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A new method is introduced for optimally designing multiproduct batch plants under 
the single-product campaign (SPC) production mode. Uncertain future product de- 
mands are described with normal probability distributions, and more than one process- 
ing unit of equal size are allowed per stage. A t  the expense of imposing the normality 
assumption for product demand uncertainty and the SPC production mode, the original 
two-stage stochastic optimization problem is transformed into a deterministic mixed-in- 
teger nonlinear programming problem without relying on implicit or explicit discretiza- 
tion of the uncertain variables. This is accomplished through the explicit solution of the 
inner problem and the analytical integration overall product demand realizations. This 
problem representation and solution strategy result in savings of orders of magnitude 
over existing methods in computational requirements. 

Introduction 
Batch processing has emerged as the preferred mode of 

operation for many high-value added products. This is be- 
cause it provides the flexibility necessary to accommodate a 
large number of low-volume products with customized speci- 
fications involving multiple processing steps in the same pro- 
cessing plant (Rippin, 1993). In this article, we consider the 
optimal design of multiproduct batch plants operating in sin- 
gle-product campaign (SPC) mode under product demand 
uncertainty. The defining feature of the SPC production mode 
is that all the batches of a given product are manufactured 
before production of the next product begins. In contrast, 
mixed-product campaign (MPC) production modes (Birewar 
and Grossmann, 1989a) may produce more batches per unit 
time at the expense of increased changeover times and 
cleanup costs. At the design stage, no concrete information is 
available for future product demand profiles over the lifetime 
of the plant (Rippin, 1993). Therefore, before manufacturing 
begins, plant capacity must be appropriately allocated to ac- 
commodate varying future product demand realizations. This 
allocation must establish the optimal tradeoff between prod- 
uct demand satisfaction and extra plant capacity. Failure to 
systematically set this tradeoff may lead to unnecessarily high 
investment cost or missed sales and, thus, market share. 

Correspondence concerning this article should be addressed to C. D. Marands 

Motivated by this necessity, a number of publications have 
been devoted to the study of batch plant design under uncer- 
tainty. One of the first references to multiproduct batch plant 
design under technical and commercial uncertainty is by Johns 
et al. (1978). Describing the uncertain variables with proba- 
bility distribution functions, the authors derived an optimal 
direction search procedure to maximize the expected profit 
in the face of uncertainty. This search for the first time 
demonstrated that: (i) The optimal batch plant designs with 
and without considering uncertainty may differ significantly; 
(ii) stochastic models provide much more realistic estimates 
for the expected profitability of batch plants than determinis- 
tic ones. Later, Reinhart and Rippin (1986, 1987) addressed 
the design with uncertainty in demands, processing times, and 
size factors based on a mathematical programming formula- 
tion. The key element of the work is the introduction of time 
constraints corresponding to different scenarios, leading to a 
design satisfying all postulated realizations of the uncertain 
variables. This idea was later extended by Shah and Pan- 
telides (1992) who proposed a scenario-based approach foT 
the design of multipurpose batch plants with uncertain pro- 
duction requirements yielding a large-scale mixed-integer lin- 
ear (MILP) model. A conceptual formulation for batch plant 
design under uncertainty, which allows for staged expansions, 
was proposed by Wellons and Reklaitis (1989). The authors 
suggested a distinction between “hard” and “soft” constraints 
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and introduced penalty terms in the objective function for 
the latter. After assuming that the demands change stepwise 
and the only uncertainty is in the time when the step-change 
occurs, an analytical expression for the expected value of the 
objective function was derived, thus enabling the solution of 
the model as an MINLP problem. Straub and Grossmann 
(1992) proposed a procedure for the evaluation and optimiza- 
tion of the expected stochastic flexibility in multiproduct batch 
plants. They integrated stochastic aspects stemming from both 
flexibility and reliability considerations and developed Gauss- 
ian quadrature-based procedures for establishing the optimal 
tradeoffs between investment cost and expected stochastic 
flexibility. Later, Subrahmanyam et al. (1994) addressed mar- 
ket uncertainty by generating scenarios based on discretized 
probability distributions of the product demands. Recently, 
Ierapetritou and Pistikopoulos (1995, 1996) contributed to the 
general problem of batch plant design under uncertainty. 
They developed a feasibility relaxation for the “soft” con- 
straints and proposed a two-stage stochastic programming 
formulation. The latter is solved based on the discretization 
of the probability space through quadrature integration lead- 
ing to a single but typically large-scale nonconvex optimiza- 
tion problem. Harding and Floudas (1997) proposed a global 
optimization procedure to solve this problem based on the 
aBB algorithm (Androulakis et al., 1995). 

In general, there are three different approaches for formu- 
lating optimization problems in the face of uncertainty: (i) 
the “wait and see” formulation; (ii) the probabilistic ap- 
proach; (iii) the “here and now” or the two-stage model 
(Vajda, 1970). The approach proven most useful as a source 
of reliable design information is the two-stage, or “here and 
now” approach (Johns et al., 1978; Wellons and Reklaitis, 
1989). In the latter, the decisions are made in two stages. In 
the first stage, the decision variables are fixed, and in the 
second stage, the operating variables are adjusted based on 
the realization of the uncertain parameters (Prekopa, 1995). 
The design variables in the multiproduct batch plant design 
problem are the number of units and their capacity per stage, 
while the operating variables are the production levels (out- 
put) of each product. The difficulty associated with this un- 
dertaking is that i t  requires averaging of the solution of the 
inner optimization problem over the ensemble defined by all 
possible product demand realizations before the outer opti- 
mization problem is solved. Computationally, this averaging 
means integration over the multivariate probability space. 
This challenge has so far been resolved through explicit/im- 
plicit discretization of the probability space. Different inte- 
gration methods are defined by their respective strategies for 
discretization. These are based on a priori discretization 
(Subrahmanyam et al., 19941, Gaussian quadrature integra- 
tion (Straub and Grossmann, 1993; Ierapetritou and Pis- 
tikopoulos, 1996), or random sampling (Liu and Sahinidis, 
1996) such as Monte-Carlo. The key advantage of the afore- 
mentioned methods lies in the fact that they are largely in- 
sensitive to the type of probability distribution selected for 
the uncertain demands and the adopted production policy. 
The main disadvantage is that computational requirements 
increase sharply with the number of uncertain product de- 
mands. 

In this article, a novel approach is introduced for solving 
the design problem of multiproduct batch plants under SPC 

production mode when the product demands are uncertain. 
The approach allows for more than one processing unit of 
equal size per stage. At the expense of sacrificing generality 
by imposing the normality assumption and the SPC produc- 
tion mode, the original two-stage stochastic optimization 
problem is transformed into a deterministic convex mixed-in- 
teger nonlinear programming (MINLP) problem. The pro- 
posed approach allows for the first time the solution of 
large-scale batch design problems involving tens of uncertain 
demands. The derived analytical expressions help elicit the 
meaning, relative weight, and interrelationships between dif- 
ferent elements of the model. Furthermore, an equivalence 
of penalizing production shortfalls and imposing a high 
enough probability for product demand satisfaction is re- 
vealed. Results indicate that the number and capacities of units 
per stage in the optimal design depend on the imposed probabil- 
ity of product demand satisfaction. Tradeoff curves typically 
exhibit a discontinuous behavior caused by the transition to 
plant designs with a different number of units at different 
probability levels of demand satisfaction. 

