
Subscriber access provided by Penn State | University Libraries

Industrial & Engineering Chemistry Research is published by the American Chemical
Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Article

Multiperiod Planning and Scheduling of Multiproduct
Batch Plants under Demand Uncertainty

Spas B. Petkov, and Costas D. Maranas
Ind. Eng. Chem. Res., 1997, 36 (11), 4864-4881• DOI: 10.1021/ie970259z • Publication Date (Web): 03 November 1997

Downloaded from http://pubs.acs.org on March 2, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

• Supporting Information
• Links to the 4 articles that cite this article, as of the time of this article download
• Access to high resolution figures
• Links to articles and content related to this article
• Copyright permission to reproduce figures and/or text from this article

http://pubs.acs.org/doi/full/10.1021/ie970259z


Multiperiod Planning and Scheduling of Multiproduct Batch Plants
under Demand Uncertainty

Spas B. Petkov and Costas D. Maranas*

Department of Chemical Engineering, The Pennsylvania State University,
University Park, Pennsylvania 16802

In this paper the multiperiod planning and scheduling of multiproduct plants under demand
uncertainty is addressed. The proposed stochastic model, allowing for uncertain product demand
correlations, is an extension of the deterministic model introduced by Birewar and Grossmann
(Ind. Eng. Chem. Res. 1990, 29, 570). The stochastic model involves the maximization of the
expected profit subject to the satisfaction of single or multiple product demands with prespecified
probability levels (chance-constraints). The stochastic elements of the model are expressed with
equivalent deterministic forms, eliminating the need for discretization or sampling techniques.
This implies that problems with a large number of possibly correlated uncertain product demands
can be efficiently handled. The resulting equivalent deterministic optimization models are
MINLP’s with convex continuous parts. An example problem involving 20 correlated uncertain
product demands is addressed. A sequence of different models is considered which highlight
different modeling features and their effect on computational performance and obtained results.

1. Introduction

In recent years there has been an increased interest
in the design, planning, and scheduling of batch chemi-
cal plants. This has been catalyzed by the emergence
of industrial interest in fine and specialty chemicals,
as well as by changes in producer customer relations.
These relations are now characterized by an increased
demand for customized specifications, which favor batch
processing as a production mode. In a competitive and
changing environment the need to plan new output
levels and production mixes is likely to arise much more
frequently than the need to design new batch plants
(Rippin, 1993). Given the unwillingness of large chemi-
cal companies to commit to large investments in new
plants, the more efficient planning and operation of
existing facilities becomes paramount. Therefore, in-
creased emphasis is currently placed on simultaneously
improving conflicting objectives such as manufacturing
flexibility, customer responsiveness, lower operating
costs, and reduced investments in inventory (McDonald
and Karimi, 1996). In the presence of significant
demand fluctuations, efficient use of the available
equipment and a flexible inventory system targeted at
customer satisfaction over a multiperiod horizon can be
ensured through simultaneous planning and scheduling.
An overview of scheduling and planning in batch plants
can be found in the literature (Reklaitis, 1992; Rippin,
1993; Pantelides, 1994).
Deterministic models for process planning and sched-

uling assume that product demands are known with
certainty. However, in medium- and long-term plan-
ning, product demands fluctuate. Failure to properly
account for product demand fluctuations may lead to
either unsatisfied customer demands and loss of market
share or excessive inventory costs. A number of ap-
proaches have been proposed in the chemical engineer-
ing literature for the quantitative treatment of uncer-
tainty in the design, planning, and scheduling of batch
process plants with an emphasis on the design. These
approaches have contributed to a better understanding

of how uncertainty affects their performance. A clas-
sification of different areas of uncertainty is suggested
by Subrahmanyam et al. (1994) including uncertainty
in prices and demand, equipment reliability, and manu-
facturing uncertainty.
The most popular one so far has been the scenario-

based approach which attempts to forecast and account
for all possible future outcomes through the use of
scenarios. The scenario approach was pioneered by
Reinhart and Rippin (1986, 1987) and later adopted by
Shah and Pantelides (1992) and Subrahmanyam et al.
(1994) for batch plant design under uncertainty. Sce-
nario-based approaches provide a straightforward way
to implicitly account for uncertainty (see also the
discussion in Liu and Sahinidis, 1996). Their main
drawback is that they typically rely on either the a
priori forecasting of all possible outcomes or the dis-
cretization of a continuous multivariate probability
distribution resulting in an exponential number of
scenarios. For example, the discretization of only 10
uncertain variables with 5 discretization points yields
510 ≈ 106 scenarios.
A key concept in quantitatively measuring the effect

of uncertainty is the stochastic flexibility index pio-
neered by Straub and Grossman (1990) and Pistikopou-
los and Mazzuchi (1990) which measures the probability
of feasible operation of a process design under stochastic
uncertainty (see also Pistikopoulos, 1995). Evaluation
of the stochastic flexibility index is a very computation-
ally demanding task because it requires the integration
of multivariate continuous probability functions (Rippin,
1993). Gaussian quadrature is a popular method in the
chemical engineering literature for approximating mul-
tivariate probability integrals. The advantage of Gauss-
ian quadrature integration is that it is largely unaf-
fected by the type of employed continuous probability
distribution and the location of discretization (quadra-
ture) points is selected through the optimization process.
The shortcoming of quadrature integration is that a
large number of extra variables accounting for the
quadrature points must typically be introduced to the
optimization model. In general, this limits the ap-
plicability to problems with only a few uncertain pa-
rameters. By utilizing Gaussian quadrature, Straub
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and Grossman (1992), Ierapetritou and Pistikopoulos
(1994, 1996), and Harding and Floudas (1997) addressed
the design of different types of batch plants under
various types of uncertainty.
An alternative to Gaussian quadrature integration for

the approximation of multivariate probability integrals
is the use of Monte Carlo sampling. The basic idea of
Monte Carlo methods is to generate a large enough
number of random variates distributed according to the
evaluated multivariate probability function and ap-
proximate the multivariate probability integral as the
ratio of the number of points within the integration
region divided by the total number of points (Tong,
1990). More sophisticated Monte Carlo adaptations
have been proposed by Deak (1988), Diwekar and
Kalagnanam (1996), and Liu and Sahinidis (1996). The
main advantage of Monte Carlo sampling methods is
that for a given precision target the number of required
function evaluations does not scale exponentially with
the total number of correlated uncertain parameters.
The application of Monte Carlo methods to optimization
has been limited so far because not only the value of
the probability integral but also its derivatives must be
evaluated using simulation at each step of the optimiza-
tion algorithm (Watanabe and Ellis, 1994).
So far the solution methods for stochastic models of

batch process planning and scheduling have been much
more computationally intensive than those for deter-
ministic models. This is due to the fact that they rely
on explicit (scenario-based approaches) or implicit (Gauss-
ian quadrature) discretizations. Additionally, Monte
Carlo sampling based approaches require multiple
function evaluations to estimate the objective function,
constraints, and their gradients at every iteration of the
optimization algorithm. It is the objective of this paper
to introduce a methodology for the direct deterministic
equivalent representation of a stochastic model for
planning and scheduling, circumventing any need for
explicit/implicit discretization or sampling. The deter-
ministic planning and scheduling model of multiproduct
batch plants proposed by Birewar and Grossmann
(1990) serves as the starting point for the development
and solution procedure of the stochastic model presented
herein. In this model, the planning and scheduling
problems are embedded in a single optimization prob-
lem. The formulation accounts for inventory costs and
enables inventory transfer to satisfy future demands.
The planning and scheduling phases are connected
through the cycle-time. The scheduling check during
the planning phase ensures that the planned production
levels can be met within the available cycle-time.
Updated schedules can be later employed after the
product demands are known. The following scheduling
policy checks are considered: zero-wait (ZW) and un-
limited intermediate storage (UIS) for single-product
campaign (SPC) or multiple-product campaign (MPC)
plants. Feasibility of the planning policy after invoking
the most restrictive ZW scheduling policy check implies
that any other scheduling policy will also be feasible.
On the other hand, infeasibility with the least restrictive
UIS schedule means that any other scheduling policy
will yield an infeasible schedule.
The paper is organized as follows: The specifics of

the problem are discussed in section 2. The proposed
stochastic formulation based on the deterministic model
of Birewar and Grossman (1990) is briefly summarized
in section 3. In section 4, the conceptual stochastic
formulation of the planning and scheduling problem
under demand uncertainty is introduced. This formula-
tion involves the maximization of the expected profit
subject to product demand satisfaction for a single
product or multiple products with a given probability

level. The deterministic equivalent representation of
the objective function and the demand satisfaction
constraints are addressed in sections 5-7. Section 8
deals with the problem of revising and updating the
scheduling and planning policy upon the realization of
the random product demands. The solution procedure
for the resulting convex MINLP problem is discussed
in section 9, and a test problem involving 20 correlated
random product demands is solved in section 10,
highlighting various modeling and algorithmic issues.
Section 11 summarizes the work and provides some
concluding remarks.

