij , h8i8k) − Cov(hij , g8i8k)

Stochastic Formulation

The probabilistic description of uncertainty in kinetic orders
described above renders both metabolite concentrations and
fluxes stochastic. Therefore, unless a particular realization
of the uncertain parametersAij, Bik is specified, questions
regarding the satisfaction of physiological constraints and
performance objectives cannot be answered. While thea
priori identification of the realization of the uncertain pa-
rametersAij, Bik, and consequently of metabolite concentra-
tions and fluxes, is impossible, the evaluation of the prob-
ability of meeting a performance objective or a physiologi-
cal constraint is computable, if the uncertain parametersAij,
Bik assumes values from some known probability density

distribution. This probabilistic description yields the follow-
ing stochastic metabolic pathway optimization problem
(SMOP) under probabilistically described uncertainty of the
kinetic orders:

max f t

subject to Pr(f ù f t) ù a

(
j=1

N

Aij Xj + (
k=1

M

BikYk = 0, i = 1, . . . ,N

Pr(XL
j ø Xj ø XU

j ) ù bxi
, j 4 1, . . . ,N

Pr(V±,L
i ø V±

i ø Vi
±,U) ù bvi

, i 4 1, . . . ,N

YL
k ø Yk ø Yk

U, k 4 1, . . . ,M

Formulation SMOP involves a set of constraints imposing a
probability of at leasta satisfying the performance objec-
tive, and of the probabilitiesbXj

and bVi
maintaining the

metabolite concentrations and fluxes between some lower
and upper bounds. These constraints are calledchance-
constraints.Apart from the chance-constraints, a steady-
state flux equilibrium equality is included which must be
satisfied for every realization of the uncertain parameters
Aij, Bik andXj. In addition, lower and upper bounds on the
enzyme activitiesYk (deterministic variables) are imposed.

Formulation SMOP identifies the maximum value of the
performance targetf t—that the stochastic performance ob-
jectivef, which is a function ofXi, Yk, Aij , andBik—can meet
with probability of at leasta (e.g., 90%), and at the same
time maintain all metabolite concentrations and fluxes
within their respective lower and upper bound, with prob-
ability greater than or equal tobXj

and bVi
, respectively.

Therefore, the solution of SMOP will have at least ana
chance of meeting the performance objective and at least a
bXj

chance of satisfying all imposed physiological con-
straints. For example, fora 4 0.5, there is a fifty-fifty
chance of meeting the performance objectivef t. Higher val-
ues ofa reflect a more conservative attitude. Note that the
values ofbXj

can be specified separately for each constraint
based on the importance of maintaining feasibility. For ex-
ample, upper bounds on toxic intermediate concentrations
must be satisfied with a high probability, while lower and
upper bounds on metabolites which are not involved in ad-
jacent pathways or regulatory superstructures may be “re-
laxed” by specifying a smaller value forb. By solving
SMOP for different values ofa andb, trade-offs between
the performance objective targetf t, the probability a of
meeting this performance target, and the probabilitybXj

of
satisfying all physiological requirements can readily be es-
tablished. By manipulating the values of the probability
levelsa andb the relative importance of meeting a perfor-
mance target as opposed to satisfying the physiological con-
straints can be adjusted.
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Deterministic Equivalent Representation

The solution of SMOP requires the evaluation of probability
terms whose calculation for each realization of the deter-
ministic variablesYk requires the integration of multivariate
probability density distributions. Many integration methods
exist, but in general, they all exact a heavy computational
penalty due to the employed multidimensional discretiza-
tion (Watanabe and Ellis, 1994), and thus so far have been
restricted to optimization problems with only a few uncer-
tain parameters. However, the number of uncertain param-
eters in optimization of metabolic pathways is as high asN
(N + M). For example, a metabolic pathway problem in-
volving N 4 10 metabolites andM 4 5 enzymes involves
as many as 150 uncertain parameters, without counting the
metabolite concentrations. In this study, to deal with such a
high number of possibly correlated uncertain kinetic orders,
the transformation of the original stochastic constaints into
equivalent deterministic ones is sought without having to
rely on computationally intensive discretization of the un-
certain parameters. To this end, the deterministic equivalent
representation of the chance-constrained formulations based
on the ideas pioneered by Charnes and Cooper (1959, 1960,
1963) is pursued.

Based on the work of Kataoka (1963), assuming that the
uncertain parametersAij and Bik follow stableprobability
density distributions, (e.g., normal, Poisson, Chi-square, bi-
nomial, Cauchy, Levy, etc.), chance-constraints which are
linear in terms of the uncertain parameters can be trans-
formed into equivalent deterministic constraints (Vajda,
1970; Allen et al., 1974). Note that a probability density
distributionF is stable if it can be completely specified with
up to two parameters and the convolution of any two dis-
tribution functions is of the same form. For example, the
convolution of the two parameter stable distributionsF
(x − u1/v1) andF (x − u2/v2) has to be again of the formF
(x − u/v) (Vajda, 1970). Due to its widespread acceptance
and simplicity, the normal distribution (u 4 m andv 4 s)
is selected in this work to describe the probability associated
with each realization of the kinetic ordersgij , hik , g8ij andh8ik .
Nevertheless, the proposed framework is general enough to
account for any stable distribution. BecauseAij andBik are
equal to the difference of two kinetic orders they are also
described by normal probability distributions.