Problem Definition and Overview 
Given are the: (i) mean and (cokariances of the uncertain 

product demands; (ii) product recipe information quantified 
with processing times, size factors and number of production 
stages; (iii) capacity ranges and number of parallel processing 
units. The problem to be addressed can be stated as follows: 

Find the optimal design of a multiproduct batch plant operat- 
ing in SPC production mode such that the expected discounted 
cash flow return (DCFR) of the batch plant, within a prespeci- 
fied time horizon, is maximized allowing for the optimal adjust- 
ment of production levels in response to every product demand 
realization. 

The design objective, as stated above, suggests that rather 
than attempting to guarantee satisfaction of every possible 
realization of the uncertain demands, which is impossible if 
they are normally distributed, a flexible plant design is sought, 
ensuring the optimal level of product demand satisfaction. 
This optimal level of demand satisfaction is established by 
striking the proper balance between profit from sales and in- 
vestment cost. This balance is quantified through the DCFR 
profitability measure, and it is realized through the continu- 
ous optimal adjustment of the production policy of the batch 
plant given the current product demand profile. Note that 
higher than optimal levels of demand satisfaction yield addi- 
tional investment cost, which is not offset by increased profit 
from additional sales. Alternatively, lower than optimal levels 
of demand satisfaction lead to a loss of profit from unreal- 
ized sales greater than the achieved investment cost savings. 

Further developments are found on the following modeling 
features and assumptions: 

(1) The product demands are modeled as multivariate nor- 
mally distributed random variables which may or may not be 
correlated. Correlation allows modeling situations when high 
demand for one product more often than not implies higher 
or lower demand for a different product (Petkov and 
Maranas, 1997). It is largely accepted that the normality as- 
sumption captures the essential features of product demand 
uncertainty (Nahmias, 1989). Theoretical justification of the 
use of normal distribution can be argued based on the cen- 
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tral limit theorem as the product demands are typically af- 
fected by a large number of stochastic events. 

(2 )  The plant is assumed to operate in a single product 
campaign mode with overlapping operation (see Figure 1). 
Transfer times from one unit to the next are assumed to be 
embedded in the supplied processing times. 

(3) The size factors, processing times, and profit margins 
are assumed to be independent of the capacity output and 
equipment sizes. 

(4) Inventory transfers from one time horizon to the next 
are not considered because of the length of the time horizon 
(usually one year). Inventory transfer was addressed in Petkov 
and Maranas (1997). 
(5) Equipment costs are assumed to be power functions of 

their capacities. 
(6) Equipment capacities are assumed to be continuous. 

The extension to discrete sizes (see Voudouris and Gross- 
mann, 1992) is straightforward. 

(7) A number of units may operate in parallel at a particu- 
lar stage to accommodate higher demands. However, all units 
at the same stage are assumed to have the same size. 

Ierapetritou and Pistikopoulos (1995, 1996), extending the 
work of Johns et al. (1978) and Wellons and Reklaitis (1989), 
formulated the problem of multiproduct batch plant design 
under uncertain demands as the following two-stage opti- 
mization problem 

r N 1 

subject to 

Y 2 S j j B i ,  i = l ,  ..., N ,  j=1, ..., M 

The objective function of the outer optimization problem is 
composed of two terms. In the first, the expectation operator 
is applied to the solution of the inner optimization problem. 
The inner optimization problem sets the optimal operating 
policy for maximum profit, identified by the production levels 
Qi, for a plant design 7, Bi, N, and a realization of the un- 
certain product demands 8,. The first constraint of the inner 
problem safeguards against production levels exceeding prod- 
uct demands. The next constraint ensures that the batch plant 
cycle-time is not greater than the specified time horizon. The 
second term in the objective function of the outer problem 
quantifies the investment cost as the additive contribution of 
the respective equipment costs scaled by the discount factor. 
The first constraint of the outer problem determines the 
maximum required equipment size at each stage. The second 
constraint identifies the rate limiting step for every product 
recipe accounting for all identical parallel equipment units at 
each stage (SPC production mode). Finally, the last two sets 
of constraints impose lower and upper bounds on equipment 
sizes and allowable number of parallel units at each stage 
respectively. 

Kocis and Grossmann (1988) showed that the following ex- 
ponential transformations 

and the binary representation of n, 

where 

N," 

c Y,. = 1 
r = N: 

convexify all nonconvex terms in the formulation apart from 
the horizon constraint. These transformations lead to the fol- 
lowing equivalent representation of the original problem 

r N 

subject to 
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y, .=l ,  j = 1 ,  ..., M 
r = N /  

The main difficulty in solving the above described embedded 
optimization problem lies in the fact that the calculation of 
the expected value of the realized profits requires integration 
over all feasible demand realizations. Ierapetritou and Pis- 
tikopoulos ( 1  996) first proposed a solution procedure based 
on Gaussian quadrature integration. In this method, the mul- 
tivariate probability distribution hypersurface of the uncer- 
tain demand is discretized and for every realization 0: of the 
uncertain demands, occurring with a probability density p d ,  
an optimal QP production level is defined which reduces the 
original formulation to a one-level optimization problem. This 
approach can readily accommodate different probability dis- 
tribution functions and be applied to complex production 
modes (such as MPC). However, it requires the addition of 
an exponential number of variables denoting production lev- 
els and corresponding nonconvex horizon constraints. 

In the following section, by exploiting the special structure 
of the inner problem and the properties of the normal distri- 
bution, an analytical expression for the expected value of the 
solution of the inner problem is derived. 

Analysis 
The analytical evaluation of the expected value of the in- 

ner problem requires (i) the explicit solution of the inner 
problem for a given uncertain demand realization; and (ii) 
analytical integration over all probability-weighted demand 
outcomes. 

Analytical solution of inner problem 

lowing form 
The inner (second-stage) problem can be written in the fol- 

subject to 

where 

a,  = exp(t,, - b j ) ,  i = 1, . . . , N 

The solution of the inner problem identifies the optimal pro- 
duction levels QrP', which maximize profit for a given design 
and demand realization. Note that while production levels 
are not allowed to exceed product demands, production 
shortfalls are allowed. A new variable ai is introduced which 
is equal to the ratio of the limiting production time over the 

batch size for product i. The new variable a,  represents the 
amount of time it takes to produce a unit of product i. It is a 
function of the design of the plant and is the only link be- 
tween the inner and outer problems. For a given plant design 
and demand realizations, the inner problem is a linear pro- 
gramming (LP) problem in the space of the production levels 

The solution of the inner problem depends on whether the 
horizon constraint is active or inactive. If for a given demand 
realization the horizon constraint is satisfied, ZE l a ,  0, I H ,  
then the production levels can be driven to their respective 
upper bounds QPP' = 0, to maximize the profit. This situation 
arises when there is enough plant capacity to produce the 
desired product amounts within the specified time horizon. 
An illustration is given in Figure 2 where the probability den- 
sity contour maps of tyo uncertain demands (O1, 0,) (corre- 
lated) with means (el, 0,) are plotted. The line a l e l  + u,Q, 
I H (the horizon constraint) denotes the boundary of feasi- 
ble production policies. The demand realizations at hand 
(01, 0,) lie below the horizon constraint, implying that the 
only active constraints are the demand feasibility constraints 
Q, I el, Q2 5 O2 denoted by the dashed lines. In this case, 
the feasible region of the LP has only one vertex which de- 
fines the optimal solution (QYP', QiP') = (01, 02). 