2. Problem Definition

Given is a multiproduct batch plant with defined
production lines, equipment sizes, and a set of products
with given recipes. The demands for different products
are uncertain and possibly correlated, reflecting chang-
ing market conditions and periodic variation in cus-
tomer orders. The problem to be addressed is as follows:
Obtain an optimal planning policy and a correspond-

ing feasible schedule such that the expected profit is
maximized while single- and/or multiple-product de-
mands are satisfied with at least a prespecified prob-
ability level.
The proposed stochastic model involves the following

features and assumptions:
1. The product demands are modeled as multivariate

normally distributed random variables. The normality
assumption has been widely invoked in the literature
because it captures the essential features of demand
uncertainty and it is convenient to use. The use of more
“complex” probability distributions is hindered by the
fact that statistical information apart from mean and
covariance estimates of product demands is rarely
available. A theoretical justification of the normality
assumption can be argued on the basis of the central
limit theorem considering that product demands are
typically affected by a large number of stochastic events.
2. Product demand correlation is included in the

problem formulation. This enables handling correlation
of demands for different products in the same time
period and demand correlation for the same product in
different time periods. For example, if two products are
predominantly used as raw materials in another pro-
cess, then their demands are going to be positively
correlated in each time period. Alternatively, unusually
high demand for a product in one time period more often
than not is followed by lower than normal demand in
the next period, implying negative correlation. Taking
into account such information, whenever it is available,
enables a more efficient allocation of production capacity
to maximize profit and meet certain marketing objec-
tives.
3. The following choices for scheduling policies are

considered: SPC or MPC with ZW or UIS. This is
accomplished by including a horizon constraint (sched-
uling check) which guarantees that the production goals
can be achieved with the corresponding scheduling
policy.
4. The unit production cost is assumed independent

of capacity output (linearity assumption). More complex
production cost policies can be readily incorporated in
the model at the expense of introducing nonlinearities
(see Birewar and Grossmann, 1990).
5. Transfer of inventory from the present to future

time period is allowed and planned for. The inventory
cost is assumed to be proportional to the arithmetic
mean of the initial and final inventories for each product
in every time period.
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6. The penalty for production shortfalls is propor-
tional to the amount of underproduction. The employed
proportionality constant varies between zero and values
higher than 100% of the profit margin (unit prices
minus unit production cost).

3. Deterministic Model

The multiperiod planning/scheduling model for mul-
tiproduct batch plants, as introduced by Birewar and
Grossmann (1990), serves as the starting point for the
proposed stochastic framework. The following notation
is used:

The multiperiod planning and scheduling problem
formulation (MPS) is as follows (see Birewar and
Grossmann (1990) for details):

where gtl(nitl) e 0 represents the horizon constraints
whose form depends on the type of scheduling policy:
1. SPC with ZW.

2. MPC with ZW.

Above, the values of the slack times, SLikj, are param-
eters determined by the procedure outlined in Appendix
B of Birewar and Grossmann (1990).
3. MPC with UIS. This case involves the same

constraints as MPC with ZW, but the slack times are
all set equal to zero.
The introduced scheduling constraints guarantee that

the process cycle-time, necessary to achieve the produc-
tion goals based on the chosen scheduling policy, does
not exceed the available time horizon. Note that in the
SPC production mode the exact ordering of the different
product campaigns does not affect the cycle-time. In
the case of the MPC production mode, a valid schedule
can be recovered after applying the graph enumeration
procedure of Birewar and Grossmann (1989) for the
values of theNPRSiktl variables found above. However,
the resulting feasible schedule does not always involve
the minimum process makespan. To obtain the most
efficient schedule for the set production goals, once the
number of batches nitl are determined, the makespan

Sets:

i ) 1, ..., N products

j ) 1, ...,M stages

l ) 1, ..., L production lines

t ) 1, ..., T time periods

Il ) set of products i which are produced on line l

Li ) set of lines l which can produce product i

Parameters:

Ht ) length of period t

QDit ) demand for product i in period t

Pit ) market price of product i in time period t

Cit ) cost of producing a unit of product i
in time period t

γit ) storage cost of product i in time period t

δit ) penalty for production shortfalls

Vjl ) volume of unit in stage j and
production line l

Sijl ) size factor of product i at stage j on line l

tijl ) processing time of product i at
stage j on line l

SLikj ) slack times for MPC with ZW
scheduling policy

Variables:

QTit ) total quantity of product i produced
in period t

QSit ) amount of product i planned for sale
in period t

Qitl ) quantity of product i produced in period
t on line l

IBit ) inventory of product i at the beginning
of period t

IEit ) inventory of product i at the end
of period t

nitl ) number of batches of product i
produced in period t on line l

NPRSiktl ) number of batches of product i followed
by product k on line l and period t

max ∑
i)1

N

∑
t)1

T (QSitPit - QTitCit - γit
IBit + IEit

2
-

δit(Pit - Cit) max(0,QDit - QSit)) (MPS)

subject to

QitlSijl e Vjlnitl, i ∈ Il, j ) 1, ...,M, l ∈ Li,
t ) 1, ..., T

∑
l∈Li

Qitl ) QTit, i ) 1, ..., N, t ) 1, ..., T

QSit e QDit, i ) 1, ..., N, t ) 1, ..., T

IEit ) IBit + QTit, i ) 1, ..., N, t ) 1, ..., T

IBit+1 ) IEit - QSit, i ) 1, ..., N, t ) 1, ..., T

gtl(nitl) e 0, t ) 1, ..., T, l ∈ Li

Qitl, QSit, QTit, IEit, IBit g 0

nitl ∈ {0, 1, 2, ...}

∑
i∈Il
nitlTLil

e Ht where TLil
) max

j
tijl

∑
i∈Il
nitltijl + ∑

i∈Il
∑
k∈Il

NPRSiktlSLikj e Ht

∑
k∈Il

NPRSiktl ) nitl

∑
i∈Il
NPRSiktl ) nktl
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minimization problem (Birewar and Grossmann, 1990)
must be considered. This will be discussed further in
section 9.
The objective function of MPS accounts for revenues,

production costs, inventory costs, and production short-
fall penalties. The first two constraints relate the
production requirements with the available equipment.
The third constraint restricts the sales to the available
demands. The next two inventory constraints relate the
inventory at the beginning and end of a time period with
the production rate and sales. This inventory transfer
allows the utilization of unused plant capacity to
manufacture a product at an earlier period, anticipating
an elevated future demand at a later period. A graphi-
cal representation of the inventory balance is given in
Figure 1.

4. Stochastic Formulation

The probabilistic description of demand uncertainty
renders the planning and scheduling model stochastic.
The proposed stochastic model attempts to (i) maximize
the expected profit; (ii) avoid overproduction which leads
to unnecessarily high production and inventory costs;
(iii) safeguard against underproduction which results
in missed sales; and (iv) uphold a targeted market
share.
While in the deterministic model the planned sales

QSit are always realized, this is not always true in the
stochastic case. If a particular product demand realiza-
tion θit is higher than QSit, then the entire quantity QSit
planned for sale can be sold. However, if θit is less than
QSit, then only up to θit of product i can be sold in period
t. This implies that the amount of product i sold in
period t is the minimum between θit and QSit:

The updated inventory balance for the stochastic case
is illustrated in Figure 2. The inventory balance
constraints are modified to

The above expressions imply that, apart from the
inventory at the beginning of the first period IBi1 which
is known, the inventories at the beginning and end of
all subsequent periods are functions of the uncertain
product demands θit and thus are stochastic. By resolv-
ing the recursion defined by the above expressions, the

following expression is obtained for the inventory at the
beginning of a period:

Clearly, for a feasible inventory policy, IBit g 0, ∀t ) 2,
..., T. Note that positivity of IEit is guaranteed if IBit g
0 because IEit ) IBit + QTit and QTit g 0. Because
min(θit,QSit) is always less than QSit, positivity of IBit
and thus of IEit is maintained if

Addition of this constraint in the stochastic model
maintains feasibility of the inventory policy.
The objective function of MPS involves the maximiza-

tion of the expected revenue minus the inventory,
underproduction, and production costs

where E is the expectation operator. While the produc-
tion cost

remains deterministic, the remaining terms must be
redefined to reflect that in the stochastic case the
product sales are equal to min(θit,QSit) and not simply
QSit. Thus, the revenue from the sales of product i in
period t is equal to

The inventory costs are equal to

After substituting IEit ) IBit + QTit and invoking the
recursive expression for IBit, the relation for the inven-
tory cost becomes

The underproduction cost measures the loss of profit due
to unrealized sales forced by the unavailability of a
product,

For δit ) 1 the underproduction cost is exactly equal to
the profit lost due to the unsatisfied demand. Higher
or lower values of the parameter δit impose stricter or
more relaxed safeguards against underproduction.
The maximization of the objective function, as defined

above, establishes the production and planned sales
policy which most appropriately balances profits with
inventory costs and underproduction shortfalls. A
product demand satisfaction level is not explicitly
imposed, but rather it is the outcome of the maximiza-
tion of the profit function. While higher values of the

Figure 1. Inventory balance for the deterministic model.