First, a linear chance-constraint is addressed, to highlight
the basic steps of the deterministic equivalent representation
of chance-constraints:

Pr ((
i

n

aixi ø 0) ù a

Here ai denotes the uncertain (stochastic) parameters (i.e.,
Aij , Bik) and xi are deterministic variables (such asYk), not
to be confused with the metabolite concentrations. Letm(ai)
denote the expected value ofai , Var(ai) the variance ofai

andcov(ai , ai') the covariance between uncertain parameters
ai and ai8. By subtracting the mean and dividing by the

square root of the variance of
n
S

i41
aixi the chance-constraint

under consideration can equivalently be written as

Pr 1(
i

n

ai xi − m S(
i

n

ai xiD
FVarS(

i

n

ai xiDG1/2

ø

−mS(
i

n

ai xiD
FVarS(

i

n

ai xiDG1/22 ù a

Because the normal distribution is stable, the left hand side
of the inequality under the probability sign is a normally
distributed random variable with a mean of zero and a vari-
ance of one (standardized form). Thus, ifF is the standard-
ized normal cumulative density distribution, then the
chance-constraint can be replaced by the following deter-
ministic equivalent expression

F 1 − m S(
i

n

ai xiD
FVar S(

i

n

ai xiDG1/22 ù a

By applying the inverse of the cumulative normal distribu-
tion function F−1, which is a monotonically increasing
function, on both sides of the last relation upon rearranging
we get:

m S(
i

n

ai xiD + F−1~a!FVar S(
i

n

ai xiDG1/2

ø 0

After applying the definition for the mean and the variance
of the linear combination of stochastic parameters we have

(
i

n

m~ai! xi + F−1~a!

F(
i=1

n

Var~ai! xi
2 + 2 (

i=1

n

(
i8=i+1

n

xiCov~ai , ai8! xi8G1/2

ø 0

The inverse of the cumulative density normal distribution
F−1, for different probability levelsa, is tabulated and ap-
proximated with an analytical formula in Abramowitz and
Stegun (1972). Asa goes to zero or one, the inverse of the
cumulative normal distribution goes to minus or plus infin-
ity, respectively. It is a strictly monotonically increasing
function of a, negative fora less than 0.5 and positive for
a greater than 0.5. Inspection of the deterministic equivalent
constraint reveals that it is composed of the mean of the
original constraint augmented by the square root of its vari-
ance timesF−1 (a). Typically,a is greater than 0.5 and thus
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F−1(a) ù 0. This implies that the variance term penalizes
the deterministic constraint, making it more restrictive than
the original constaint. This is consistent with the intention to
satisfy the original constraint not only at the mean point but
for other realizations with probability greater or equal toa.
Note that as the imposed probabilitya of satisfying the
constaint increases,F−1(a) increases as well, implying that
the stricter (more conservative) the imposed probability lev-
els are, the more difficult it will be to satisfy the chance-
constraint. In the limit ofa 4 1, F−1(a) diverges to plus
infinity and the chance-constraint becomes rigorously infea-
sible for any values of the deterministic variablesxi.
Kataoka (1963) showed that the squared root of the vari-
ance,

Var ((
i

n

ai xi)
is a convex function inx. Therefore, the deterministic
equivalent constraint is convex fora ù 0.5 and concave for
a ø 0.5. Convexity of the deterministic equivalent repre-
sentation of the chance-constraint carries great significance
in optimization studies because it greatly facilitates the
identification of the optimum solution.

DETERMINISTIC EQUIVALENTS FOR
SMOP FORMULATION

The SMOP formulation involves the following sets of con-
straints having uncertain parameters:

(1) (
j=1

N

Aij Xj + (
k=1

M

BikYk = 0, i = 1, . . . ,N

(2) Pr(f ù f t) ù a

(3) Pr(XL
j ø Xj ø XU

j ) ù bxj , j 4 1, . . . ,N

(4) Pr(Vi
±,L ø Vi

± ø Vi
U,±) ù bvi, i 4 1, . . . ,N

Each one of these constraints demands a different course of
action for transforming it into an equivalent deterministic
form.

Metabolite Flux Balance Constraints

Constraint set (1) is unique because it must be satisfied with
probability one for every realization of the uncertain param-
etersAij, Bik, Xj if the consumption/production fluxes for
each metabolite are to match at steady-state. Constraint set
(1) forms a linear square system of equations with un-
knowns the metabolite concentrationsXj. The solution of
this system yields

Xj =
detAj

detA
, j = 1, . . . ,N

where detA =*
A11 A12 · · ·A1N

A21 A22 · · ·A2N

· · · ·

· · · ·

· · · ·

AN1 AN2 · · ·ANN

*
and detAj =

*
A11 · · · A1,j−1 − (

k=1

M

B1kYk
A1,j+1 · · · A1N

A21 · · · A2,j−1 − (
k=1

M

B2kYk
A2,j+1 · · · A2N

· · · · · · ·

· · · · · · ·

· · · · · · ·

AN1 · · · AN,j−1 − (
k=1

M

BNkYk AN,j+1 · · · ANN

*
HereA is a square matrix with elementsAij andAj is equal
to the matrixA with the jth column substituted with the
elements of the vector

− (
k=1

M

BikYk

Both det A and detAj involve nonlinear products of the
uncertain parametersAij , which cannot be handled by the
deterministic equivalent representation described in the pre-
vious subsection. To remedy this situation the linear ap-
proximation of detA and detAj is sought with respect to the
uncertain parametersAij. The expansion of detA (ignoring
products betweenAij ’s) around the nominal steady-state
yields (Babbar, 1955),

detA ≅ detÂ + (
i=1

N

(
j=1

N

DAijCofij~Â!