In the second case, we have Elare,  > H implying that not 
all product demands can be met with the existing capacity. 
This situation is shown in Figure 3. The horizon constraint 
intersects with the rectangular corner defined by the demand 
feasibility constraints. This gives rise to two vertices which 
are the candidates for the optimal solution of the LP inner 
problem. This means that the horizon constraint becomes ac- 
tive (Z;"= la,Q, = H )  at the optimal solution in place of one of 
the demand feasibility constraints. The a priori identification 
of which demand feasibility will be inactive at the optimal 
solution is facilitated by rewriting the inner problem as 

Q,. 

subject to 

Q 24 

' Q ,  
Figure 2. Inner problem: Inactive horizon constraint. 
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Figure 3. Inner problem: active horizon constraint. 
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At the optimal solution, all a,Q, will be driven to their re- 
spective upper bounds arer  except for that with the smallest 
coefficient Pl/a,  in the objective function 

QFPf=Oi, i = l ,  ..., N, i # i *  

where 

i* = arg min (2) 
1 

The coefficient P,/ai measures the profit acquired manufac- 
turing product i per unit time (profit rate of product i). Thus, 
the manufacturing of products with high profit margins per 
unit time is favored in the inner problem. Summarizing for 
both cases, the following expressions for the optimal produc- 
tion policy QPP' are obtained as analytical functions of the 
uncertain parameters Oi 

N N 
if i = i *  and C ai6,  > H 

i = l  
i + i* 

( I /  N \ N 

otherwise \ 
where 

i* = arg min ($) 
i 

Note that at the optimal operating policy all product de- 
mands are met whenever this is consistent with the horizon 
constraint. Otherwise, all product demands are met except 
for the product with the smallest profit rate whose demand is 
only partially satisfied. 

Inspection of the optimal solution reveals that the produc- 
tion levels Q, may become negative because no explicit lower 
bound Q, 2 0 for the production levels is imposed in the in- 
ner problem. The problem with the introduction of this bound 
is that a lower bound of zero also acts on the normally dis- 
tributed uncertain demands 6, which is inconsistent with the 
normality assumption. This dilemma demonstrates that the 
normality assumption for the uncertain demands can be in- 
voked only if it samples negative product demands with a 
small enough probability. For example, assuming that the 
mean of the demands is larger than at least three times its 
standard deviation, negative values are sampled with only a 
probability of 4.3 X lop4. Therefore, if negative product de- 
mand values are sampled too often, the normality assumption 
is invalid and an alternative probability distribution such as 
beta or lognormal must be considered. 

Nevertheless, Q,* may still assume negative values even if 
the product demand realizations do not sample negative val- 
ues. Even with the introduction of the constraint Q, 2 0 in 
the inner problem, an analytical optimal solution for the pro- 
duction levels can still be obtained 

for i < i* I 

\ o  for i >  i* 

where the set I ={ili= 1, ..., N }  has been reordered such 
that 

and i* (least profitable product) is redefined as the first i for 
which 

I* c aiOi > H 
1 = 1  

The calculation of the expected value of the latter inner 
problem formulation does not decouple into a simple one-di- 
mensional integration. In the next subsection it is shown that 
the expected value of the former inner problem formulation 
(without Q, 2 0) decompose into a single 1-D integral. This 
formulation, which provides an upper bound for the latter, 
will be employed in all subsequent developments. It can be 
shown that the less capacity restricted is the plant the closer 
the solution of the two formulations is. 

Expected value of the solution of the inner problem 
So far it has been shown that for a given plant design, the 

optimal plant operation policy depends on the realization of 
the random demands. This dependence renders the solution 
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of the inner problem stochastic; thus, the calculation of its 
expected value requires integration over all possible realiza- 
tions of the random variables. 

To facilitate this calculation, first the probability a is de- 
fined which measures the likelihood that for a given plant 
design an uncertain demand realization will meet the horizon 
constraint 

This probability a is identical to the stochastic flexibility (SF) 
index defined by Straub and Grossmann (1992) in the context 
of batch plant design. They also observed that the cycle-time 
CT = C,"_ ,a, 0, is a normally distributed random variable as a 
linear combination of normal variables. Next, the 
probability-scaled additive property of the expectation opera- 
tor is applied on the expected value of the inner problem. 
This is expressed as the sum of the expected value, when the 
uncertain demands meet the horizon constraint, times the 
corresponding probability a of this outcome plus the ex- 
pected value when the horizon constraint is violated by the 
uncertain demand realization multiplied by the correspond- 
ing probability 1 - a 

r N 1 

After substituting the previously derived expression for QPP' 
= Q,?p'(O> we obtain 

This relation can be further simplified by adding the expres- 
sion 

to the second term of the previous expression and subtracting 
it from the third term. This gives 

1 
Next, the terms under the expectation operator are standard- 
ized to enable the analytical calculation of the integral. This 
involves subtracting the means and dividing by the standard 
deviations 

N N c ai(O, - c ai(Bi - 6;)  H - c a,Oi 
i = l  i = l  

2 
uc I U C t  ! + UcrE 

Here ucr is the standard deviation of the normally dis- 
tributed cycle time CT which has a mean of 

and a variance of 

The last conditional expectation can be written as E [ x l x  2 
- K ]  where 

is a standardized normally distributed random variable (that 
is, N[O, l ] ) .  The parameter 

measures the discrepancy between the required mean cycle 
time and available horizon divided by the standard deviation 
of the cycle time. The larger the value of K ,  the less suffi- 
cient are the available resources to meet the product de- 
mands within the specified time horizon H .  The application 
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of the definition of the expectation of a standard normal dis- 
tribution truncated at x = - K yields 

of the original two-stage formulation as a single-stage prob- 
lem whose objective function is defined as 

PI* 1 +s N 
max C PI6[ - - u J K @ ( K ) + f ( K ) I  J21; 1- -- f ( K )  r = l  a,* 

xe-(1fl)*2dx 

1 +- @ ( K )  e - ( 1 f l ) x 2 h  

- E [ x ~ x  2 - K ] =  

1 N," 

r -  N," 

M J2?r 1- plv, + C ylrIn(r) 

where f denotes the standardized normal distribution func- 
tion. In addition, the probability (1 - a) of having C;", ,a, 8, 2 
H can be related to K as follows 

where 

N 

C uI6,  - H 
K =  ( l - a ) = P r  ~ u , 8 , 2 H  1 "ct 

N N h  

C C a , a , ~ ~ o v ( ~ , , e , ~ )  
r = l  r ' = r + l  

C a,(e, - 6,) H -  C ~ , i ,  
=Pr[ '", uccr 2 E: ] = @ ( X I  

a, = exp(t,, - b,) 

i* = arg min ( ; 1 
After incorporating the expressions for the conditional ex- 
pectation and probability 1- a ,  the expected value of the 
solution of the inner problem yields Inspection of the above definition for the objective function 

reveals a number of nonconvexities in the objective function 
and defining relations. In the following section, a number of 

r = l  a,* transformations are introduced for eliminating most, and in 
some cases all, nonconvexities. 