Figure 2. Inventory balance for the stochastic model.

min(θit,QSit)

IEit ) IBit + QTit

IBit+1 ) IEit - min(θit,QSit)}i ) 1, ..., N,

t ) 1, ..., T

IBit ) IBi1 + ∑
t′)1

t-1

QTit′ - ∑
t′)1

t-1

min(θit′,QSit′),

t ) 2, ..., T

IBi1 + ∑
t′)1

t-1

QTit′ - ∑
t′)1

t-1

QSit′ g 0, t ) 2, ..., T

E[REit(θit) - ICit(θit) - UPit(θit)] - PCit

PCit ) CitQTit

REit(θit) ) Pit min(θit,QSit)

ICit(θit) ) γit(IBit + IEit

2 )

ICit(θit) )

γit[IBi1 + ∑
t′)1

t-1

QTit′ - ∑
t′)1

t-1

min(θit′,QSit′) +
QTit

2 ]

UPit ) δit(Pit - Cit){θit - QSit, if θit g QSit

0, if θit e QSit

) δit(Pit - Cit) max(0,θit - QSit)
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parameter δit conceptually increase the probability of
demand satisfaction, this strategy may still lead to
unacceptably low probabilities of satisfying certain
product demands (see examples). Therefore, the setting
of explicit probability targets on product demand sat-
isfaction is much more desirable. A systematic way to
accomplish this is to impose explicit lower bounds on
the probabilities of satisfying a single product demand
or groups of product demands. This requirement for
product i in period t assumes the following form:

This constraint, known as a chance-constraint, imposes
a lower bound âit on the probability that the planned
sales QSit for product i in period t will be greater than
the demand realization θit. In some cases a probability
target is desired for the demand satisfaction of a group
of products at a given period or for the demand satisfac-
tion of a given product over a number of periods. This
gives rise to joint chance-constraints

where Ip is the set of product-period (i, t) combinations
whose simultaneous demand satisfaction with prob-
ability of at least âp is sought and p ) 1, ..., P is the set
of all joint chance-constraints.
Based on this analysis the stochastic multiperiod

planning and scheduling model (SMPS) is as follows:

where

subject to

The solution of SMPS defines a production QTit and
planned sales QSit policy which maximizes the expected
profit while satisfying single or joint product demands
with probabilities âit and âp, respectively. By solving
SMPS for different values of âit and âp, trade-offs
between profit maximization and demand satisfaction
can be established. The constraint ensuring positivity
of the inventory throughout the period imposes a
conservative estimate for the inventory level because it
does not account for the inventory transfer of the
amount max(0,QSit-θit) whenever it is available. This
leads to conservative estimates for the expectation of
the profit and the probabilities of demand satisfaction.
The excess inventory, however, can be accounted for
based on the revision of planning and scheduling
procedure described in section 8.
The proposed stochastic formulation involves the

following types of stochastic expressions:

Each one of these requires a different course of action
for transforming it into an equivalent deterministic form
(see also Appendix D of Wellons and Reklaitis (1989),
Maranas (1997), and Petkov and Maranas (1997)). The
deterministic equivalent representation of the expecta-
tion of the objective function (1) is examined in the next
section.

5. Expectations of the Stochastic Objective
Function

The expectation of the sum of a number of stochastic
terms is equal to the sum of the expectations of the
individual terms (Wilks, 1962). Therefore,

This decomposes the task of identifying the expectation
of the objective function into identifying the expectations
of the revenue, inventory, and underproduction costs,
respectively.
5.1. Expectation of Revenue. The revenue from

product i in period t is equal to

This representation implies that REit is a random
variable which is not normally distributed. Inside the
interval (-∞,PitQSit], REit is stochastic and equal to
Pitθit, but inside [PitQSit,-∞], it is deterministic with a
value of PitQSit.
To facilitate the calculation of the expectation onREit,

the standardization of the normally distributed vari-
ables θit and deterministic variables QSit is first per-
formed. Normal random variables can be recast into
the standardized normal form, with a mean of zero and
a variance of 1, by subtracting their mean and dividing

Pr [QSit g θit] g âit

Pr [ ∩
(i,t)∈Ip

QSit g θit] g âp, p ) 1, ..., P

max E[∑
i
∑
t

REit(θit) - ICit(θit) - UPit(θit)] -

∑
i
∑
t

PCit (SMPS)

PCit ) CitQTit

REit(θit) ) Pit min(θit,QSit)

ICit(θit) ) γit[IBi1 + ∑
t′)1

t-1

QTit′ -

∑
t′)1

t-1

min(θit′,QSit′) +
QTit

2 ]
UPit(θit) ) δit max(0,θit-QSit)(Pit - Cit)

}i ) 1, ..., N
t ) 1, ..., T

Pr [QSit g θit] g âit, i ) 1, ..., N, t ) 1, ..., T

Pr [ ∩
(i,t)∈Ip

QSit g θit] g âp, p ) 1, ..., P

QitlSijl e Vjlnitl, i ∈ Il, j ) 1, ...,M, l ∈ Li,
t ) 1, ..., T

∑
l∈Li

Qitl ) QTit, i ) 1, ..., N, t ) 1, ..., T

IBi1 + ∑
t′)1

t-1

QTit′ - ∑
t′)1

t-1

QSit′ g 0, t ) 2, ..., T,

i ) 1, ..., N

gtl(nitl) e 0, l ) 1, ..., L, t ) 1, ..., T

Qitl, QTit, QSit g 0

nitl ∈ {0, 1, 2, ...}

(1) E[∑
i
∑
t

(REit - ICit - UPit)]

(2) Pr [QSit g θit] g âit

(3) Pr [ ∩
(i,t)∈Ip

QSit g θit] g âp

(1) E[∑
i
∑
t

(REit - ICit - UPit)] )

∑
i
∑
t

(E[REit] - E[ICit] - E[UPit])

REit(θit) ) Pit min(θit,QSit) ) {Pitθit if θit e QSit

PitQSit if θit g QSit
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by their standard deviation (square root of variance).
This defines the standardized normal variables

where θ̂it denotes the mean of θit and σit the square root
of its variance. In the same spirit, the “standardization”
of the deterministic variables QSit defines

Using this notation, the probability that θit e QSit is
the same as the probability that xit e Kit which is equal
to Φ(Kit), where Φ denotes the cumulative probability
function of a standard normal random variable. This
implies that the probability that QSit e θit is equal to
(1 - Φ(Kit)).
The expectation of the revenue REit is obtained by

applying the probability-scaled additive property of the
expectation operation:

After subtracting θ̂it from the inequalities defining the
conditional probabilities and dividing by σit, we have

The substitution of the standardized variables xit, Kit
for θit, QSit, respectively, yields

The conditional expectation of a deterministic variable
is equal to itself:

By applying the definition of the expectation of a
standard normal distribution truncated at xit ) Kit, we
have

where f is the standardized normal distribution func-
tion. The substitution of the last two expressions into
the relation for the revenue yields

This means that the expectation of the revenue is equal

to the unit price times the mean of the uncertain
product demand augmented by an expression which is
a function of Kit and scaled by σit. After “standardizing”
the expression for the revenue expectation, we have

which measures the deviation of the variance-scaled
expected revenue from the revenue for a deterministic
product demand equal to θ̂it. Figure 3 pictorially shows
the standardized expected revenue as a function of Kit.
As Kit goes to infinity (QSit . θ̂it), the standardized
expected revenue goes to zero:

Alternatively, as Kit goes to minus infinity, the stan-
dardized expected revenue becomes equal to Kit:

Furthermore, for Kit ) 0 (QSit ) θ̂it), we have

The standardized expected revenue is a concave function
of Kit because the second-order derivative of E[REit] with
respect to Kit is always negative:

5.2. Expectation of Inventory Cost. The inven-
tory cost is equal to

After substituting the expression

xit )
θit - θ̂it

σit

Kit )
QSit - θ̂it

σit

E[REit] ) Φ(Kit) E[REit|θit e QSit] +
(1 - Φ(Kit))E[REit|θit g QSit]

E[REit] ) Φ(Kit) E[Pitθit|θit - θ̂it
σit

e
QSit - θ̂it

σit ] +

(1 - Φ(Kit))E[PitQSit|θit - θ̂it
σit

g
QSit - θ̂it

σit ]

E[REit] ) Pitθ̂it + Pitσit{Φ(Kit) E[xit|xit e Kit] +
(1 - Φ(Kit))E[Kit|Kit e xit]}

E[Kit|Kit e xit] ) Kit

E[xit|xit e Kit] )

1
x2π
∫-∞

Kitxit exp(- 1
2
xit

2) dxit
1
x2π
∫-∞

Kitexp(- 1
2
xit

2) dxit
)

-1
Φ(Kit)

exp(- 1
2
Kit

2)
x2π

) -
f(Kit)

Φ(Kit)

E[REit] ) Pitθ̂it + Pitσit[-f(Kit) + (1 - Φ(Kit))Kit]

Figure 3. Plot of the standardized expected revenue.

E[REit] - Pitθ̂it
Pitσit

) -f(Kit) + (1 - Φ(Kit))Kit

lim
Kitf+∞

E[REit] ) Pitθ̂it

lim
Kitf-∞

E[REit] ) PitQSit

E[REit] ) Pit(θ̂it -
σit
x2π)

d2E[REit]

dKit
2

) -Pitσitf(Kit) e 0, ∀Kit ∈ R

ICit ) γit(IBit + IEit

2 ) )

γit[IBi1 + ∑
t′)1

t-1

QTit′ - ∑
t′)1

t-1

min(θit′,QSit′) +
QTit

2 ]
E[min(θit,QSit)] ) θ̂it + σit[-f(Kit) + (1 - Φ(Kit))Kit]
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derived in the previous subsection into the one for the
expectation of the inventory cost, we obtain

The expectation of the inventory cost is a linear function
of the production levels QTit, and a convex function in
terms of Kit (or QSit). Unlike the expectation of the
revenue, the expectation of the inventory cost depends
on variables referring to all previous periods.
5.3. Expectation of Penalty of Underproduction.