WhereÂij is the nominal steady-state (mean) value ofAij ,

DAij 4 Aij − Âij

and Â is the matrix of the mean valuesÂij of Aij , and
Cofij (Â) is the ij th cofactor ofÂ

Cofij (Â) 4 (−1)i+j det Mij

Matrix Mij is derived from the original matrix Aˆ after eras-
ing the ith row andjth column. This approximation is valid
only if the deviationsDAij are small compared with the
mean valuesÂij . For example, if an error term is 10%, then
the product of two errors is only 1% of the product of the
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means. The appropriate expansion of detAj in cofactors
yields:

detAj = − (
i=1

N S− (
k=1

M

BikYkD Cofij A

After applying the same rules to the expansion of the co-
factorsCofij A we obtain

Cofij A ≅ Cofij Â + (
i=1
lÞi

N

(
m=1
mÞj

N

DAlmCoflm
ij Â

WhereCofij
lmÂ denote the cofactors of matrixÂ after elimi-

nating row i and column j. After combining the last two
results we get,

detAj = (
i=1

N S− (
k=1

M

BikYkD
FCofij Â + (

i=1
lÞi

N

(
m=1
mÞj

N

DAlmCoflm
ij ÂG

which after rearranging yields:

detAj = (
i=1

N S− (
k=1

M

BikYkD Cofij Â

+ (
l=1

N

(
m=1
mÞj

N 3(
i=1
iÞl

N 1− (
k=1

M

B̂ikYk2Coflm
ij Â4 DAlm

This expression can be simplified by introducing the aux-
iliary variablesFlm anddmj as follows:

Flm = (
i=1
iÞl

N S− (
k=1

M

B̂ikYkD Coflm
ij Â, dmj = H 0 m = j

1 m Þ j

The expression for detAj then further simplifies to

detAj = (
i=1

N S − (
k=1

M

BikYkD Cofij Â + (
l=1

N

(
m=1

N

FlmdmjDAlm

After applying the mean and variance operatores to detA
and detAj we obtain:

m ~detA! = detÂ

Var ~detA! = (
i=1

N

(
j=1

N

(
i8=1

N

(
j8=1

N

~Cofij Â!~Cofi8j8!Cov~Aij , Ai8j8!

m (detAj) = (
i=1

N S− (
k=1

M

B̂ikYkD Cofij Â

Var ~detAj! =

(
i=1

N

(
k=1

M

(
i8=1

N

(
k8=1

M

~YkCofij Â!~Yk8Cofi8j Â!Cov~Bik, Bi8k8!

+ (
l=1

N

(
m=1

N

(
l8=1

N

(
m8=1

N

FlmFl8m8dmjdm8j8Cov~Alm, Al8m8!

+ (
i=1

N

(
k=1

M

(
l=1

N

(
m=1

N

~YkCofij Â!~Flmdmj!Cov~Alm, Bik!

The quality of the Babbar (1995) approximation is veri-
fied for the determinant of matrixA in Example 1 Monte
Carlo (MC) simulation (Tong, 1990) was used to generate
random normal variatesAij with meansÂij and variances of
1%, 2.5% and 5% times the mean values respectively. This
allowed the derivation of the “exact” probability distribu-
tion of detA. The comparison between the Babbar (1955)
approximation and the MC simulation exact results (see
Table I) demonstrates that the Babbar (1955) approximation
describes reasonably well the cumulative probability distri-
bution of detA.

Metabolic Objective Chance-Constraint

In this work, two different metabolic objectives are consid-
ered: (i) maximization of the steady-state concentration of a
specific metabolite, and (ii) maximization of a particular
flux. The first objective involves (f 4 Xj, f t 4 Xt

j) and
yields the following chance-constraint,

Pr (Xj ù Xt
j) ù a

where j is the metabolite whose concentration needs to be
maximized andXt

j is the metabolite concentration target to
be met with probability of at leasta. After substituting the
approximation forXj and rearranging we get,

Pr(Xt
j det A − det Aj ø 0) ù a

Because uncertain parameters appear linearly in this
chance-constraint (Xt

j is deterministic), based on the analysis
presented in subsection 3.4, its deterministic equivalent is,

m(Xt
j det A − det Aj) + F−1(a) [Var(Xt

j det A
− det Aj)]1/2 ø 0

After substituting the expressions for the means of the linear
approximations of detA and detAj we have:

m(Xt
j det A − det Aj)

Table I. Comparison of the cumulative probability distribution values of
det A obtained by Monte Carlo (MC) simulation and estimated with the
approximation of Babbar (1955).

s 4 1% s 4 2.5% s 4 5%

MC Appr. MC Appr. MC Appr.

0.442 0.577 0.599 0.651 0.544 0.622
0.737 0.720 0.805 0.758 0.683 0.693
0.921 0.913 0.923 0.844 0.885 0.814
0.985 0.960 0.996 0.948 0.970 0.901
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= Xj
t m ~detA! − m ~detAj!

= Xj
t detÂ − (

i=1

N S− (
k=1

M

B̂ikYkD Cofij Â

The substitution of the variance expressions yields:

Var (Xt
j det A − det Aj)

= (
l=1

N

(
m=1

N

(
l8=1

N

(
m8=1

N

~Xj
tCoflmÂ − Flmdmj!

~Xj
tCofl8m8Â − Fl8m8dm8j!Cov~Alm, Al8m8!

+ (
i=1

N

(
k=1

M

(
i8=1

N

(
k8=1

M

~YkCofij Â!~Yk8Cofi8j Â!Cov~Bik, Bi8k8!

+ 2 (
i=1

N

(
k=1

M

(
l=1

N

(
m=1

N

~YkCofij Â!~Xj
tCoflmÂ − Flmdmj!

Cov~Aik, Blm!

Note that despite the complexity of the expressions pre-
sented above, the deterministic equivalent representation of
the chance-constraint objective, is convex fora ù 0.5 as
shown in (Kataoka, 1963).

The second type of a metabolic objective involves the
maximization of a metabolite flux, (f 4 Vi

±, f t 4 Vi
±,t)

which either consumes (−) or produces (+) metabolitei.
Based on the S-System representation we have,

Vi
+ = ai )

j=1

N

xj
gij )

k=1

M

yk
g8ik

Vi
− = ai )

j=1

N

xj
hij )

k=1

M

yk
h8ik.