PI * 
E [ f ~ ~ ~ r I ~  C f"6, - - u ~ , , [ K @ ( K ) + ~ ( K ) I  

N 

where 
Transformations 

N 

C L Z ; ~ ;  - H 
K =  i = l  

"c f 

and 

(1) The batch plant design affects the selection of the least 
profitable product i* through the a, variables. The system- 
atic identification of i* can be accomplished by introducing 
the binary variables 

x i =  ( I, if i = i *  
0, otherwise 

i* = arg min (;) 
i 

and expressing the " uncertainty-induced'' penalty term in the 
objective function as 

. .  
N 

u c f [ K @ ( K ) + f ( K ) l  subjectto C x , = l  
Inspection of the derived functionalities reveals that the opti- , = I  

mum expected profit is equal to the profit incurred without 
any resource limitations, penalized by the profit rate of the 
least profitable product, times the standard deviation of the 
cycle time, times a monotonically increasing function of K .  

(2) The nonconvex ratio of act over a j  in the objective 
function is replaced with a new variable wi defined as 

This demonstrates that higher uncertainty and larger discrep- 
ancies between the required mean cycle time and available 
horizon have a negative effect on the optimum expected 
profit. 

Single-Stage Problem Reformulation where 
The derivation of an analytical expression for the expected 

value of the optimum of the inner problem enables recasting 

I@ N N  

w, = C rErvar( o[,) + 2 C C rzl, ~ - ~ , ~ C o v (  oZt , elf,) , 
,' = ] [" = + 1 

i = l ,  ..., N 
i 

r,,, = exp(t,,, - b,, - t , ,  + b l ) ,  i,i' = 1, ..., N 
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At the optimal solution, the necessary optimality Karush 
Kuhn Tucker (KKT) (Bazaraa et al., 1993) conditions, with 
respect to wiand rji , ,  yield positive multipliers for both equa- 
tions. This indicates that they can be equivalently relaxed into 
the following convex inequalities 

i = l ,  ..., N 

rii. 2 exp(t,,, - bi, - tLi + bi), i, i' = 1, . . . , N 

An elegant proof of convexity for the expression denoting the 
square root of the variance of the cycle time can be found in 
(Kataoka, 1963). 

(3) The resulting products between binary x i  and continu- 
ous wl variables in the objective function can be linearized 
exactly based on the Glover (1975) transformation 

U x,w: I Z , S  x,w, 

M.', - (1 - x,)w,U I z, 5 w, - (1 - x,)w," 

This is accomplished at the expense of introducing a new set 
of variables 2 , .  

(4) Application of the KKT conditions to the newly de- 
fined objective function and defining constraints with respect 
to K yields at the optimal solution: 

- ( eZi) * ( K )  + A, = 0 

This implies that the Lagrange multiplier A, of the defining 
equality for K at the optimal solution will always be positive. 
Therefore, the defining equality for K can be relaxed into 
the inequality 

N 

K q ,  2 C u j i i  - H 
i =  1 

which is convex for a fixed K.  
(5) The KKT optimality conditions with respect to act yield 

+ KA, + Act, = 0 

implying that Awe, 2 0 when K I 0 and A,, I 0 when K 2 0. 
This means that the defining relation for gCct can be written 
as 

where 

AIChE Journal 

1, i f K > O  

-1, if K < O  

which is convex for K I 0 and concave for K 2 0 (fixed K). 
(6) Finally, the necessary optimality conditions with re- 

spect to ai yield 

i = l ,  ..., N 

For K 5 0, Aac is always positive at the optimal solution and 
the defining equation for ui can be written as the following 
convex inequality 

a j2exp( tLj -b j ) ,  i = l ,  ..., N 

However, for K 2 0 the sign of Aa, cannot be predetermined. 
Depending on the relative magnitude of the terms in the KKT 
necessary optimality conditions the defining equation for ai 
relaxes into convex or concave expressions. 

Formulation 
Based on the above described transformations, the optimal 

batch design problem with product demand uncertainty can 
be expressed as the following mixed-integer nonlinear pro- 
gramming (MINLP) problem 

N," 

r = N :  

M 
pju, + C y,, In(r> 

j = l  

subject to 
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i =  1, ..., N 
a, = exp(t,, - b, ) ,  
a ,  2 exp(t,, - b,), 

N," 
t,, 2In(tIJ)-  c yJrln(r), i = l ,  ..., N ,  j = l ,  ..., M 

r = N k  

v, >In(S,,)+b,, i = l ,  ..., N ,  j = l ,  ..., M 

The solution strategy for this MINLP problem is motivated 
by the following observation: For a fixed K I 0, implying that 
a > 0.5, the above formulation is a convex MINLP. 

This observation redefines the task at hand to the solution 
of a single-parameter convex MINLP problem assuming that 
the mean cycle-time is less than the available horizon ( a  2 
0.5) at the optimal solution. This can be accomplished by it- 
eratively solving the above convex MINLP for different val- 
ues of K I 0 and constructing the tradeoff curve between the 
optimum expected DCFR and a.  The convex MINLP prob- 
lems are solved to global optimality by utilizing the outer ap- 
proximation (OA) algorithm of Duran and Grossmann. The 
maximum of the tradeoff curve (see examples section) pro- 
vides the batch plant design with the optimum expected 
DCFR and probability of meeting product demands a. While 
for most realistic problems, only solutions with a 2 0.5 are of 
interest, for some cases it is worth analyzing the a 5 0.5 
regime. The presence of nonlinear equality constraints can 
be handled with the equality relaxation outer approximation 
the ER/OA algorithm (Kocis and Grossmann, 1988) imple- 
mented into DICOPT (Kocis and Grossmann, 1989). While 
the latter cannot guarantee convergence to the global opti- 
mum, computational experience indicates that in most cases 
it performs well after careful initialization. 

Variable Bounds 
A significant factor affecting the CPU requirements for 

solving MINLP problems with the OA algorithm is the tight- 
ness of the LP relaxation of the MILP master subproblems. 
Tight LP relaxations are aided by providing the tightest pos- 
sible lower and upper variable bounds. 

A collection of tight bounds for the original variables vJ, 
tLi, and bi can be found in Biegler et al. (1997) and are as 
follows 

In( yL) I v, I In( I.;") 

1 x 1 ,  . . ,M  ] = I , .  . , M  

j = l ,  ..., M j = l ,  . . . , A 4  

functions of the original variables v,, t,,, and b,, is straight- 
forward. In addition, three extra constraints are developed to 
improve the MILP relaxation: 

(1) From the problem definition (Biegler et al., 1997), we 
have I.; 2 S,, B, and T,, 2 tIJ/q. Because a, is equal to T,,/B,, 
it follows that 

Substituting the exponentially transformed expressions for NJ 
and I.; above yields the following convex lower bounding ex- 
pression for a, 

i = l ,  ..., N ;  j = l ,  ..., M 

(2) Next, an upper bounding constraint for riip is derived. 
For i = i* we have 

Because rii8 is equal to a,,/a,, we can write 

Utilizing the binary variable x, to model the i* index, we 
obtain the following upper bound for r,, 

The last inequality is active when i = i* ,  and inactive other- 
wise. 

(3) Finally, a bounding expression for w, is derived. From 
the definition of i* we have 

Pirw,< 2 P,w,, i' = 1 3 ..., N ;  i = i* 

The utilization of the binary variable x, in a fashion similar 
to the previous constraint yields 

This expression can be written as the following linear cut 

pltwI, 2 P,zI + P,(wf-( l -  x,), i , i '  = 1 ,  ..., N 

after replacing the binary-continuous product xiwi with zi. 
Application of the derived bounds and binding constraints 

to the large-scale example in the example section yields more 
than 30% savings in CPU time because of the smaller num- 
ber of iterations for the OA algorithm. 

