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Abstract- This paper addresses the staged capacity expansion of multiproduct batch plants operating in single product 
campaign (SPC) mode and in the presence of product demand uncertainty. This extends previous work by the authors 
on the design problem. Staged capacity expansions are modeled as additions of extra units of equal size at each 
stage at the end of each time period. The normality assumption is employed for the uncertain product demands. The 
problem formulation involves an inner stage which identifies the optimum production levels and an outer stage which 
establishes the design/capacity expansion decisions by maximizing the net present value (NPV) of the plant. This two- 
stage stochastic optimization problem for capacity expansion is equivalently recast as a deterministic mixed-integer 
nonlinear programming (MINLP) problem. Finally, the proposed formulation and solution strategy are illustrated with 
an example problem. 0 1998 Published by Elsevier Science Ltd. All rights reserved. 

INTRODUCTION 
Batch plants provide a cost-effective alternative for 

the manufacture of specialty chemicals. At the design 
stage, the plant capacity must be set based on not only 
the present but also anticipated future product demands. 
Typically product demands increase over time. This im- 
plies that you have to either build a larger than neces- 
sary plant or systematically perform capacity expansions 
in the future. The last strategy provides a more cost effec- 
tive way of meeting “just in time” future product demand. 
The challenge addressed here is to identify, at the design 
phase, the location, size, and timing of the capacity expan- 
sions given only probabilistic information about the future 
product demands. 

A number of publications which address the prob- 
lem of capacity expansion for continuous or batch plants 
with deterministic or uncertain product demands can be 
found in the literature. Wellons and Reklaitis (1989) pro- 
posed a conceptual formulation for batch plants design 
under uncertainty with staged capacity expansions. The 
authors suggested a distinction between “hard” and “soft” 
constraints and introduced penalty terms in the objec- 
tive function for the latter type. Assuming that the de- 
mands change stepwise and the only uncertainty is in the 

time when the step change occurs, an analytical expres- 

sion for the expected value of the objective function is 
derived which facilitates the solution of the model as an 
MINLP problem. Sahinidis and Grossmann (1991) pro- 
posed an MILP formulation for selecting capacity expan- 
sion policies for continuous chemical processes without 

explicitly considering product demand uncertainty. Based 
on a variable disaggregation technique efficient NLP re- 
formulations of the MILP problem were proposed which 
quickly yield good suboptimal solutions. Berman et al 
(1994) suggested a scenario-based approach for capacity 
expansion in the service industries under product demand 
uncertainty. The capacity schedule specified the size, 
location, and timing of the expansions that maximized 
the expected profit. By utilizing a Lagrangian relaxation 
and exploiting the knapsack structure of the subproblems 
an efficient algorithmic procedure was proposed. Myers 
and Levary (1996) utilized linear programming to iden- 
tify the best from several capacity expansion scenarios of 
a fuel additive production process. Ierapetritou and Pis- 
tikopoulos (1996) addressed the general problem of batch 
plant design under uncertainty. They developed a feasi- 
bility relaxation for the “soft” constraints and proposed 
a two-stage stochastic programming formulation. The 
latter is solved based on the discretization of the proba- 
bility field through quadrature integration which leads to 
a single but typically large-scale nonconvex optimization 
problem. Based on the latter, a formulation which can 
accommodate staged capacity expansions was also pro- 
posed. Typically, the computational requirements for re- 
alistic models and problem sizes tend to be very large. 
The developments in this work are aimed at proposing a 
customized formulation and corresponding tractable solu- 
tion strategy for staged capacity expansion of batch plants 
operating in @PC) production mode with normally dis- 
tributed future product demands. 
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PROBLEM DEFINITION 

Given a set of uncertain product demands at different 
time periods, product recipe information, size factors and 
number of production stages, capacity ranges and max- 
imum number of parallel processing units per stage, the 
problem addressed here is stated as follows: 

Find the optimal design and capacity expansion policy 
of a multiproduct batch plant operating in SPC produc- 
tion mode such that the expected NPV of the batch plant, 
within a prespecified time horizon, is maximized while the 
production levels are optimally adjusted in response to 

product demand realizations and capacity expansions, in 
the form of additional units of equal size, occur at the end 
of each period. 