After performing the logarithmic transformation and sub-
tracting the nominal steady-state flux balance we have:

ln S Vi
+

Vi
+,ssD = (

j=1

N

gij Xj + (
k=1

M

g8ik Yk or

ln S Vi
−

Vi
−,ssD = (

j=1

N

hij Xj + (
k=1

M

h8ik Yk

After substituting in the chance-constraint designating the
metabolic objective,

Pr[V±
i ù V±,t

i ] ù a

the previous expressions we obtain:

PrF(
j=1

N

gij Xj + (
k=1

M

g8ikYk ù ln S Vi
t,+

Vi
+,ssDGù a or

PrF(
j=1

N

hij Xj + (
k=1

M

h8ikYk ù ln S Vi
t,−

Vi
−,ssDGù a

After replacing the metabolite concentrations with their lin-
ear approximation and rearranging we have:

PrF(
j=1

N

gij detAj + (
k=1

M

~g8ik detA!Yk ù ln S Vi
t,+

Vi
−,ssD detAG

ù a or

PrF(
j=1

N

hij detAj + (
k=1

M

~h8ik detA!Yk ù ln S Vi
t,−

Vi
−,ssD detAG

ù a

After replacing the nonlinear productsg8ik det A andh8ik det
A with their linear approximations,

g8ik det A ≅ ĝ8ik det Â + ĝ8ik (det A − det Â)
+ det Â(g8ik − ĝ8ik)

h8ik det A ≅ ĥ8ik det Â + ĥ8ik (det A − det Â)
+ det Â(h8ik − ĥ8ik)

the resulting chance-constraint is linear in the uncertain pa-
rameters and deterministic variables; thus its deterministic
equivalent representation is convex fora ù 0.5 and can be
obtained as shown earlier.

Lower and Upper Bounds on
Metabolite Concentations

Constraint set (3) implies that the metabolite concentrations
must be within some lower and upper bounds with some
designated probabilitybXi

:

Pr(Xj
L ø Xj ø Xj

U) ù bXi

Unlike constaint (2) which imposes a probability target on a
single constraint, constraint set (3) imposes a limit on the
joint probability of feasibility of two constraints. The proba-
bilistic restriction on the chance-constraint set (3) can be
decoupled as follows. Because,

Pr(Xj
L ø Xj ø Xj

U) 4 1 − Pr(Xj ø Xj
L) − Pr(Xj ù Xj

U)

and

Pr(Xj ø Xj
L) 4 1 − Pr(Xj

L ø Xj), Pr(Xj ù Xj
U)

4 1 − Pr(Xj ø Xj
U)

we have

Pr(Xj
L ø Xj ø Xj

U) 4 Pr(Xj
L ø Xj) + Pr(Xj ø Xj

U) − 1

Therefore, the original joint probability on the left hand side
of the chance-constraint decomposes into the sum of two
non-jointed probability expressions:

Pr(Xj
L ø Xj) + Pr(Xj ø Xj

U) ù 1 + bXj

By defining,

bj
L 4 Pr(Xj

L ø Xj) andbj
U 4 Pr(Xj ø Xj

U)

and performing the following transformation of variables,

tj
L 4 F−1(bj

L) and tj
U 4 F−1(bj

U)

the deterministic equivalent representation of the “de-
coupled” chance-constraint on the metabolite bounds is:
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m(Xj
L − Xj) + tj

L[Var(Xj)]
1/2 ø 0, j 4 1, . . . ,N

m(Xj − Xj
U) + tj

U[Var(Xj)]
1/2 ø 0, j 4 1, . . . ,N

F(tLXj
) + F(tLXj

) ù 1 + bXj

However, this representation is nonconvex due to the pres-
ence of the productstj

L[Var(Xj)]
1/2 and tj

U[Var(Xj)]
1/2. Al-

though multiple local optima may exist in theory, this was
not observed in practice after employing multiple starting
points. Of course, this is only indicative and not a rigorous
proof for the existence of a unique optimum. Note that by
utilizing a global optimization algorithms, such asaBB
(Androulakis et al., 1995) the identification of the global
optimum can be guaranteed. Alternately, by considering the
lower and upper bounds separately,

Pr(Xj
L ø Xj) ù bXj

andPr(Xj ø Xj
U) ù bXj

the nonconvexities are eliminated.

Lower and Upper Bounds on Metabolite Fluxes

Constraint set (4) imposes lower and upper bounds on me-
tabolite fluxes (+ or −) to be satisfied with probability of at
leastbVi

. Based on the analysis presented in earlier subsec-
tions, constraint set (4) can be recast in terms of metabolite
concentrations and enzyme activities:

PrFln SVi
L,+

Vi
+,ssD ø (

j=1

N

gij Xj + (
k=1

M

g8ikYk

ø ln SVi
U,+

Vi
+,ssDGù bVj

+

PrFln SVi
L,−

Vi
−,ssD ø (

j=1

N

hij Xj + (
k=1

M

h8ikYk

ø ln SVi
U,−

Vi
−,ssDGù bVj

−

Following the same line of analysis presented in the previ-
ous subsection the deterministic equivalent representation
can be obtained.

Modeling Discrete Enzyme Expression Levels

So far we have assumed that the enzyme levels can take any
value between a lower and an upper bound. This requires a
currently nonexistent level of precision for the genetic ma-
nipulations. A more realistic description of the enzyme lev-
els can be accomplished by assuming that they can assume
only a finite number of values (Hatzimanikatis et al.,
1996b). Therefore, enzymek may assume only 1, . . . ,L
different levels denoted byykl. For example, if the level of
enzymek can be changed by only ±20% or ±50%, the set of
feasible enzyme level manipulations isykl e {0.5, 0.8, 1, 1.2,
1.5}. This discrete enzyme level manipulation can be ex-
pressed mathimatically with the following constraints,

Yk = (
l

L

ln~ykl!zkl, k = 1, . . . ,M

(
l

L

zkl = 1, k = 1, . . . ,M

zkl = {0,1}

wherezkl is a binary variable assuming values of only zero
or one. The second constraint requires that only one of the
binary variableszkl, zk2, . . . , zkL is equal to one. Thus, the
logarithmic deviation of the enzyme levels,Yk, can assume
only values equal to one of the discrete levels. Note that the
addition of these constraints in the SMOP model transforms
it into a mixed integer nonlinear programming (MINLP)
problem which, however, can be solved using existing
MINLP solvers.