Based on the above relations, the development of bounds for 
the supplementary variables ai ,  a,,, r,,, and w,, which are 
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Formulation with Penalty for Production Shortfalls one discussed in the previous section, (iterative solution of a 

The use of penalty functions in the objective function for 
stochastic models was pioneered by Evers (1967) as a way of 
accounting for losses due to infeasibility. In the context of 
designing chemical batch plants under uncertain demands, a 
penalty term in the objective function is employed to quantify 
the effect of missed revenues and loss of customer confi- 
dence. It typically assumes the following form 

N 

- y c Pi max [O, ( 0, - Qi 11 
i = l  

where y is the penalty coefficient whose value determines 
the relative weight attributed to production shortfalls as a 
fraction of the profit margins (Wellons and Reklaitis, 1989; 
Birewar and Grossmann, 1990a; Ierapetntou and Pistikopou- 
los, 1996). 

The introduction of the penalty for production shortfalls 
term augments the inner problem formulation as follows 

subject to 

Q , < 0 , ,  i = l ,  ..., N 

c Qi exp(t,, - bi) I H 
N 

i = l  

Grouping of the common terms in the objective function 
yields 

Note that the new production level Qi coefficients are all 
multiplied by the same quantity 1 + y .  This means that the 
new optimal production levels QPp' are the same as those 
identified earlier. This implies that the presence of a penalty 
for the production shortfalls term does not impact the opti- 
mal operating policy for a given plant design. 

The expected value of the optimal solution for the new 
inner problem is thus related to that without the y term as 
follows 

N 

After substituting the expression for E[ f$&] we obtain 

Substitution of the solution of the inner problem in the outer 
problem formulation gives rise to a one-parameter convex 
MINLP for K 5 0. The solution strategy is identical to the 

single-parameter MINLP for different values of K 1. 
Higher values of y penalize production shortfalls more 

heavily giving rise to higher probabilities a of satisfying all 
product demands at the optimal solution. This implies that 
changes on either parameter y or a have the same qualita- 
tive effect on the optimal solution. This observation moti- 
vates the following question: Is the optimal design obtained for 
a given value of the penalty parameter y the same as those ob- 
tained without using the penalty term y but rather selecting a 
high enough value for a? 

A formal proof is necessary because the y formulation is 
similar, but not the same with the mathematically identical 
penalty representation (by penalizing K < K O )  of the a for- 
mulation. A proof of equivalence between the y and the a 
formulations is presented in the Appendix. This equivalence 
gives rise to (a,y) pairs for which the optimal batch plant 
designs are identical. This is a powerful result, because it 
demonstrates that when one of the two formulations is solved 
an optimal solution is also obtained for the other. 

Computational Results 
A small illustrative, a medium and a large-scale example 

are next considered to highlight the proposed solution strat- 
egy and obtain results for different problem sizes. Each ex- 
ample is solved iteratively for different values of K ( a  2 0.5). 
The obtained results are then used to construct the tradeoff 
curve between the expected DCFR and probability of meet: 
ing all product demands a. The outer approximation (OA) 
algorithm of Duran and Grossmann (1986a,b) is imple- 
mented in GAMS (Brooke et al., 1988) to solve the resulting 
convex MINLP. CPLEX 4.0 and MINOS 5.4 are used as 
MILP and NLP solvers, respectively. The stopping criterion 
on OA is crossover of the lower and upper bounds, which 
guarantees global optimality of the solution for convex 
MINLP problems. Additionally, the nonconvex formulations 
arising when K is not fixed or K is fixed at a positive value 
are solved using DICOPT which implements the outer ap- 
proximation with equality relaxation (Kocis and Grossmann, 
1987, 1988, 1989). All reported CPU times are in seconds on 
an IBM RS6000 4313-133 workstation. 

Illustrative Example 
This example was first addressed by Grossmann and Sar- 

gent (1979). It involves the design of a batch which produces 
only two products. Each product recipe involves three pro- 
duction stages with only one piece of equipment allotted per 
stage. The time horizon is 8,OOO h and the stage capacities 
vary between 500 and 4,500 units. The annualized investment 
cost coefficient 6 is equal to 0.3. The uncertain product de- 
mands are modeled as the normally distributed variables 
N(200,lO) and N(100,10), respectively. The size factors and 
processing times are given in Table 1. The investment cost 
coefficients and profit margins are given in Table 2.  The re- 
sulting convex MINLP formulation involves two binary vari- 
ables, 82 continuous variables, and 43 constraints. 

Figure 4 plots the optimal expected DCFR for different 
values of a. The maximum expected profit occurs at a = 0.81. 
The optimal batch plant design for a = 0.81 involves an ob- 
jective value of 1,266.87 X lo3 and optimal equipment vol- 
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Table 1. Processing Data for the Illustrative Example 
Processing Times, t,, Size Factors, S,, 

Product Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3 
1 2 3 4 8 20 8 
2 4 6 3 16 4 4 

Table 2. Cost and Profit Margin Data for the Illustrative 
Example 

Investment Cost Coeff. Price Data 
Profit Margin, 

Stage (a) p, Product Pi ( $ f i g )  
1 5,000 0.6 1 5.5 
2 5,000 0.6 2 7.5 
3 5.000 0.6 

h c 
Y 
2 

e 
E u 
W 

Figure 4. 

i 1258 I,,,/ 
1256 

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 
alpha 

Optimal expected DCFR vs. a for the illustra- 
tive example. 

umes of V, = 1,882, V, = 2,824 and V, = 3,765. Table 3 sum- 
marizes the optimal expected DCFR, equipment volumes, and 
batch sizes at different probabilities a. Equipment volumes 
and batch sizes increase with a as a result of higher produc- 
tion levels. In this example, the product with the smallest 
profit rate (Pj /uL)  is product 2 at all probability levels a.  The 
CPU requirements associated with this problem are between 
0.10 and 0.20 s per point. For comparison, the same problem 
is solved using discretization of the uncertain parameters and 
Gaussian quadrature integration of the expected objective 
value using 5, 10, 15, and 24 quadrature points per uncertain 
demand, respectively. The obtained results, CPU require- 
ments, and number of variables and constraints are listed in 
Table 4. These results indicate that while for only a few 
quadrature points the solution times are relatively small, the 
obtained accuracy is questionable. A larger number of 
quadrature points improve accuracy at the expense of a sig- 
nificant increase in the CPU requirements even when only 
two uncertain product demands are present. 

Next, the relation between the probability of meeting all 
product demands a and the penalty parameter y is investi- 
gated. The nonconvex formulation, without fixing the K vari- 
able, is solved using DICOPT for a range of y values be- 
tween 0 and 6. The corresponding probabilities a of meeting 
all product demands are then calculated using the relation- 
ship a = 1 - @(K) .  Examination of the results validates the 
theoretical developments by revealing a one-to-one corre- 
spondence between the optimal solutions obtained using the 

y penalty parameter and the optimal solutions obtained after 
fixing a at the calculated value. The pairs of y and a for 
which the batch plant optimal designs match are plotted in 
Figure 5. This plot establishes a way of relating the value of 
the penalty parameter, whose u peon' selection is difficult, to 
the well defined parameter a.  