An underproduction penalty term UPit for product i in
period t is introduced, as explained in section 4, to
quantify the cost of losing market share due to failure
to satisfy a product demand (see also Birewar and
Grossmann, 1990; Ierapetritou and Pistikopoulos, 1996):

Therefore, the expectation of UPit is equal to

which is a convex function of Kit.
Summarizing the expectation of the profit is rigor-

ously transformed into a deterministic expression with-
out introducing additional variables. Furthermore,
based on the concavity/convexity results of the indi-
vidual terms, it can be deduced that the expected profit
is a concave function of QSit and linear in QTit. There-
fore, the maximization of the expected profit involves a
single solution. This result is important in optimization
studies.

6. Probabilistic Bounds on Individual Product
Demand Satisfaction

The second type of stochastic terms impose a lower
bound on the probability of the demand satisfaction of
a single product i in period t:

This expression defines a chance-constraint whose
deterministic equivalent representation can be obtained
based on the concepts introduced by Charnes and
Cooper (1962).
Specifically, by subtracting the mean and dividing by

the standard deviation of θit, the chance-constraint can
equivalently be written as

The right-hand side of the inequality within the prob-

ability sign is a normally distributed random variable
with a mean of zero and a variance of 1 (standardized
form). This implies that the chance-constraint can be
replaced with the following deterministic equivalent
expression:

The application of the inverse of the normal cumulative
distribution function Φ-1, which is a monotonically
increasing function, yields

or equivalently

Inspection of the deterministic equivalent constraint
reveals that it is linear in the deterministic variables
QSit and composed of the mean of the original constraint
augmented by the squared root of its variance times
Φ-1(âit). The plot of Φ-1 is given in Figure 4. Typically,
âit is greater than 0.5 and thus Φ-1(âit) g 0. This
implies that the variance term penalizes the determin-
istic equivalent constraint, making it more restrictive
than the mean of the original constraint. In fact, the
higher the imposed probability âit, the stricter (tighter)
the constraint becomes. While a normality assumption
is imposed for θit, the above-described deterministic
equivalent representation can be accomplished for any
stable (Allen et al., 1974) up to two-parameter prob-
ability distribution (e.g., Poisson, ø2, binomial, etc.).

7. Probabilistic Bounds on Multiple-Product
Demand Satisfaction

Joint chance-constraints impose a probability target
of simultaneously satisfying the demands for a group
of products in different periods:

In this case, âp can be thought of as the stochastic
flexibility index of the batch plant (see for definition
Pistikopoulos and Mazzuchi (1990)). This description
is useful when a probability target for a set of products
rather than individual ones must be imposed; for
example, when only up to 10% unsatisfied product
demand can be tolerated throughout the entire horizon

E[ICi1] )
γi1
2
(2IBi1 + QTi1) for t ) 1

E[ICit] ) γit{IBi1 + ∑
t′)1

t-1

QTit′ +
QTit

2
-

∑
t′)1

t-1

[θ̂it′ + σit′(-f(Kit′) + (1 - Φ(Kit′))Kit′)]} for t g 2

UPit ) δit(Pit - Cit) max(0,θit-QSit)

) -δit(Pit - Cit) min(0,QSit-θit)

) -δit(Pit - Cit)[min(θit,QSit) - θit]

E[UPit] ) -δit(Pit - Cit){E[min(θit,QSit)] - θ̂it}

) -δit(Pit - Cit)σit[-f(Kit) + (1 - Φ(Kit))Kit]

(2) Pr [QSit g θit] g âit

Pr [QSit - θ̂it
σit

g
θit - θ̂it

σit ] g âit or

Pr [Kit g xit] g âit

Figure 4. Inverse normal cumulative distribution.

Φ(Kit) g âit

Kit g Φ-1(âit)

θ̂it - QSit + σitΦ
-1(âit) e 0

(3) Pr [ ∩
(i,t)∈Ip

QSit g θit] g âp
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without distinguishing between different products. While
single-product chance-constraints are unaffected by
correlations between product demands, this is not
always the case for joint chance-constraints. In the next
subsection, first the uncorrelated demand case will be
examined followed by the general case of arbitrarily
correlated demands.
7.1. Uncorrelated Product Demands. When the

demands are independent (uncorrelated) random vari-
ates, then the joint chance-constraint can be decomposed
into the product of the constituting chance-constraints.

Because, as shown earlier, Pr[QSit g θit] ) Φ(Kit), we
have

Note that the product on the left-hand side is neither
convex nor concave (Miller and Wagner, 1964). How-
ever, upon its logarithmic transformation,

it defines a convex constraint. Figure 5 pictorially
illustrates that the logarithm of the cumulative normal
distribution is a concave function. This is rigorously
shown in Appendix A.
7.2. Joint Chance-Constraints with Correlated

Random Demands. Correlation between the uncer-
tain demands θit implies that cross-product, cross-period
correlation parameters are needed to fully describe the
statistics of the uncertain demands. These elements
constitute a symmetric, positive definite (N‚T × N‚T)
variance-covariance matrix Σ. The diagonal elements
of Σ are the variances of the uncertain demands:

The off-diagonal elements are the covariances between
different uncertain parameters θit and θi′t′:

In general, for correlated uncertain demands the joint
probabilities cannot be decoupled. This complicates the
calculation of the probability and requires the simulta-

neous integration of multivariate probability distribu-
tions. Several methods have been suggested for accom-
plishing this task. The earliest practical approach for
calculating multivariate probability functions is the
tetrachoric series expansion by Kendall (1941). Though
the series is widely used, Harris and Soms (1980)
showed that convergence of the series cannot always be
attained. Other analytical approaches involve dimen-
sion reductions based on Plackett’s identity (Plackett,
1954; Tong, 1980, 1990; Iyengar, 1993). In general, the
application of tetrachoric series and dimension reduction
techniques involves a practical upper limit of 5 or 6
random variables (Deak, 1988). Gaussian quadrature
has been extensively used for approximate multidimen-
sional integration in the area of chemical engineering,
but its accuracy and computational performance is
adversely affected by the number of uncertain param-
eters. For higher dimensional integrals Monte Carlo
type sampling methods provide a promising alternative
(Deak, 1988).
In this paper, a new approach is examined for

handling multivariate probability integrals. This ap-
proach, denoted as ΣA, is based on the approximation
of the variance-covariance matrix.
7.3. The ΣA Approach. The basic idea of ΣA is to

approximate the original variance-covariance matrix
Σ with a new one Σ′ (which is as close to Σ as possible)
such that (1) PrΣ′ [∩(i,t)∈IpQSit g θit] is “easy” to evaluate
and (2) PrΣ [∩(i,t)∈IpQSit g θit] = PrΣ′[∩(i,t)∈IpQSit g θit].
A variance-covariance matrix Σ′ of special structure,

for which (i) the multivariate probability integration is
tractable and (ii) it can adequately approximate arbi-
trary variance-covariance matrices, is one which has
off-diagonal elements of the following form:

where

This defines the set Ω of variance-covariance matrices
whose covariance elements conform to the above-
described functionality. A variance-covariance matrix
Σ′ belongs to Ω if and only if there exists λit such that
all off-diagonal elements of Σ′ can be recast in the above-
described form. For example, the following standard-
ized variance-covariance matrix:

belongs to Ω with

For any set of product demands Ip whose variance-
covariance matrix Σ belongs to Ω the joint chance-
constraint is rigorously equal to the following 1D
integral:

Proof of this property can be found in Appendix B. Note
that for uncorrelated demands the expression derived
in subsection 7.1 is recovered after selecting λit ) 0. The

Figure 5. Logarithm of the normal cumulative distribution.

∏
(i,t)∈Ip

Pr [QSit g θit] g âp

∏
(i,t)∈Ip

Φ(Kit) g âp

∑
(i,t)∈Ip

ln(Φ(Kit)) g ln(âp)

Var(θit) ) σit
2, i ) 1, ..., N, t ) 1, ..., T

Cov(θit,θi′t′), i, i′ ) 1, ..., N, t, t′ ) 1, ..., T

Cov(θit,θi′t′) ) σitσi′t′λitλi′t′

λit, λi′t′ ∈ R

(1 -1/6 3/8
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λ3 ) 3/4 )

Pr [ ∩
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QSit g θit] ) ∫-∞

+∞ ∏
(i,t)∈Ip[Φ(Kit - λitz
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expression (1 - λit2)1/2 in the denominator of the 1D
integral implies that the argument of Φ remains a real
number only if λit ∈ [-1, 1]. A discussion on probability
integration with complex numbers is included in Ap-
pendix C.
Prekopa (1995) has shown that the joint chance-

constraint upon logarithmic transformation yields a
convex constraint. Therefore, the following determin-
istic constraint is an exact convex representation of the
original joint chance-constraint:

assuming that Σ ∈ Ω. Note that evaluation of this
constraint requires one-dimensional integration rather
than N-dimensional integration, avoiding exponential
complexity in the uncertain parameters. The 1D inte-
gral can be efficiently calculated using any of many
available numerical techniques (e.g., Gaussian quadra-
ture, trapezoidal, Simpson’s rule, etc.).
When the variance-covariance matrix Σ under con-

sideration does not belong to Ω, then a variance-
covariance matrix Σ′ is sought which is as “close” to Σ
as possible. This objective is quantified by selecting the
parameters λit so that the sum of the squared differences
between the off-diagonal elements of Σ and Σ′ is
minimized. Note that this does not necessarily find the
“best” Σ′ but rather a reasonable estimate by solving
the following optimization problem:

subject to

The above minimization model is a nonconvex problem,
and therefore it may involve multiple local optima which
were, in fact, observed in practice. Therefore, a multi-
start procedure is employed to locate the global mini-
mum. Guidelines on how to globally solve problems of
this type can be found elsewhere (Maranas and Floudas,
1995; Androulakis et al., 1995).
The ΣA approach for approximating the multivariate

probability integral involves a number of important
properties.
Property 1. If all off-diagonal elements of Σ′ are less

than those of Σ, then the ΣA approximation provides a
rigorous lower bound (Slepain inequality (Slepain,
1962)):