COMPUTATIONAL RESULTS

Two metabolic pathway optimization studies are addressed
to highlight the proposed framework of analysis and opti-
mization of metabolic pathways under experimental and/or
modeling uncertainty. First, an introductory example is con-
sidered where reasonable values for the variance of the ki-
netic orders are selected to reflect the experimental uncer-
tainty in the S-System kinetic orders. The characteristics of
the model and the significance of the obtained results are
briefly discussed. Next, the framework of analysis and op-
timization is applied to a reference pathway described by
known Michaelis-Menten kinetics. The sources of model
uncertainty in the S-System kinetic orders are identified and
a comparison between the deterministic S-System optimi-
zation, the nonlinear optimization using the known rate ex-
pressions, and the proposed framework is drawn. All opti-
mization models have been implemented with General Al-
gebraic Modeling System (GAMS) (Brooke et al., 1988)
and run on a RS6000-43P-132 IBM workstation.

Example 1: Yield Optimization in XMP and
GMP Production

In this example, the sumx4 of the concentrations of xanthine
monophosphate (XMP) and guanosine monophosphate
(GMP) is maximized. A schematic of the simplified meta-
bolic pathway is shown in Figure 1. A complete description
of the metabolic pathway can be found in (Voit, 1992). The
S-System representation of the pathway is:

dx1

dt
= 900x3

−0.5x4
−0.5y1 − 10x1

0.5x2
−0.1x3

−0.2x4
−0.2y2

dx2

dt
= 10x1

0.5x2
−0.1x3

−0.1x4
−0.5 y2y4y5 − 100x2

0.5x3
−0.5x4

−0.5 y3y6

dx3

dt
= 200x2

0.5x3
−0.5y3 − 10x1

0.1x3s4
−1y4
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dx4

dt
= 30x2

0.5x4
−0.5y6 − 100x3

−1x4y5

The nominal steady-state concentrations arex1
ss 4 5.42,x2

ss

4 213, x3
ss 4 2,417 andx4

ss 4 482. The nominal enzyme
concentrations,yi, and their kinetic orders are equal to one.
The optimization problem to be solved is defined as:

1. Objective: Maximize the concentrationx4.
2. Constraints:

(a) The enzyme activities can be varied between 0.2 and
5 times their nominal steady-state values.

(b) The concentrations ofx1, x2, and x3 must remain
within ±10% of their nominal steady-state values.

Based on the analysis procedure described in the previous
section, the deterministic equivalent representation of the
chance constrained formulation is first obtained. A number
of optimization runs were performed for different values of
the probability levelsa and b to vary the relative impor-
tance of meeting the objective target as opposed to satisfy-
ing the physiological constraints. The variance of the pa-
rametersAij and Bik is assumed to be 2% of their mean
values. The mean values are taken from Voit (1992). A 2%
variance for a normally distributed uncertain parameter im-
plies that 99% of the times the realization of the uncertain
parameter will be, (±0.02 · 2.58 · mean), away from the
mean value (Kreyszig, 1993). Figure 2 illustrates the opti-
mization results. Clearly, the higher the value ofb (more
likely to satisfy the physiological constraints), the lower is
the value of the achievable with probabilitya target onx4.
Note that if uncertainty is ignored, a maximum concentra-
tion of x4 4 3,972 is predicted. However, for probability
levels as low asa 4 b 4 0.5, this value appears to be
unachievable (violates physiological constraints more than
50% of the time). Asb approaches unity, the achievable
objective target approaches the original steady-state value.
This is consistent with the fact thatunless a finite level of

uncertainty can be tolerated the only “feasible” choice is
the nominal steady-state.The effect of the probability level
a on the achievable objective target is not quite as pro-
nounced as the effect ofb, but it acts in the same direction.
This implies that the effect of uncertainty is to penalize the
prediction of the derterministic model.

Plotted in Figure 3 are the optimal enzyme activities for
different values ofb with a 4 0.5. Clearly, the optimum
enzyme activity profile is “strongly” dependent on the
choice of b, implying that the answer to the question of
what are the best enzyme activity levels depends on how
often physiological constraints are allowed to be violated.
As b moves towards one, all of the enzyme activities tend
to “aggregate” towards their nominal steady-state values.
The “speed” of this aggregation for different enzymes illus-
trates the relative sensitivity of physiological constraints on
different enzymes. Figure 4 addresses the sensitivity of en-
zyme activities for different values of the probability levela
while keepingb 4 0.95. Clearly, the optimal enzyme ac-
tivity profile appears to be largely unaffected (fora ø

Figure 1. Diagram of the simplified pathway of XMP and GMP synthe-
sis. Solid lines denote reactions and dashed lines denote regulatory inter-
actions.

Figure 2. Objective value target for different specifications ofa andb.

Figure 3. Optimal enzyme levels for different values ofb with a 4

50%.
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0.9999) by the value of the probability levela. This means
that physiological constraints are more strongly affected by
uncertainty. Figure 5 illustrates the effect of the extent of the
uncertainty on the objective target by considering uncertain
parameter variances equal to 1,2,5 and 10% of the mean
values. The results indicate, as expected, that the quantita-
tive effect of the extent of parameter uncertainty on achiev-
able objectives is very pronounced and changes rapidly in
the 1–2% range.

The optimization runs described above indicate that even
a 2% variance in the S-System parameters may have a
profound effect on the reliability of the obtained optimiza-
tion results with respect to satisfying physiological con-
straints and meeting the objective target.