Medium-Scale Example 
This example involves the design of a batch plant produc- 

ing five different products (Biegler et al., 1997; Harding and 
Floudas, 1997). Each product recipe requires six production 
stages with up to five identical units per stage. The unit ca- 
pacities are allowed to vary between 500 and 3,000 L. The 
time horizon is 6,000 h per year, and the annualized invest- 
ment cost coefficient is 0.3. The data for processing times, 
size factors, and profit margins are given in Tables 5, 6, and 
7, respectively. The mean annual demands for the five prod- 
ucts are 250, 150, 180, 160 and 120 ton, respectively. The 
uncertainty in the demands is quantified by selecting stan- 
dard deviations which are 20% of the mean product demand 
values. The description of this problem as an MINLP re- 
quires five binary variables identifying i*, 30 binary variables 
modeling the number of units per stage (six stages x up to 
five units), 529 continuous variables, and 191 constraints. The 
problem is iteratively solved for fixed values of K corre- 
sponding to probabilities a between 0.1 and 0.999 of meeting 
all product demands. The expected DCFR values are plotted 
as a function of the probability levels in Figure 6. This plot 

Table 3. Optimal Expected DCFR and Corresponding Equipment Volumes (L) and Batch Sizes (kg) at Different Probability 
Levels LY 

a 

0.579 
0.655 
0.726 
0.788 
0.809 
0.841 
0.885 
0.919 
0.945 
0.964 
0.977 

E [DCFR] X 

1,260.93 
1,264.05 
1,265.97 
1,266.81 
1,266.87 
1,266.70 
1,265.80 
1,264.28 
1,262.27 
1,259.91 
1,257.30 

VI 

1,818.87 
1,837.74 
1,856.60 
1,875.47 
1,882.46 
1,894.34 
1,913.21 
1,932.08 
1,950.94 
1,969.81 
1,988.68 

v2 

2,728.30 
2,75 6.60 
2,784.91 
2,813.21 
2,823.69 
2,841.51 
2,869.81 
2,898.1 1 
2,926.42 
2,954.72 
2,983.02 

v3 

3,637.74 
3,675.47 
3,713.21 
3,750.94 
3,764.92 
3,788.68 
3,826.42 
3,864.15 
3,901.89 
3,939.62 
3,977.36 

B, 
909.43 
918.87 
928.30 
937.74 
941.23 
947.17 
956.60 
966.04 
975.47 
984.91 
994.34 

B2 
454.72 
459.43 
464.15 
468.87 
470.62 
473.58 
478.30 
483.02 
487.74 
492.45 
497.17 
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Table 4. Solution of Illustrative Example Based on 
Gaussian Quadrature 

Table 5. Size Factors Si j  (L/kg) for the Medium-Scale 
Example 

Q E CPU 
Points [DCFRJX V, V, V, (s) Constr. Var. 

5 1,489.71 1,800 2,700 3,600 0.27 94 228 
10 1,267.17 1,877 2,816 3,754 1.26 319 828 
15 1,266.63 1,879 2,818 3,758 2.91 456 1,828 
24 1,266.66 1,884 2,825 3,767 9.61 1747 4,636 

reveals the presence of an optimum probability level for which 
the expected DCFR value is maximized. Levels of a below 
or above 0.69 result in smaller expected DCFR values due to 
loss of sale profits or excessive investment cost, respectively. 
The tradeoff curve is relatively flat around the optimal solu- 
tion indicating the insensitivity of the optimal expected DCFR 
to small changes in the design variables. The obtained trade- 
off curve exhibits a number of important features which are 
the manifestation of changes in the optimal batch plant de- 
sign at different levels of a. Discontinuities indicate the tran- 
sition points of the optimal batch plant configuration de- 
scribed by N,, j = 1, . . . , M .  These transitions involve either 
the addition of a new parallel unit or the reallocation of a 
processing unit to a different stage. Discontinuities in the 
slope of the tradeoff curve typically imply the emergence of a 
new product i* with the smallest profit rate due to changes 
in the design. Table 8 summarizes the optimal batch plant 
designs at different probabilities a. Entries shown in bold 
indicate changes in the plant configuration. For example at 
a = 0.183 i* switches from product four to product one, at 
a = 0.46 a third unit is added in the third stage, and at (Y = 
0.69 the expected DCFR is maximized. The most drastic drop 
in the tradeoff curve occurs at a = 0.802, where a second 
unit is added to the fifth production stage. The computa- 
tional requirements consistently decrease as a increases. This 
trend is due to the decrease in the relative magnitude of the 
" uncertainty-induced" penalty term in the objective function. 

Summarizing, this medium-scale example demonstrated 
how complex are the relations between maximum expected 
profit, plant configuration, and probability of meeting prod- 
uct demands. These relations are shown with the tradeoff 
curve. Construction of the tradeoff curve is possible only be- 
cause of significant computational savings stemming from the 
derived MINLP respresentation. For comparison, the formu- 
lation of this model based on Gaussian quadrature using only 

m c a 
m - 
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Figure 5. Matching curve between y and LY values. 

~ ~~ 

Stage Stage Stage Stage Stage Stage 
Product 1 2 3 4 5 6 

1 7.9 2.0 5.2 4.9 6.1 4.2 
2 0.7 0.8 0.9 3.4 2.1 2.5 
3 0.7 2.6 1.6 3.6 3.2 2.9 
4 4.7 2.3 1.6 2.7 1.2 2.5 
5 1.2 3.6 2.4 4.5 1.6 2.1 

Table 6. Processing Times t i j  (h) for the Medium-Scale 
Example 

Stage Stage Stage Stage Stage Stage 
Product 1 2 3 4 5 6 

1 6.4 4.7 8.3 3.9 2.1 1.2 
2 6.8 6.4 6.5 4.4 2.3 3.2 
3 1.0 6.3 5.4 11.9 5.7 6.2 
4 3.2 3.0 3.5 3.3 2.8 3.4 
5 2.1 2.5 4.2 3.6 3.7 2.2 

Table 7. Equipment Cost and Profit Margin Data for the 
Medium-Scale Example 

Investment Cost Coeff. Price Data 

1 3,000 0.6 1 3.5 
2 3,000 0.6 2 4.0 
3 3,000 0.6 3 3.0 
4 3,000 0.6 4 2.0 
5 3,000 0.6 5 4.5 
6 3,000 0.6 

five quadrature points results in 15,636 variables, 3,155 con- 
straints (containing 15,625 nonmnvex terms), and requires 
more than 1,OOO s to obtain a single point on the tradeoff 
curve. 