This condition can be met if instead of solving the least-
squares minimization problem the λit’s are selected by
considering the following alternative formulation:

subject to

and

This formulation provides tight lower bounds, in par-
ticular for positively correlated demands.
Property 2. If the variance-covariance matrix Σ is

equicorrelated,

then the ΣA approximation is exact. This can be shown
by selecting λit ) xF.
Property 3. For probability integrals involving up

to three uncertain parameters, the ΣA procedure pro-
vides exact results (see Appendix C for proof).
The performance of the ΣA approximation was em-

pirically verified. Ten different correlation matrices of
dimension 10 × 10 were considered (zero sparsity). For
each of the matrices the least-squares minimization
problem was solved using multiple runs with different
starting points to identify the best approximating
matrix belonging to the set Ω. For a set of ten hyper-
rectangular regions of different sizes the joint prob-
abilities, calculated with the ΣA procedure, were com-
pared with the exact joint probabilities obtained with
Monte Carlo sampling (Tong, 1990) on the original
variance-covariance matrix. Figure 6 illustrates the
good agreement between the probability estimates
obtained with ΣA and the exact results obtained with
Monte Carlo simulation especially in the range of high
probability values most important in practice. Note that
the ΣA approximation results are obtained with 2-3
orders of magnitude less CPU time compared with the
ones obtained with Monte Carlo simulation (tens of
seconds). It is interesting also that in most cases the
obtained approximations are lower bounds of the exact
probabilities.
The independence assumption for the random vari-

ables is verified to ensure that the observed tightness
of the ΣA approximation is not due to the fact that
covariances do not contribute significantly in the joint
probabilities. The same probability evaluations were
carried out, assuming independence between the ran-
dom variables, and the results are plotted in Figure 7.
These results indicate that ignoring correlations may
indeed lead to significant errors in the estimation of the
joint probabilities. Specifically, the independence as-
sumption leads to the same estimates for the joint

ln{∫-∞

+∞ ∏
(i,t)∈Ip[Φ(Kit - λitz

x1 - λit
2)]f(z) dz} g ln(âp)

min
λit

∑
(i,t)

∑
(i′,t′)*(i,t)

(λitλi′t′ -
Cov(θit,θi′t′)

σitσi′t′ )2

-1 e λit e 1, i ) 1, ..., N, t ) 1, ..., T

Pr
Σ
[ ∩
(i,t)∈Ip

QSit g θit] g Pr
Σ′

[ ∩
(i,t)∈Ip

QSit g θit]

min
λit,sg0

s

Cov(θit,θi′t′) - (σitσi′t′)λitλi′t′ e s,
∀(i,t) and (i′,t′) * (i,t)

Figure 6. Comparison of exact joint probability values with the
results obtained with the ΣA procedure.
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σitσi′t′

) F (constant)

4872 Ind. Eng. Chem. Res., Vol. 36, No. 11, 1997



probabilities even when different values for the cova-
riance elements are selected. This is pictorially dem-
onstrated in Figure 7.

8. Update of the Planning and Scheduling
Policy

As discussed in section 4, the proposed SMPS formu-
lation employs conservative estimates of the inventory
levels as it does not account for the transfer of the
amount max(0,QSit-θit). This amount will be available
if the planned sales exceed the demand realizations in
a given period. To remedy this conservative feature of
the model, it is proposed to revise the planning policy
and update the corresponding schedule at the end of
each time period based on the realized sales. After the
solution of the planning/scheduling problem (SMPS),
only the decision variables associated with the im-
mediately following period may be taken as final. The
decision variables referring to successive periods can be
used for planning and activities related to the plant
operation (e.g., raw material ordering and purchase,
labor force planning, etc.).
The update of the planning policy and schedule at the

end of period t is described in the following steps:
1. Update future demand statistics based on present

and previous product demand realizations.
2. Calculate the inventory IBit+1 at the beginning of

period t + 1:

3. Resolve the planning/scheduling problem for t′ )
t + 1, ..., T.
4. Set t r t + 1. If t e T, return to step 1.
The first step allows the use of updated demand

forecasting information. If no new demand forecasts are
available, the conditional multivariate probability den-
sity function based on the realizations of the demands
in previous periods can be utilized. The procedure for
finding the conditional distribution function is outlined
below. The second step accounts for any unsold product
amount. Step 3 involves the solution of the SMPS
formulation, which, in turn, determines the new plan-
ning and scheduling policies.
The derivation of the conditional probability distribu-

tion based on the realization of previous random vari-
ables can be accomplished as follows. First, the random
variables, θit, are partitioned into two sets. The first

set

contains the product demands realized in the past
periods t′ ) 1, ..., t. The second set

contains the uncertain product demands for the future
periods. Based on this partitioning, the variance-
covariance matrix can be expressed as follows:

where ΣPP and ΣFF are the variance-covariance sub-
matrices of the product demands belonging to the sets
P and F, respectively. The elements of submatrices ΣPF
) (ΣFP)T are the covariances between the elements of P
and F. Let

denote the realizations (outcomes) of the product de-
mands of set P associated with past periods. The
conditional means of the uncertain future product
demands, included in F, are then given by

where µF|P denotes the conditional demand expectations
and µP and µF are the past and future mean values. The
new (conditional) variance-covariance matrix is equal
to

A detailed treatise of conditional multivariate normal
probability functions can be found in Tong, 1990. Note
that while the conditional mean values, µF|P, depend on
the demand realizations in past periods, the conditional
covariance matrix ΣF|A is independent of the demand
realizations ¥. Updating the probability distribution at
the end of each period “decreases” the uncertainty
(variances) associated with the remaining random vari-
ables, thus increasing the predictive power of the
stochastic model. This is observed in the example
addressed in subsection 10.4.

9. Solution Procedure

The number of batches nitl of product i in period t and
on line l gives rise to a large number of discrete
variables associated with the planning and scheduling
problem. To limit the combinatorial complexity of the
problem, Birewar and Grossmann (1990) proposed a
simplifying procedure for the deterministic planning/
scheduling problem which is based on treating the
number of batches nitl as continuous variables and
approximating the makespan of the process with the
cycle-time. This rounding-off of the number of batches
leads to a suboptimal feasible (or near-feasible) solution
because the cycle-time usually underestimates the
process makespan. However, while this strategy works
well for the deterministic formulation and the stochastic
case under SPC scheduling policy, it typically results
in violation of the probabilistic constraints in SMPS
formulation when one of the MPC scheduling policies
is implemented. Therefore, a variation of this procedure
is utilized in this work. To ensure feasibility of the
obtained solution, the process makespan under multi-

Figure 7. Comparison of exact joint probability values with the
ones obtained after ignoring product demand correlations.

IBit+1 ) IEit - min(QSit,θit)

P ) {θit′: 1 e t′ e t, i ) 1, ..., N}

F ) {θit′: t + 1 e t′ e T, i ) 1, ..., N}

Σ ) (ΣPP ΣPF

ΣFP ΣFF
)

¥ ) (êi1, êi2, ..., êit)

µF|P ) µF + ΣFPΣPP
-1(¥ - µP)

ΣF|A ) ΣFF - ΣFPΣPP
-1ΣFP
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ple-product campaigns is explicitly defined in the model
through the constraints:

This set of constraints ensures that the process
makespan, equal to the cycle-time plus the “tail” times,
does not exceed the time horizon. The binary variable
Yiktl determines where to “break” the production cycle
for a feasible makespan, and the variable NPRSiktl
identifies the number of product changeovers. In light
of this, the solution procedure for SMPS is summarized
in the following four steps:

Step 1: Initialization
Solve the continuous relaxation of the SMPS formula-
tion having 0 e Yiktl e 1 and continuous batch sizes
nitl
rlx. The relaxed optimal solution provides good

initial points for the continuous variables.
Step 2: Domain Restriction
Restrict the integer search domain as follows:

Step 3: MINLP Solution
Solve the MINLP problem formulation (SMPS) in the
defined search domain utilizing outer approximation
(Duran and Grossmann, 1986a). If the problem does
not have an integer solution, increase the integer
domain bounds of step 2 by 1 and repeat step 3.

Step 4: Optimal Schedule Recovery
Fix the number of batches nitl to the MINLP solution
and solve the makespan minimization problem for
each time period and line. This problem is described
in Appendix 2 of Birewar and Grossmann (1990) and
is formulated as follows:

subject to

The solution of the minimum makespan problem
determines the optimal number of product changeovers
NPRSiktl. The exact scheduling sequence is then
obtained based on the graph enumeration method of
Birewar and Grossmann (1989).