The design objective, as stated above, suggests that a 
batch plant design and expansion policy is sought which 
establishes an optimal level of product demand satisfac- 
tion. This optimal level of demand satisfaction is estab- 
lished by striking the proper balance between profit from 
sales and investment costs. This balance is quantified 
through the NPV profitability measure and it is realized 
through the continuous optimal adjustment of the produc- 
tion policy of the batch plant given the current product de- 
mand profile. Product demands are modeled as normally 
distributed random variables. The plant is assumed to op- 
erate in SPC mode with overlapping operation. Transfer 
times from one unit to the next are assumed to be embed- 
ded in the processing times. The size factors, processing 
times, and profit margins are assumed to be independent 
of the capacity output and equipment sizes. Inventory 
transfers from one time period to the next are not con- 
sidered due to their large length (typically more than one 
year). Equipment costs are assumed to be power functions 
of their capacities. Multiple units of equal capacity may 
operate in parallel at a particular stage to accommodate 
higher demands. Capacity expansion is modeled through 
the addition of parallel units of the same size and are al- 
lowed to occur only at the end of each period. Based on 
these assumptions the capacity expansion problem can be 
expressed as the following two-stage stochastic optimiza- 
tion problem: 

m= 6 5 6&PitQit 
Qit t=li=l 

Qit<Bit, i=l,...,N 
max E 

v, ,Bi ,N,t t=1,...,rr 

g (e) TL,~ I Ht,R 
t= l,...,T 

- 2 6C, 5 cYj(Njt - Njt-l)yp’ 

t=1 j=l 
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In the above formulation (see also Petkov and Maranas 
(1998)), the sets ij, and t denote products, production 
stages and time periods, respectively. The parameters 
are the lengths of each time period Ht, the normally dis- 
tributed uncertain product demands &t, the profit margins 
Pit, the coefficients 6&,6c, which discount the future 
revenue and equipment costs to their present values, the 
preexponential cost coefficients oj and exponents pJ, the 
size factors Sij, and the processing times t*j. The vari- 

ables are the batch sizes Bi, the equipment capacities V,, 
the number of parallel units Njt at stage j and time period 
t, the production levels &it, and the cycle-time TLlt for 
product i and period t. 

The above formulation is a two-stage optimization 
problem. The inner problem sets the optimal operating 
policy that maximizes the profit for a given design and 
expansion policy, identified by Vj , Bi, Njt, and realiza- 
tion of the uncertain demands @it. The first constraint of 
the inner problem disallows production levels to exceed 
product demands. The next one restricts the plant cycle- 
time to the available time horizon Ht of each time period. 
The second term in the objective of the outer problem 
measures the equipment cost as the discounted additive 
contribution of all the planned capacity expansions. The 
first constraint of the outer problem determines the mini- 
mum required equipment size at each stage. The second 
constraint identifies the rate limiting step for each product 
and time period accounting for the parallel units. Finally 
the last two constraints impose lower and upper bounds on 
equipment sizes and number of parallel units per stage and 
time period. The above formulation is partially convexi- 
fied (apart from the horizon constraint) through the the 
following exponential transformation (Kocis and Gross- 
mann (1988)): 

V, = exp(vj), Bi = exp(bi), 

TL; = exp(t& Nj = exp(nj) 

N,” NY 
nj = c vjp In(r) where c yjr = 1 

r=N,b .=NL , 

Based on the developments described in detail in 
Petkov and Maranas (1998) a new approach for solving 
this problem is proposed. First, the inner optimization 
problem is solved analytically for the optimum production 
levels &it as a function of the demand realizations 8;t and 
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the design variables (see Petkov and Maranas (1998)): 

if i = it 

N 
and C ait@it 2 Ht 

i=l 

eit otherwise 

where oit = * represents the amount of time it 
takes to produce a unit of product i in period t and it = 

argmp (.> 
2 is tbe product with the smallest manufac- 

turing profit per unit time at time period t. Note that by 
not imposing a lower bound of zero on the production lev- 
els Qi a negative value for Qi. may occur. A more detail 
discussion can be found in Petkov and Maranas (1998). 