Large-Scale Example 
To investigate the computational performance of the pro- 

posed MINLP problem representation for large-scale prob- 
lems, an example is constructed involving the design of a batch 
plant producing thirty products. Each product recipe requires 
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Figure 6. Optimal expected DCFR vs. a for the medium- 
scale example. 
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Table 8. Optimal Expected DCFR and Corresponding 
Number of Processing Units at Different Values of CY for 

the Medium-Scale Example 

E No. of CPU 
Q [DCFR] X Units per Stage i* (s) 

0.104 
0.136 
0.159 
0.183 
0.212 
0.382 
0.462 
0.500 
0.579 
0.655 
0.691 
0.726 
0.802 
0.816 
0.829 
0.841 
0.894 
0.91 1 
0.939 
0.950 
0.991 
0.992 

1,687.26 
1,697.22 
1,702.43 
1,712.53 
1,723.44 
1,759.94 
1,760.32 
1,764.68 
1,769.24 
1,771.24 
1,771.64 
1,771.06 
1,709.67 
1,707.37 
1,705.07 
1,702.63 
1,687.94 
1,683.55 
1,667.39 
1,661.82 
1,603.62 
1,597.88 

2 2 2 2 1  1 4  97.3 
2 2 2 2 1 1  4 59.8 
2 2 2 2 1 1  4 12.4 
2 2 2 2 1 1  1 1 0 . 7  
2 2 2 2 1 1  1 5 8 . 4  
2 2 2 2 1 1  1 1 5 . 4  
2 2 3 2 1  1 3  18.1 
2 2 3 2 1 1 3  9.3 
2 2 3 2  1 1  3 22.8 
2 2 3 2 1 1 4  9.1 
2 2 3 2 1 1 4  8.3 
2 2 3 2 1 1 4  8.4 
2 2 3 2 2 1 4  10.6 
2 2 3 2 2 1 3  16.2 
2 2 3 2 2 1 4  15.7 
2 2 3 2 2 1 4  12.4 
3 2 3 2 1 1  4 12.4 
3 2 3 2 1 1 4  10.9 
2 2 3 2 2 2 3  1.7 
2 2 3 2 2 2 3  4.5 
2 2 3 2 2 2 1  6.6 
2 2 3 3 2 2 1  7.0 

ten production steps (stages), and a maximum of five identi- 
cal units are allowed per stage. The horizon time is again 
6,000 h and the annualized investment cost coefficient is equal 

Table 9. Size Factors S i j  (L/kg) for the Large-Scale Example 
Stages - 

Product 1 2 3 4 5 6 7 8 9 10 
1 1 2 2 3 2 1 2 3 2 1  
2 3 3 2 3 4 2 2 3 2 1  
3 1 1 2 1 1 2 2 1 1 2  
4 2 2 1 2 1 3 2 3 2 1  
5 4 4 4 3 4 3 2 1 1 2  
6 1 2 2 3 2 1 2 1 1 2  
7 3 3 2 3 4 2 4 3 4 3  
8 1 1 2 1 1 2 2 3 2 1  
9 2 2 1 2 1 3 2 1 1 2  

10 4 4 4 3 4 3 4 3 4 3  
11 1 2 2 3 2 1 2 3 2 1  
12 3 3 2 3 4 2 2 3 2 1  
13 1 1 2 1 1 2 2 1 1 2  
14 2 2 1 2 1 3 2 1 1 2  
15 4 4 4 3 4 3 2 3 2 1  
16 1 2 2 3 2 1 2 3 2 1  
17 3 3 2 3 4 2 2 3 4 2  
18 1 1 2 1 1 2 1 2 1 3  
19 2 2 1 2 1 3 1 2 1 3  
20 4 4 4 3 4 3 1 2 1 3  
21 1 2 2 3 2 1 2 1 1 2  
22 3 3 2 3 4 2 2 1 1 2  
23 I 1 2 1 1 2 2 3 4 2  
24 2 2 1 2 1 3 2 1 1 2  
25 4 4 4 3 4 3 2 1 1 2  
26 1 2 2 3 2 1 2 1 1 2  
27 3 3 2 3 4 2 2 1 1 2  
28 1 1 2 1 1 2 2 3 4 2  
29 2 2 1 2 1 3 2 1 1 2  
30 4 4 4 3 4 3 2 1 1 2  

Table 10. Production Times t i j  (h) for the Large-Scale 
Example 

Stages 
Product 1 2 3 4 5 6 7 8 9 10 

1 5 6 3 3 5 7 7 6 6 5  
2 5 6 6 5 6 7 5 5 4 3  
3 3 3 3 3 2 1 5 1 3 2  
4 3 2 2 2 1 5 5 3 2 2  
5 2 3 4 3 4 7 8 6 9 1  

6 5 6 3 3 5 7 7 6 6 5  
7 5 6 6 5 6 7 5 5 4 3  
8 3 3 3 3 2 1 5 1 3 2  
9 3 2 2 2 1 5 5 3 2 2  

10 2 3 4 3 4 1 8 6 9 1  

11 5 6 3 3 5 7 7 6 6 5  
12 5 6 6 5 6 1 5 5 4 3  
13 3 3 3 3 2 1 . 5 1 3 2  
14 3 2 2 2 1 5 5 3 2 2  
15 2 3 4 3 4 7 8 6 9 1  

16 5 6 3 3 5 7 1 6 6 5  
17 5 6 6 5 6 7 5 5 4 3  
18 3 3 3 3 2 1 5 1 3 2  
19 3 2 2 2 1 5 5 3 2 2  
20 2 3 4 3 4 7 8 6 9 1  

21 4 6 3 3 5 7 7 6 6 5  
22 5 6 6 5 6 7 5 5 4 3  
23 3 3 3 3 2 1 5 1 3 2  
24 3 2 2 2 1 5 5 3 2 2  
25 2 3 4 3 4 7 8 6 9 1  

26 5 6 3 3 5 7 7 6 6 5  
27 5 6 6 5 6 7 5 5 4 3  
28 3 3 3 3 2 1 5 1 3 2  
29 3 2 2 2 1 5 5 3 2 2  
30 2 3 4 3 4 7 8 6 9 1  

to 0.3. The expected values of the product demands range 
between 10 and 60 ton per year, and their uncertainty is rep- 
resented by standard deviations equal to 10% of their mean 
values. The processing unit volumes are allowed to vary be- 
tween 2,000 and 5,000 L. The size-factors are selected to be 
between 1 and 4 L per kilogram of product and the process- 
ing times per stage assume values between 1 and 9 h. The 
detailed processing and cost data are given in Tables 9, 10, 11 
and 12. This problem gives rise to an MINLP formulation 
involving 80 binary variables, 8,041 continuous variables, and 
1.763 constraints. 

Table 11. Profit Margins and Expected Demands for the 
Large-Scale Example 

Product 1 2 3 4 5 6 7 8 9 10 
P,,($/kg) 5 1 2 1 10 5 5 8 2 2 
iL,(ton) 40 80 160 80 120 160 240 160 120 80 
Product 11 12 13 14 15 16 17 18 19 20 

P,, ($/kg) 5 10 4 8 4 1 5 5 3 2 
i2,(ton) 40 120 120 120 80 120 80 120 240 240 
Product 21 22 23 24 25 26 27 28 29 30 

P,,($/kg) 5 1 2 1 10 5 5 8 2 2 
i,, (ton) 240 80 40 40 240 120 40 80 80 40 
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Table 12. Equipment Cost Coefficients for the Large-Scale Example 

Stage 1 2 3 4 5 6 7 8 9 10 
a, ($/L) 1,000 2,000 3,000 2,000 2,000 1,000 1,OOO 500 400 300 

P,  0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 

The problem is solved for fixed negative K values corre- 
sponding to probability levels of a between 0.5 and 0.95. The 
values of the expected DCFR are plotted against the proba- 
bility of meeting the demands (see Figure 7). For this exam- 
ple, no batch plant configuration changes are observed and 
the least profitable product is product 1 throughout the en- 
tire probability range. All optimal designs involve two units 
for stages one through five and ten, three units for stages six 
and eight, and four units for stages seven and nine. The ex- 
pected DCFR is maximized for a of approximately equal to 
0.6. Table 13 summarizes the required number of iterations 
of the OA algorithm, the total CPU time required, and the 
CPU time used for solving the master MILP problems. Note 
that most of the CPU time is spent on the MILP master 
problem due to the high number of binary variables present 
in the formulation. One of the ways to reduce the expense of 
the MILP master problem is to use the LP/NLP based branch 
and bound method proposed by Quesada and Grossmann 
(1992). Nevertheless, the CPU requirements per point do not 
exceed a few thousand seconds indicating that even larger 
problems can be addressed. 