This batch size relaxation results in very small
integrality gaps (<0.01%), while the computational
effort remains between tens to hundreds of seconds (see
section 10). Infeasibility of the relaxed MINLP problem
in step 1 implies that the imposed probability targets
cannot be achieved with the available production re-
sources and one must either relax the probability targets
or introduce additional resources.

10. Example

The first example of Birewar and Grossmann (1990)
with a modified description of the demand specifications
is addressed. The plant has three defined production
lines involving four production stages. Five different
products are to be produced, and the time horizon of
6000 h is divided into four equal time periods. The stage
volumes, size factors, processing times, sales prices, and
production costs are given in Tables 1-5, respectively.
The product demands in each period are described by
normal multivariate probability distributions. The
expected (mean) values of the demands are given in
Table 6, and their standard deviation is assumed to be
5% of their mean values. This implies that 90% of their
realizations will fall within (1.64 × 5% ) 8.2% from
their mean values.
Three alternative model formulations, applied to the

same example problem, are defined and solved using

∑
i∈Il
nitltij + ∑

i∈Il
∑
k∈Il

NPRSiktlSLikj +

∑
i∈Il

∑
k∈Il

(∑
j′ej
tij′ + ∑

j′gj
tij′ - SLikj)Yiktl e H

∑
k∈Il

NPRSiktl ) nitl

∑
i∈Il
NPRSiktl ) nktl

∑
i∈Il

∑
k∈Il

Yiktl ) 1

nitl
rlx e nitl e nitl

rlx

minMStl

MStl g ∑
i∈Il
nitltij + ∑

i∈Il
∑
k∈Il

NPRSiktlSLikj + ∑
i∈Il

∑
k∈Il

(∑
j′ej
tij′ +

∑
j′gj
tij′ - SLikj)Yiktl

∑
k∈Il

NPRSiktl ) nitl

∑
i∈Il
NPRSiktl ) nktl

∑
i∈Il

∑
k∈Il

Yiktl ) 1

Yiktl e NPRSiktl

NPRSiktl g 0

Yiktl ∈ {0, 1}

Table 1. Volumes, Vjl

line stage 1 stage 2 stage 3 stage 4

1 600 400 400 400
2 400 400 400 600
3 600 400 600 400

Table 2. Size Factors, Sij

product stage 1 stage 2 stage 3 stage 4

1 2 3 2 6
2 7 3 1 2
3 1 4 3 2
4 5 5 2 6
5 1 6 2 2

Table 3. Processing Times, tij

product stage 1 stage 2 stage 3 stage 4

1 10 4 10 1
2 3 10 6 12
3 4 12 6 10
4 16 3 8 4
5 7 2 5 3

Table 4. Sale Prices, Pit ($/kg)

product period 1 period 2 period 3 period 4

1 9.0 9.5 9.5 4.5
2 9.0 9.5 9.0 9.0
3 12.0 12.5 13.0 11.5
4 12.0 12.0 12.0 12.5
5 8.0 9.5 8.0 9.5

Table 5. Production Costs, Cit ($/kg)

product period 1 period 2 period 3 period 4

1 4.5 4.5 4.5 4.5
2 4.5 4.5 4.5 4.5
3 6.0 6.0 6.0 6.0
4 6.0 6.0 6.0 6.0
5 4.0 4.0 4.0 4.0
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the proposed solution procedure. Each one of these
models includes some of the features of SMPS model
as defined earlier.

Model 1:

Model 1 maximizes the expectation function of the
profit without setting any probabilistic demand sat-
isfaction targets. Loss of profit due to underproduc-
tion is implicitly taken into account by utilizing a
penalty for underproduction.

Model 2:

subject to

Model 2 also maximizes the expected profit, but
additional probability targets are explicitly set for
individual product demand satisfaction without uti-
lizing a penalty for underproduction (δit ) 0).

Model 3:

subject to

Model 3 incorporates not only single but also joint
chance-constraints for setting probability targets for
the satisfaction of a group of products. First the
uncorrelated case is addressed, and next the effect of
correlation on the economic parameters and the
optimal product mix is evaluated and discussed.

A customized implementation of the outer approxi-
mation algorithm (Duran and Grossmann, 1986a,b)
utilizing the CONOPT and CPLEX 4.0 solvers, within
GAMS (Brook et al., 1988), is utilized to solve the above
model formulations. The reported CPU times are on
an IBM RS6000 43P-133 workstation.
10.1. Model 1: Penalty Approach for Cost of

Underproduction. This model involves the maximi-
zation of the expectation of the stochastic profit function

subject to production and inventory constraints and an
MPC with UIS scheduling policy. The effect of the
selection of the penalty parameter δit is examined by
performing several runs with δit ranging from zero to
10 times the profit margin for each product. The results
are summarized in Table 7. Note that the imposed
integrality gap tolerance of 0.01% is met after only a
few (always less than 10) iterations. The minimum and
maximum probabilities of satisfying individual product
demands as well as the joint probability of satisfying
all product demands simultaneously are calculated for
the planned sales production policy QSit obtained for
different values of δit. Even when the penalty for
underproduction is as high as 10 times the profit
margin, the joint probability of satisfying an individual
demand target is only 16%. The results obtained from
Model 1 demonstrate that by increasing the value of the
penalty parameter δit the chances of satisfying the
product demands are improved but the magnitude of
the improvement cannot a priori be predicted and
sometimes is not sufficient.
10.2. Model 2: Single-Product Demand Proba-

bilistic Constraints. Model 2 extends model 1 through
the incorporation of individual product demand prob-
ability constraints. The resulting MINLP problem
involves the same concave objective function (except for
the penalty of underproduction term) and linear con-
straints of Model 1 plus a set of linear constraints
representing the deterministic equivalent representa-
tion of the individual probability constraints. The
results for âit ranging from 0 to 0.95 are shown in Table
8. Note that for âit e 0.5 the probability target
constraints are not active, implying that the objective
function maximization requires a probability greater
than 0.5 for the satisfaction of individual product
demands. For âit g 0.95 the problem becomes infeasible,
implying that available plant resources cannot guaran-
tee probability targets greater than 0.95. Figure 8
shows the maximum expected profit for different prob-
ability target levels. The first trade-off curve refers to
Model 1 and the second to Model 2. Model 2, which
explicitly addresses probability target levels, involves
a trade-off curve which is “above” the one of model 1.
This is expected because model 1 only implicitly quanti-
fies probability of demand satisfaction through an
underproduction penalty. For the example at hand,
Model 1 tracks reasonably well the Pareto optimum
curve defined by the results of Model 2. The curves
shown in Figure 8 provide a quantitative way to relate
the value of the penalty of underproduction parameter
δit with the probabilistic target âit.
10.3. Model 3: Use of Joint Probability Con-

straints. Three separate cases are considered for
Model 3 involving (i) uncorrelated, (ii) equicorrelated,
and (iii) arbitrarily correlated product demands.

Table 6. Mean Values of the Product Demand θ̂it

period product 1 product 2 product 3 product 4 product 5

1 2700 2100 13 600 5900 4000
2 5000 7600 15 000 5000 4500
3 4500 5400 17 200 6800 5500
4 3100 7300 13 100 7200 20400

Table 7. Results of Model 1 (Integrality Gap ) 0.01%)

δit max. profit (with penalty) max. profit (without penalty) joint prob. min prob. max prob. iter. CPU (s)

0.0 833 910.31 833 910.31 0.000 003 0.447 0.5759 5 10.24
0.2 830 819.75 833 865.81 0.000 004 0.5000 0.5899 3 3.57
0.4 828 025.55 833 415.55 0.000 013 0.5000 0.6368 8 12.58
0.6 825 627.90 832 628.17 0.000 052 0.5845 0.6602 3 2.89
0.8 823 418.18 831 887.61 0.000 124 0.6006 0.6881 3 3.16
1.0 821 449.84 831 086.90 0.000 225 0.5975 0.7167 3 3.56
2.0 813 759.86 827 001.20 0.002 648 0.7218 0.7878 6 9.05
3.0 808 279.11 823 008.72 0.010 292 0.7705 0.8339 4 8.58
4.0 803 989.10 819 778.52 0.020 704 0.7699 0.8577 8 19.90
5.0 800 559.73 816 416.97 0.043 061 0.8449 0.8824 4 9.28
6.0 797 706.59 814 190.02 0.059 900 0.8530 0.8986 6 9.17
10.0 789 474.05 806 213.83 0.161 549 0.8896 0.9319 4 8.21

max E[Profit]

max E[Profit]

Pr [QSit g θit] g âit

max E[Profit]

Pr [QSit g θit] g âit

Pr [ ∩
(i,t)∈Ip

QSit g θit] g âp
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10.3.1. Uncorrelated Case. For uncorrelated de-
mands explicit convex deterministic equivalent relations
can be obtained (see section 7) for the joint probabilities.
Table 9 shows the values of the highest and lowest
probability of satisfying the demand for each product
in a single period. Note that the presence of nonlinear
(convex) constraints in model 3 does not affect signifi-
cantly the CPU requirements compared with model 2.
10.3.2. Equicorrelated Case. While correlations

do not affect the results of models 1 or 2, the joint
probability targets of model 3 are affected by possible
demand correlation. This correlation affects the opti-
mum expectation values of the stochastic economic
parameters (profit, inventory costs, and penalty cost)
as well as the optimum product-mix, production sched-
ule, and planned sales. First, the magnitude of the
effect of correlation is quantitatively examined. The
same correlation coefficient F is selected for all product
demands (equicorrelation), and F assumes values be-
tween 0 and 0.99, modeling various levels of demand
correlation. Obviously, higher values of F imply stron-
ger correlation. For the equicorrelated case it was
shown in section 7 that the correlation matrix belongs
to the set Ω with λi ) xF. Therefore, the planning/
scheduling problem can be solved exactly using model