Example 2: Optimization under
Modeling Uncertainty

In this example, a reference metabolic pathway proposed by
(Sorribas et al., 1993) is examined. The diagram of the

metabolic pathway is shown in Figure 6. The predictions of
the proposed stochastic framework are compared with those
ignoring modeling uncertainty. To check the validity of
both predictions, we assume that the irreversible Michaelis-
Menten kinetics model provides the “true” description of
the metabolic pathway. The predictions of the S-System
with and without considering uncertainty are thus contrasted
against the Michaelis-Menten representation. The relevant
kinetic parameters and nominal steady-state properties are
given in Table II. The S-System representation of this meta-
bolic pathway yields:

dx1

dt
= a1x5

g
15y1

g8
11 − b1x1

h
11x4

h
14y3

h8
13

dx2

dt
= a2x6

g
26y2

g8
22 − b2x2

h
22x4

h
24y4

h8
23

dx3

dt
= a3x1

g
31x2

g
32x4

g
34y3

g8
33y4

g8
34 − b3x3

h
33y5

8
35

dx4

dt
= a4x3

g
43y5

g8
45 − b4x4

h
44y6

h8
46

The parameters of the S-System were calculated from the
rate equations based on the approach outlined in (Torres,
1994a). By following the analysis described in Appendix A
the S-System modeling uncertainty, represented by the vari-
ance-covariance terms of the kinetic ordersaij , bik, is esti-
mated in Appendix B.

The optimization task considered is defined as:

1. Objective: Maximize the flux (V4
+ or V−

4)
2. Constraints:

(a) Maintain enzyme activities between 0.1 and 10 times
their nominal steady-state values.

(b) Keep all metabolite concentrations within 20% of
their nominal steady-state values.

(c) Fix the activity of y4 at the nominal steady-state
value.

The last restriction was introduced to break the symmetry of
the pathway and eliminate some of the multiple solutions.
This multiplicity of solutions is also observed elsewhere
(Dervakos and Dean, 1994; Hatzimanikatis et al., 1996b)
and is due to the imposed lower and upper bounds on the
enzyme levels.

First, the nonlinear programming (NLP) problem based
on the Michaelis-Menten rate expressions is optimized as-
suming that the latter provides a “perfect” description of the

Figure 4. Optimal enzyme levels for different values ofa with b 4

95%.

Figure 5. Objective value target for different variance values of the
S-System parameters. Figure 6. Reference metabolic pathway of Example 2.
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metabolic pathway. These solutions are summarized in
Table III. The tabulated ranges of values, instead of single
values, for some of the enzyme activities and metabolite
concentrations, imply that the optimal objective value is
unaffected by changing the enzyme levels or metabolite
concentrations within these ranges. The values of the S-
System kinetic orders are (i) recalculated and (ii) estimated
using second-order Taylor expansion at the new optimal
steady-state obtained from the optimization of the Micha-
elis-Menten representation. These results are plotted in Fig-
ure 7. The first bar (white), denotes the values of the S-
System kinetic orders at the original steady state. The sec-
ond bar (black), gives the values of the S-System kinetic
orders at the new steady-state estimated with a second-order
Taylor expansion (see Appendices A,B). The third bar
(grey), represents the values of the S-System kinetic orders
recalculated at the new steady-state. Clearly, the new values
of some of the S-System kinetic orders significantly differ
from the ones at the original steady-state. The greatest dif-
ference is observed for the kinetic orders which depend on
enzyme levels (i.e.,g31, g32, g34, g833, andg834). This is ex-
pected because the range within the enzyme concentrations
are allowed to vary is much wider than the one for the
metabolite concentrations. Error bars denote the 99% inter-
val of confidence for the second-order Taylor expansion
estimates of the kinetic orders. Note that the recalculated
values of the kinetic orders at the new steady-state are
within these confidence intervals.

To measure the effect of neglecting modeling error on the
optimization of S-Systems the metabolic pathway was op-
timized based on the S-System representation at the original
steady-state. The resulting optimum objective function in-
volved a value of 7.62 for the fluxV4

+. However, after
substituting the obtained optimal enzyme activities in the
Michaelis-Menten description and solving for the metabo-

lite concentrations, a number of physiological constraints
are violated. These results, shown in Table IV, indicate that
some of the physiological restrictions are violated. Specifi-
cally, the values derived forx2, x3, andx4 are 50%, 173%,
and 40% higher than their respective imposed upper
bounds. Torres et al. (1996) suggested adding stoichiomet-
ric constraints for the dependent fluxes to reduce the S-
System errors away from the steady-state. After introducing
the stoichiometric constraints 1.5V1

− ù V3
− and 1.5V2

− ù
0.5V3

− in the model, the new results are shown in Table V.
While the new optimal solution is more conservative, the
physiological constraints are again violated by as much as
17%. Note that the stability of all solutions was confirmed
by eigenvalue analysis of the steady-state description based
on the Michaelis-Menten rate expressions.

Next the performance of the proposed stochastic optimi-
zation of the S-System representation is evaluated. The re-
sults from the solution of the SMOP formulation for the
expected objective values and corresponding enzyme ex-
pression levels ata 4 0.5 and severalb values are shown
in Table VI. The predicted optimal enzyme levels (see Table
VI) are then substituted back into the Michaelis-Menten
kinetic description to check whether the proposed approach
successfully hedged against uncertainty. The results, which

Table II. Nominal steady-state values and kinetic parameters for Ex-
ample 2.

xi Conc. yi Vmax Km Ki4

x1 2 y1 3 100 —
x2 3 y2 3 250 —
x3 1 y3 5.33 6.67 6.67
x4 2 y4 5.50 15 2
x5 50 y5 3 1 —
x6 50 y6 3 2 —

Table III. Optimal enzyme levels and metabolite concentrations for Ex-
ample 2 based on the Michaelis-Menten formalism.

Objective
flux

Enzyme
levels

Metabolite
conc.