Summary and Conclusions 
A new approach for solving the design problem of multi- 

product batch plants under SPC production mode involving 
normally distributed uncertain product demands was pre- 
sented. By sacrificing some generality in terms of allowable 
production modes and probability distributions for the uncer- 
tain demands, the original two-stage stochastic program was 
transformed into an equivalent deterministic MINLP prob- 
lem. This problem was shown to be convex for product de- 
mand satisifaction levels higher than 50%. The loss of profit 
due to inability to satisfy product demand was modeled with 
either the addition of a penalty of underproduction term or 
the explicit specification of the simultaneous product de- 
mand satisfaction probability. In particular, one-to-one corre- 
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Figure 7. Optimal expected DCFR vs. a for the large- 
scale example. 
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spondence between these two alternative formulations was 
revealed which obviates the need to solve both of them. 

Three example problems involving up to thirty uncertain 
product demands, ten production stages, and five identical 
units at each stage were included to highlight the proposed 
solution method and the results obtained for different prob- 
lem sizes. The results revealed a surprising complexity in the 
shape and form of the constructed tradeoff curves between 
the probability of meeting all product demands and profit. 
These curves provided a systematic way for contrasting maxi- 
mum profitability over demand satisfaction. In all examined 
cases, a single maximum was observed on the tradeoff curve 
implying the existence of a unique level of product demand 
satisfaction for maximum profit. The presence of discontinu- 
ities manifested ubiquitous transitions in the optimum batch 
plant configuration for different probability levels through the 
addition of new units or reallocation of existing ones. Slope 
discontinuities were indicative of the emergence of a new least 
profitable product. The proposed analytical solution of the 
inner problem and subsequent integration resulted in savings 
in the computational requirements of about two-orders of 
magnitude over existing methods (that is, Quadrature inte- 
gration). 

However, this computational advantage comes at the ex- 
pense of restricted applicability to only the SPC production 
mode so far. Extensions to the multiproduct campaign (MPC) 
or multipurpose batch plants are complicated by the fact that 
more than one horizon constraint (one for each stage) must 
be present in the inner problem. Therefore, the solution of 
the inner problem and its subsequent integration over all fea- 
sible product demand realizations for an MPC batch plant 
are much more complicated to perform analytically. The fea- 
sibility of successively approximating MPC batch plants with 
SPC ones is currently under investigation. Nevertheless, re- 
sults with the SPC production mode assumption provide valid 
lower bounds on the profit of MPC batch plants. In addition, 
the proposed model formulation and solution procedure are 
currently being extended to account for capacity expansions 
in a multiperiod framework so that plant capacity is optimally 
allocated not only between production stages but also over 
time. 

Table 13. Optimal Expected DCFR and Computational 
Requirements for the Large-Scale Example 

(Y E [DCFR] X OA Iter. CPU,,,,, CPU,,, 
0.50 14,730.74 8 4,306.46 4,268.41 
0.55 14,73 1.30 7 3,078.06 3,034.85 
0.60 14,73 1.53 5 1,289.88 1,253.70 
0.65 14,73 1.43 5 1,354.27 1,326.81 
0.70 14,730.93 5 1,227.76 1,197.43 
0.75 14,729.92 5 951.66 920.84 
0.80 14,728.30 5 1,103.84 1,069.19 
0.85 14,725.81 5 983.51 955.11 
0.90 14,721.93 4 655.17 628.93 
0.95 14,715.08 4 510.42 477.29 
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Notation 
b, =exponentially transformed batch size for product i 
Bi =batch size for product i 

Cov =covariance operator 
f,”,”,k, =optimum value of inner problem 

fi::kr,y =optimum value of inner problem including the penalty of 
underproduction term 

j=stage: j = l , .  . . , M 
N, =number of parallel units at stage j 

allel equipment units at stage j 
yL,  N,” =lower and upper bounds on the allowable number of par- 

r =number of units 
rLir =ratio of the profit rates a,, a,, of products i, i‘ 

tL =exponentially transformed cycle time of product i 
TLi =cycle time of product i 

uj =exponentially transformed equipment size at stage j 

sign ( K )  =sign of K 

=equipment size at stage j 
Var =variance operator 

yL ,  5” =lower and upper bounds on capacity size of equipment at 
stage j 

wi =ratio of oCt over a ,  
x =standardized normal variable N[O,l] 

x ,  =binary variable identifying the least profitable product i* 
y,, =binary variable which is equal to one if there are r units at 

zi  =product of w, times the binary x ,  
a, =preexponential coefficient for the investment cost of pro- 

pj =exponent for the investment cost of process equipment at 

AOi = Lagrange multiplier of a, defining constraint 
AKo = Lagrange multiplier of K I KO constraint 
Az, = Lagrange multiplier of zi defining constraint 

Arc, = Lagrange multiplier of cycle-time defining constraint 
i, =mean of the demand for product i 
4, = standarized normal cumulative probability function 

stage j 

cess equipment at stage j 

stage j 
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Appendix: Proof of Equivalence for a and y 
Formulations 

To reveal the equivalence of the two problems, the differ- 
ent parts of the necessary optimality conditions between the 
two problems are isolated. The necessary optimality condi- 
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a -formulation y -formulation 

tions for the two problems are identical apart from those with 
respect to K and zi*. The differing elements of the two for- 
mulations and the corresponding multipliers contributing to 
the optimality conditions are 

The above optimality conditions yield the following two 
seemingly different expressions for y as a function of the 
multipliers of the two problems 

max ... - 
a - Formulation 

Pj*zi* [ K @ (  K )  + f ( K ) ]  - . .. 
A> uct  l + y =  

AK'cr - AK., 

A\* 

A,: 
subjectto w L - ( l - x z ) w ~ ~ z , , i = l ,  ... , N + A ,  1 + y = -  

N A  

K I KO +- AKo 

Ku,, 2 c ar8, - H +- A ,  
1 = 1  However, after dividing by parts the above defined necessary 

optimality conditions yield 
y-Formulation 

max ... - ( l + y ) P , * z , * [ K ~ ( K ) + f ( K ) ] -  ... - z , * W K )  A> ' K  uct - AKo - -- - 
";: ATL [ K W k ) +  f ( K ) I  subject to w, - (1 - x,>w," I z,, i = 1, . . . , N + X,, 

Note that when y = 0 and K is not constrained by K O ,  both 
formulations yield the same optimal solution. It will be shown 
that for any positive y there always exists K O  such that both 
formulations have the same optimal solution. In the above 
excerpts of the formulations, the investment cost and the 
constraints which are not directly related to y or K O  are 
omitted for clarity. Also, only the active constraint i* from 
the sets of constraints defining zi is included. 

The necessary optimality conditions with respect to K and 
z,* are 

This means that. 

Therefore, a unique value for the penalty coefficient y exists 
and is consistent with the necessary optimality conditions 
proving the equivalence of the two formulations. 
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