3 and invoking the ΣA procedure (Table 10). The joint
probability index, â, for the set of all 20 product
demands is set to 80%, and the problem is solved for
correlation coefficients varying between 0 and 0.99. For
each value of â the optimal planning/scheduling policy
is identified, and the profit expectation, production cost,
and the expectation of the inventory cost are compared
with those after ignoring demand correlation. The
differences given in percentage deviations from the
uncorrelated assumption are plotted in Figure 9. These
results indicate that an increase in the profit expecta-
tion of more than 5% and a reduction of 20% in the
inventory costs is possible if correlation between the
product demands is properly accounted for. This ex-
pectation of the profit increase is a result of the fact
that the joint probability target of 80% can be met with
smaller production levels than the ones obtained after
ignoring correlations.
10.3.3. Correlated Case. The equicorrelated as-

sumption utilized above provided the means to quan-
titatively assess the effect of different “magnitudes” of
correlation in the planning/scheduling policy. However,
realistic product demand correlations are not equicor-
related. A nonequicorrelated variance-covariance ma-
trix is constructed and shown in Appendix D in its

Figure 8. Plot of maximum expected profit vs the lower bound
target on the probabilities for demand satisfaction for the results
obtained for models 1 and 2.

Table 8. Results of Model 2 (Integrality Gap ) 0.01%)

âit max profit min prob. max prob. iter. CPU (s)

0.4 833 969.47 0.427 0.5526 4 6.25
0.5 834 001.43 0.500 0.5526 2 1.41
0.6 832 967.15 0.600 0.6000 2 1.28
0.7 829 596.48 0.700 0.7000 2 9.80
0.8 822 882.99 0.800 0.8000 2 13.59
0.9 809 611.31 0.900 0.9000 2 2.50
0.95 796 394.99 0.950 0.9500 2 1.41

Table 9. Results of Model 3 with Uncorrelated Demands
(Integrality Gap ) 0.1%)

âp max profit min prob. max prob. iter. CPU (s)

0.0 833 969.47 0.4270 0.5526 4 6.25
0.1 814 714.31 0.7438 0.9759 2 4.64
0.2 808 670.28 0.8256 0.9826 2 4.31
0.3 803 277.27 0.8513 0.9914 2 4.49
0.4 798 160.49 0.8658 0.9933 2 4.09
0.5 793 620.73 0.9126 0.9930 2 5.02
0.6 788 089.87 0.9311 0.9965 5 7.75
0.7 782 091.97 0.9528 0.9965 2 5.82
0.8 773 949.73 0.9735 0.9981 2 6.25
0.9 762 261.52 0.9878 0.9989 3 7.57

Figure 9. Effect of correlation on optimum expected profit.

Table 10. Results of Model 3 with Correlated Demands
(Integrality Gap ) 0.1%)

âp max profit min prob. max prob. iter. CPU (s)

0.0 833 969.47 0.427 0.5526 4 6.25
0.1 817 721.32 0.7247 0.9482 6 18.77
0.2 810 997.95 0.8162 0.9735 6 46.32
0.3 805 785.04 0.8511 0.9805 9 46.66
0.4 800 112.50 0.8882 0.9907 6 35.46
0.5 795 038.20 0.9096 0.9900 29 278.40
0.6 789 359.59 0.9405 0.9934 6 33.78
0.7 783 204.77 0.9496 0.9953 4 47.84
0.8 774 921.24 0.9721 0.9976 12 56.09
0.9 762 812.06 0.9879 0.9989 9 25.19

Table 11. Comparison of the Results Obtained by the ΣA
Procedure, the Assumption of Ignoring Correlation, and
Boole’s Inequality

Ptarget PΣA PUncorr. PBoole

0.9 0.902 0.906 0.910
0.8 0.804 0.813 0.829
0.7 0.709 0.722 0.757
0.6 0.610 0.630 0.692
0.5 0.513 0.541 0.633
0.4 0.414 0.450 0.577
0.3 0.314 0.357 0.528
0.2 0.212 0.259 0.483
0.1 0.111 0.152 0.442
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standardized form. The latter has sparsity of 60%, and
its off-diagonal elements vary between -0.3 and 0.6. The
bias toward positive covariances is introduced to main-
tain semipositive-definiteness which is a property of
all variance-covariance matrices.
The model 3 formulation is used to evaluate the

performance of the (ΣA) approximation (see Table 11).
The first column contains the targeted joint probability
level, â, and the following columns list results obtained
using (1) the ΣA approximation, (2) uncorrelated as-
sumption, and (3) Boole inequality (lower bound)

These results demonstrate that especially for â < 0.9
both the independence assumption and the Boole in-
equality significantly underestimate the joint prob-
ability. The ΣA procedure provides a tight approxima-
tion of the joint probability over the entire range of
probability targets with discrepancies which are always
less than 2.5%. Next, the proposed update policy is
applied on the example problem.
10.4. Revision of Planning Policy. The proposed

revision of planning policy is next applied to the example
problem at hand. To facilitate the study of the effect of
updating the production and planned sales policies, only
covariances between the demands of the same product
in various time periods are considered. The following
standardized correlation matrix is selected for each
product:

Using this correlation matrix, a demand realization is
randomly generated using the method presented by
Tong (1990). The product demand realizations are given
in Table 12, and when compared with the mean values
(see Table 6), it is found that some of the demand
realizations differ by as much as 1.66 times the standard
deviation from the mean values. A joint probability
target of 85% is set for the demand satisfaction of each

product in all time periods. This introduces four joint
probability constraints of the form

in the model. The resulting optimization problem is
solved in the entire time horizon. Next, based on (i) the
demand realizations in the first period, (ii) the correla-
tion matrix, (iii) the mean values of the remaining
random demands, and (iv) the remaining inventory at
the beginning of the second period, a new planning
revision problem is solved for t ) 2-4. This is repeated
for all remaining time periods. The updated values of
the mean vectors and standard deviations after each
time period are given in Tables 13 and 14. After each
revision, the elements of the variance-covariance ma-
trix become smaller, which demonstrates that the
planning revision reduces demand uncertainty (see
Table 15).
The inventory profile for product 4 is shown in Figure

10. The solid line denotes the inventory levels after the
revision of the planning policy, and the dashed line
denotes the inventory without employing any updating
policy. Clearly, when the solution is updated, the
planning policy is much more effective because over-
production is decreased. Examination of the demand
profile for product 4 reveals that its high demand in the
last period could not be fully satisfied by utilizing only
the available resources of the last period. However, by
transferring amounts produced in previous periods,
through the inventory system, the satisfaction of the
product demands with an overall probability of 85% is
made possible.

11. Summary and Conclusions

In this paper, the multiperiod planning and schedul-
ing of multiproduct plants under demand uncertainty
was addressed. The following basic production/schedul-
ing policies providing a check on the feasibility of the
production levels identified in the planning phase were
considered: SPC with ZW or MPC with ZW/UIS. A
novel stochastic model, which extends the deterministic
model proposed by Straub and Grossmann (1990), was
introduced. This model involves the maximization of
the expected profit subject to constraints for the satis-
faction of single- and/or multiple-product demands with
a prespecified level of probability (chance-constraints).
The stochastic attributes of the model were expressed
with equivalent deterministic forms, eliminating the
need for discretization or sampling techniques at the
expense of invoking the normality assumption. For the
uncorrelated product demand case an exact determin-
istic representation was obtained. For the correlated
case, the ΣA procedure was introduced for approximat-
ing joint probability integrals. The resulting equivalent
deterministic optimization models are MINLP’s with

Table 12. Employed Realizations of the Random Product
Demands

product period 1 period 2 period 3 period 4

1 2751 4690 4385 3038
2 2236 7945 5437 7046
3 14620 15124 17280 13507
4 5770 4819 6434 7785
5 4332 4257 5403 22011

Table 13. Updates of the Product Demand Expectations

time T period product 1 product 2 product 3 product 4 product 5

0 1 2700 2100 13600 5900 4000
2 5000 7600 15000 5000 4500
3 4500 5400 17200 6800 5500
4 3100 7300 13100 7200 20400

1 2 5020 7654 15410 4948 4633
3 4488 5367 16960 6831 5420
4 3124 7365 13590 7138 20560

2 3 4509 5349 16970 6839 5445
4 3082 7403 13550 7121 20510

3 4 3090 7397 13530 7149 20510

Pr [ ∩
(i,t)∈Ip

QSit g θit] g ∑
(i,t)∈Ip

Pr [QSit g θit] - (n - 1)

Σ ) (1.00 0.40 -0.24 0.48
0.40 1.00 -0.15 0.30
-0.24 -0.15 1.00 -0.18
0.48 0.30 -0.18 1.00

)