V4
+ 4 10.64 y1 4 10.0y1

ss x1 4 [0.95 − 1.20]x1
ss

y2 4 1.29y2
ss x2 4 1.20x2

ss

y3 4 [8.34 − 10.0]y3
ss x3 4 [0.80 − 1.20]x3

ss

y4 4 1.00y4
ss x4 4 0.80x4

ss

y5 4 [6.51 − 7.94]y5
ss

y6 4 7.99y6
ss

Figure 7. Magnitude of the S-System parameters of Example 2: (white)-
the S-System parameters at the original steady-state; (black)-the same pa-
rameters estimated at the new steady-state using second-order Taylor ex-
pansion; (grey)-the S-System parameters recalculated at the new steady-
state.

Table IV. Optimal enzyme levels obtained by solving the S-System op-
timization problem without accounting for modeling uncertainty. The
listed objective value and metabolite concentrations are estimated by sub-
stituting the enzyme levels in the Michaelis-Menten description of the
pathway.

Objective
value

Enzyme
levels

Metabolite
conc.

V4
+ 4 10.65 y1 4 10.0y1

ss x1 4 1.16x1
ss

y2 4 1.31y2
ss x2 4 1.80x2

ss

y3 4 10.0y3
ss x3 4 3.28x3

ss

y4 4 1.00y4
ss x4 4 1.67x4

ss

y5 4 4.64y5
ss

y6 4 5.68y6
ss
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were proven to be stable, are shown in Table VII. These
results demonstrate that while the predicted optimal objec-
tive values are more conservative than those for the deter-
ministic S-System, all physiological constraints are satisfied
if a high enough value ofb is selected. Specifically, all
physiological constraints are satisfied forb greater than 0.8.
Variation ofa, as in the previous example, did not affect the
optimal enzyme levels significantly. While no general con-
clusions can be drawn from this example, the results are
indicative that in certain cases the optimization procedure
carried out without considering model uncertainty may lead
to misleading results. However, by modeling kinetic order
uncertainty and selecting a large enough value forb, feasi-
bility of all physiological constraints in the face of kinetic
order uncertainty can be guaranteed.

SUMMARY AND CONCLUSIONS

In this paper, a probabilistic description of the S-System
coefficients was introduced for quantitatively evaluating
and optimizing metabolic pathway S-System models asso-
ciated with modeling and/or experimental uncertainty. The
selection of the S-System formalism was based on its rela-
tive popularity and mathematical tractability. Based on no-
tions from chance-constrained programming and math-
ematical statistics, a novel approach was introduced for
transforming the original stochastic formulation into a de-
terministic one which can be solved with existing optimi-
zation algorithms. The deterministic transformation was
based on two assumptions: (i) the approximation introduced
by Babbar (1955) which neglects second and higher order
products of error terms in the calculation of the metabolite
concentrations, and (ii) the description of uncertain param-
eters (kinetic orders) with stable probability distributions.
While optimization results ignoring uncertainty may violate
physiological constraints and yield unrealistically optimistic
estimates for the objective targets, the proposed framework
provides quantitative answers to questions regarding how
likely it is to achieve a particular objective without violating
any physiological constraints. Trade-off curves between
metabolic objectives, probabilities of meeting these objec-
tives, and chances of satisfying physiological constaints
provide a concise and systematic way to guide enzyme ac-
tivity alterations to meet an objective in the face of model-
ing and experimental uncertainty.

The implementation of metabolic optimization based on
the S-System formalism, or for that matter any other math-
ematical formalism, faces several difficulties. The first one
is the scarcity of experimental data. Though kinetic infor-
mation on many biochemical reactions exists, it is either
obtained in vitro or the enzyme activity is characteristic for
a particular microorganism. When the definition of a meta-
bolic pathway is compiled from data from different sources,
the discrepancies due to different experimental techniques
and different environments may lead to ill-defined models.
In addition, some of the experimental measurements are
prone to significant experimental error. The systematic op-
timization of metabolic pathways based on mathematical
modeling, however, provides a valuable tool for identifying
promising directions of enzyme activity alterations in meta-
bolic pathways which are typically characterized by highly
complex responses. It was the objective of this work to
enhance the practical value of these predictions by coupling
these optimization studies with a quantitative description of
uncertainty.

While the approach so far has been focused on continu-
ous enzyme activity alterations within the S-System repre-
sentation formalism, it is general enough to handle discrete
enzyme level manipulation and/or the optimization of the
regulatory structure of enzymatic pathways (Hatzimanikatis
et al. (1996a,b)) as well as other mathematical formalisms
used to describe metabolic pathways.

APPENDIX A: ESTIMATION OF THE VARIANCES
AND COVARIANCES OF THE KINETIC ORDERS

Given sufficient experimental data on metabolite concen-
trations, enzyme activities, and fluxes, rigorous regression
techniques can be applied to derive unbiased estimates of
means, variances and covariances as described in (Maranas,
1997) in the context of optimal molecular design. However,
for most metabolic pathways such detailed information is
not available. Therefore, a second-order Taylor expansion
around the nominal steady-state is employed to estimate the
model uncertainty in the kinetic orders within the imposed
bounds of the metabolite concentrations and enzyme levels.
Note that the S-System representation stops at the first-order
Taylor expansion. A second-order Taylor expansion was
utilized by Cascante et al. (1991) to improve predicting the
response of a metabolic system to perturbation. The second-
order Taylor expansion of the fluxVi

+ in log-log space
yields:

ln~Vi
+! = ln~Vi

ss+! + (
j
S xj

Vi
+

­Vi
+

­xj
D

ss

Xj

+ (
k
S yk

Vi
+

­Vi
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­yk
D

ss

Yk

+
1

2! (j
(
j8
Sxj xj8

Vi
+

­2Vi
+

­xj­xj8
D

ss

XjXj8

Table V. Optimal enzyme levels and resulting metabolite concentrations
obtained for the S-System optimization with stoichiometric constraints.

Objective
value

Enzyme
levels

Metabolite
conc.

V4
+ 4 3.57 y1 4 2.91y1

ss x1 4 1.25x1
ss

y2 4 1.31y2
ss x2 4 1.29x2

ss

y3 4 2.41y3
ss x3 4 1.40x3

ss

y4 4 1.00y4
ss x4 4 0.91x4

ss

y5 4 2.03y5
ss

y6 4 2.49y6
ss
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After recastingVi
+ in the usual power-law form the kinetic

orders are no longer functions only of the steady-state but
also depend on the deviations of the metabolic concentra-
tions and enzyme levels from the steady-state values:
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In this work the S-System parameters are described as nor-
mal random variables whose variability results from the fact
that the magnitudes of the enzyme and metabolite concen-
trations at the optimal state will be different from those at
the nominal (original) steady-state. Thus, the variance of the
S-System parameters may be described as the sum of the
allowable deviation of these quantities. For example, in Ex-
ample 2 the enzyme levels are allowed to vary between 0.1
and 10 times the nominal steady-state. Thus, variableYk will
range between ln(0.1)4 −2.3026 and ln(10)4 2.3026. If
this range is assumed to represent the 99.99% confidence
interval, the variance contribution ofYk to the S-System
parameters which depend on it will be (2.3026/3.981)2 4
0.3345, because the quantile of the double sided probability
interval of 99.99% is equal to 3.981 (see Kreyszig (1993)).

Based on the second-order Taylor expansion, the kinetic
orders are expressed as linear functions of the deviationsXj

and Yj. This enables the evaluation of the covariances be-
tween the S-System parameters. For example, the covari-
ance betweengij andhi8g8 is:
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Table VII. Optimization results of (SMOP) substituted into the Michaelis-Menten model and the
maximum per cent violation of the imposed lower and upper bounds.

b V4
+ x1 x2 x3 x4

Max.
viol.

0.50 6.6889 2.676 4.493 1.561 2.451 30.1%
0.60 4.9079 2.549 4.061 1.335 2.280 12.8%
0.70 3.9110 2.470 3.798 1.211 2.175 4.7%
0.80 3.2622 2.415 3.621 1.132 2.106 0.6%
0.90 2.7707 2.372 3.485 1.074 2.053 0.0%
0.95 2.5330 2.352 3.421 1.048 2.028 0.0%

Table VI. Optimal solutions of the (SMOP) formulation fora 4 0.5 and a number of values
for b.

b V4
+ y1 y2 y3 y4 y5 y6

0.50 5.4319 18.110 3.914 26.613 5.500 10.974 12.146
0.60 4.2483 12.871 3.707 19.351 5.500 8.583 9.214
0.70 3.5337 9.948 3.570 15.192 5.500 7.140 7.507
0.80 3.0406 8.051 3.472 12.435 5.500 6.144 6.361
0.90 2.6474 6.615 3.395 10.312 5.500 5.349 5.470
0.95 2.4498 5.921 3.357 9.272 5.500 4.950 5.031
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The second-order derivative terms in the above equations
can be evaluated from kinetic data or known kinetic laws in
the form of Hill’s equation or generalized Michaelis-
Menten kinetics.

APPENDIX B: ESTIMATION OF KINETIC ORDER
UNCERTAINTY IN EXAMPLE 2

In this appendix the estimation of kinetic order modeling
uncertainty from kinetic data is described for the metabolic
pathway addressed in Example 2. Following the formula-
tions outlined in Appendix A, and after substituting the
expressions for the kinetic orders, the following expansions
are obtained:

h11 4 0.812 − 0.0761X1 + 0.0175X4

h14 4 −0.187 + 0.0175X1 − 0.0761X4

h22 4 0.909 − 0.0413X2 + 0.0206X4

h24 4 −0.455 + 0.0206X2 − 0.1240X4

g31 4 0.541 + 0.0226X1 − 0.0821X2 + 0.0358X4

+ 0.0903Y3 − 0.0903Y4

g32 4 0.303 − 0.0821X1 + 0.0780X2 − 0.0201X4

− 0.1010Y3 + 0.1010Y4

g34 4 −0.276 + 0.0358X1 − 0.0201X2 − 0.0841X4

+ 0.0297Y3 − 0.0297Y4

h33 4 0.5 − 0.1250X3

g43 4 0.5 − 0.1250X3

h44 4 0.5 − 0.1250X4

g833 4 0.667 + 0.0903X1 − 0.1010X2 + 0.0297X4

+ 0.1111Y3 − 0.1111Y4

g834 4 0.333 − 0.0903X1 + 0.1010X2 − 0.0297X4

− 0.1111Y3 + 0.1111Y4

The variances ofXj andYk estimated based on the 99.99%
confidence interval are:

Var(Xj) ≈ (ln(0.8)/3.981)2 4 0.0031
Var(Yk) ≈ (ln(0.1)/3.981)2 4 0.3345

Based on these values, and after applying the variance op-
erator, the variance of the kinetic orders can be estimated.
For example, the variance ofh11 is equal to

Var(h11) 4 (−0.0761)2Var(X1) + 0.01752Var(X2)
4 0.00001915

and thus the variance ofA11 is

Var(A11) 4 Var(g11) + Var(h11) 4 0.000019156

Furthermore, the covariances between any two kinetic or-
dersAij andBik can be calculated. For example,

Cov(A11, A22)
4 Cov(g11, g22) + Cov(h11, h22) − Cov(g11, h22)

− Cov(h11, g22)
4 (0.0175) (0.0206)Var(X1) 4 0.000001132

The remaining elements of the variance-covariance ar-
rays are calculated in the same manner using the relations
for calculating the variances and covariances of linear func-
tions of random variables (Wilks, 1962).
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