Pr [∩
t
QSit g θit] g 0.85, i ) 1, ..., 5
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convex continuous parts. A revision strategy for the
planning policy and update of the corresponding sched-
ule at the end of each time period based on the realized
sales was also presented. This was accomplished by
recalculating the conditional multivariate probability
function given the demand realizations in previous
periods. An example problem was also addressed,
highlighting different features of the stochastic formula-
tion.
Computational results demonstrate that the proposed

stochastic formulation and solution strategies involve
CPU requirements which are on the same order of
magnitude as those in the deterministic case. The
example considered involves 20 uncertain parameters,
however, much larger problem sizes can be handled
since no significant computational penalty exists for
additional uncertain parameters. Comparison of the
results of models 1 and 2 indicates that the inclusion of
explicit probabilistic constraints for demand satisfaction
provides a rigorous alternative to the use of the under-
production penalty whose a priori weight selection is
sometimes difficult. Results from the equicorrelated
case of model 3 demonstrate that the expected profit
and in particular the corresponding planning policy and
schedule are strongly affected by the presence of cor-
relations. The results from the correlated case indicate

that the ΣA approximation provides tight bounds for the
joint probabilities which are significantly better than
the ones obtained assuming independence or utilizing
the Boole inequality. The proposed planning revision
and scheduling updating policy by updating the prob-
ability distribution at the end of each period decreased
uncertainty (variances) associated with the remaining
random variables and thus increased the predictive
power of the stochastic model for the subsequent
periods.
Increased uncertainties in the product demands re-

quire on average higher inventory levels at the end of
each period to guarantee the prespecified probability
level of demand satisfaction. Thus, higher levels of
uncertainty generally lead to longer process makespans.
Computational experience demonstrated that increasing
the probability of demand satisfaction also increases the
required total processing time. So far, only simple
scheduling policy checks involving SPC with ZW and
MPC with UIS or ZW are considered at the planning
stage. This is because once the production goals are set
and their feasibility is checked for the basic scheduling
policy which most realistically describes the available
storage capacities and operation mode, detailed short-
term scheduling can then be applied to revise the
scheduling suggestions obtained at the planning phase.
Examples of more complex scheduling rules include
mixed-intermediate storage (MIS) and fixed-intermedi-
ate storage (FIS) (Kim et al., 1996).
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Appendix A: Concavity of ln(Φ(K))

The function ln(Φ(K)) is concave if its second deriva-
tive with respect to K is always nonpositive ∀K ∈ R.
Consider the first and second derivatives of ln(Φ(K)):

where f(K) is the normal standardized probability
function f(K) ) dΦ/(K)/dK. Because f(K) and Φ(K) are
always positive, it suffices to show that the term
KΦ(K) + f(K) is always nonnegative.
For K g 0 it is clear that KΦ(K) + f(K) is always

positive. For the case K < 0, the first derivative of

Table 14. Updates of the Product Demand Standard Deviations

time T period product 1 product 2 product 3 product 4 product 5

0 1 135 105 680 295 200
2 250 380 750 250 225
3 225 270 860 340 275
4 155 365 655 360 1020

1 2 210 319 630 210 189
3 212 227 722 320 259
4 119 281 504 277 785

2 3 210 252 804 318 257
4 117 276 495 272 771

3 4 117 274 493 271 767

Figure 10. Inventory profile for product 4.

Table 15. Updates of the Product Demand Correlation
Matrices

time T period 1 2 3 4

0 1 1.00 0.40 -0.24 0.48
2 0.40 1.00 -0.15 0.30
3 -0.24 -0.15 1.00 -0.18
4 0.48 0.30 -0.18 1.00

1 2 1.0 -0.06 0.14
3 -0.06 1.0 -0.07
4 0.14 -0.07 1.0

2 3 1.0 -0.054
4 -0.054 1.0

3 4 1.0

d ln(Φ(K))
dK

)
f(K)

Φ(K)

d2 ln(Φ(K))

dK2
) 1

Φ2(K)[df(K)dK
Φ(K) - f2(K)] )

-
f(K)

Φ2(K)
[KΦ(K) + f(K)]
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KΦ(K) + f(K) with respect to K is equal to:

This expression is always positive, implying that
KΦ(K) + f(K) is strictly monotonically increasing. The
limit of the latter when K f -∞ is

This implies that KΦ(K) + f(K) is nonnegative for any
K ∈ R. Therefore, ln(Φ(K)) is a concave function of K
for any K ∈ R.

Appendix B: Multivariate Probability
Integration for Σ ∈ Ω Variance-Covariance
Matrices

This proof follows the analysis of Tong (1990). Given
is a vector X of normally distributed correlated random
variates xi, i ) 1, ..., N, with standard deviations σi and
covariance elements Cov(xi,xj) ) λiλjσiσj. An alternative
but equivalent representation of X is the vector of
uncertain parameters

where Z0, Z1, ..., Zn are independent standardized
normal random variables. This can be verified by
calculating the mean, variance, and covariance elements
of Y

which are identical to the respective statistical param-
eters of the vector X. This means that Y ≡ X and thus

Note that Z0 is the only common random variable
shared by the elements of the Y vector and responsible
for the covariances among them. Let z be a realization
(outcome) of the random variable Z0. Assuming that
Z0 realized the value z, then there is no statistical
dependence (correlation) between the inequalities and
thus

After probability averaging over all possible realizations
z of Z0, we have

where f(z) is the standardized normal probability den-
sity. The deterministic equivalent recasting of the last
expression yields

Note that no restriction on the λi’s has been imposed;
therefore, they can be real or complex numbers (see
Appendix C). Switching back to the notation of section
7

we recover

Appendix C: ΣA for up to Three Uncertain
Parameters

Assuming that n e 3, the joint probability
Pr[∩i)1n (ai e xi e bi)] can be calculated exactly using
the (ΣA) procedure. This is because the 3× 3 variance-
covariance matrix Σ can always be recast in a form
which belongs to Ω. Specifically, the 3 × 3 variance-
covariance matrix

belongs in Ω if the following 3 × 3 system of nonlinear
equations

Pr [∩
i

n
(ai e xi e bi)] ) Pr {∩

i

n
[ai e σi(x1 - λi

2Zi +

λiZ0) + µi e bi]} ) ∫-∞

+∞∏
i)1

n

Pr [ai e σi(x1 - λi
2Zi +

λiz) + µi e bi] f(z) dz )

∫-∞

+∞∏
i)1

n

Pr [((ai - µi)/σi - λiz

x1 - λi
2 ) e Zi e

((bi - µi)/σi - λiz

x1 - λi
2 )] f(z) dz

Pr [∩
i

n
(ai e xi e bi)] ) ∫-∞

+∞∏
i)1

n [Φ((bi - µi)/σi - λiz

x1 - λi
2 ) -

Φ((ai - µi)/σi - λiz

x1 - λi
2 )] f(z) dz

(xi r θit, ai r -∞, bi r QSit, σi r σit)

Pr [ ∩
(i,t)∈Ip

QSit g θit] ) ∫-∞

+∞ ∏
(i,t)∈Ip[Φ(Kit - λitz

x1 - λit
2)]f(z) dz 0

Σ ) (σ11 σ12 σ13
σ12 σ22 σ23
σ13 σ23 σ33

)
σ12 ) λ1λ2σ11σ22

σ13 ) λ1λ3σ11σ33

σ23 ) λ2λ3σ22σ33

d[KΦ(K) + f(K)]
dK

) Φ(K)

lim
Kf-∞

[KΦ(K) + f(K)] )

lim
Kf-∞ [ K

x2π
∫-∞

K
e-x2 dx + 1

x2π
e-K2] ) 0

Y ) (σ1(x1 - λ1
2Z1 + λ1Z0) + µ1, ..., σn(x1 - λn

2Zn +

λnZ0) + µn)
T

E[σi(x1 - λi
2Zi + λiZ0) + µi] ) µi

Var[σi(x1 - λi
2Zi + λiZ0) + µi] ) σi

2

Cov[σi(x1 - λi
2Zi + λiZ0) + µi, σj(x1 - λj

2Zj +
λjZ0) + µj] ) σiσjλiλj

Pr [∩
i

n
(ai e xi e bi)] ) Pr {∩

i

n
[ai e σi(x1 - λi

2Zi +

λiZ0) + µi e bi]}

Pr {∩
i

n
[ai e σi(x1 - λi

2Zi + λiz) + µi e bi]} )

∏
i)1

n

Pr [ai e σi(x1 - λi
2Zi + λiz) + µi e bi]
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has a solution. Solving for the λi’s, we obtain

These results demonstrate that when all the covariance
elements are positive or when exactly two of the three
covariance elements are negative, then the λi’s are real
numbers. However, there are two more cases which
need to be considered:
1. One or more of the λi are greater than 1.
2. One or all of the three covariance elements are

negative.
In the first case, the expression (1 - λi2)1/2 becomes

an imaginary number. In the second case, the λi’s are
no longer real but they become imaginary numbers.
However, the ΣA procedure can still be applied as long
as the appropriate numerical algorithms are available
for handling complex numbers.
For example, consider the vector X of three standard

normally distributed random variables which are equicor-
related with a correlation coefficient F) -0.2. The
corresponding λi are then imaginary numbers equal to
ix0.2 where i is the complex unit. The joint prob-
ability

is equal to 0.932 (estimated using Monte Carlo simula-
tion). The value of the complex integral,

corresponding to the ΣA procedure, yields the same
result 0.93215.

Appendix D: Variance-Covariance Matrix
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