In addition, by exploiting the normality assumption 
for the product demands, an analytical expression for the 
expected value of the optimum of the inner problem is 
also derived. The incorporation of these analytical results 
in the objective function after employing the exponential 
variable transformations of Kocis and Grossmann (1988) 
yields the following expressions: 

max 5 $ b&PitGit 
kl i=l 

by its standard deviation. After (i) the introduction of bi- 
nary variables for the selection of it, (ii) the subsequent 
exact linearization of the resulting bilinear terms, and (iii) 
the relaxation of some nonlinear equalities into equivalent 
convex inequalities (see Petkov and Maranas (1998) for 
details) the only remaining nonconvexities are the prod- 
ucts KtgCtr in the horizon constraint terms. By fixing 
the probabilities ot of product demand satisfaction at each 
period the corresponding Kt variables are also set. This 
gives rise to a convex MINL.P formulation for the capac- 
ity expansion problem for at 2 0.5. This observation 
motivates the solution strategy for the original noncon- 
vex MIIVLP which can be thought of as a multiparametric 
convex MINLP problem with as many parameters as the 
number of periods. To illustrate the proposed develop- 
ments a small example is next considered. 

Illustrative Example 

This example involves the design of a batch plant pro- 
ducing five different products whose expected lifetime is 
ten years. Each product recipe requires six production 
stages with up to five identical units per stage. The vol- 
umes of each processing unit can be between 500 and 
3,000 liters. ‘Ihe data for processing times, size factors 
and cost and price data are given in Tables l-3. 
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The original two-stage stochastic programming problem 
is transformed into a single-stage deterministic MINLP 
optimization problem. Here f is the standardized normal 
probability density function and @ the cumulative one. 
Also, u ctl is the standard deviation of the cycle-time at 
period t and Kt measures the discrepancy between the re- 
quired mean cycle-time and available horizon time scaled 

Table 1: Size factors Sij(lit/kg) 

Stage 
Product 1 2 3 4 5 6 

1 7.9 2.0 5.2 4.9 6.1 4.2 
2 0.7 0.8 0.9 3.4 2.1 2.5 
3 0.7 2.6 1.6 3.6 3.2 2.9 
4 4.7 2.3 1.6 2.7 1.2 2.5 
5 1.2 3.6 2.4 4.5 1.6 2.1 

Table 2: Processing times tij(hours) 

2 6.8 6.4 6.5 4.4 2.3 3.2 
3 1.0 6.3 5.4 11.9 5.7 6.2 
4 3.2 3.0 3.5 3.3 2.8 3.4 
5 2.1 2.5 4.2 3.6 3.7 2.2 

Table 3: Equipment cost 
Equipment cost coeff. 

Stage aj($/lit) @j 

1 3000 0.6 
2 3000 0.6 
3 3000 0.6 
4 3000 0.6 
5 3000 0.6 
6 3000 0.6 

Id profit margin data 
Price Data 

Product P;($/kg) 
1 3.5 
2 4.0 
3 3.0 
4 2.0 
5 4.5 
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The mean annual product demands for the first five years 
ate 250, 150, 180, 160, and 120 tons, respectively, and the 
uncertainty in the product demands is assumed to be nor- 
mally distributed with standard deviations equal to 10% 

of their respective mean values. In the last five years of 
the plant’s lifetime the expected demand values ate 20% 

higher and the uncertainty is represented by standard devi- 
ations equal to 20% of their new mean values. To account 
for the anticipated demand increase in the second five- 

yeat period, one plant expansion is planned for five years 

after the plant starts operation. This problem description 
implies that there ate two five-year periods. This leads to 
an MINLP with 10 binary variables identifying the (it)‘s, 

60 binary variables modeling the number units pet stage 

(6 stages x up to 5 units x two five-year periods), 1049 

continuous variables, and 295 constraints. 

The problem is iteratively solved for fixed values of 

Kt , t = 1,2 corresponding to probabilities (Y of meeting 
all product demands between 0.5 and 0.95. Each one of 
these problems is a convex MINLP and is solved using the 
DICOPTIGAMS interface. The expected NPV values ate 

plotted as a function of the probability levels in Figure 1. 

different levels of (it. Note that the average slope ma& 
nitude of the surface plot in the direction of LYZ is much 
greater than in the direction of al. This 1s a result of the 

higher level of uncertainty associated with the product de 

mands in the second five-year period. The expected NPV 

is maximized for crl = 0.82 and a2 = 0.62 assuming a 

value of $2,267 x 103. The optimal equipment capacities 

for the six stages ate 2910, 1481, 1915, 2042, 2247 and 
1645 respectively. For the first five years, stages 1 and 2 

have two units and stages 3,4 and 5 have 3.4 and 1 units 

respectively. To optimally accommodate the higher ptod- 
uct demand in the second five-year periods, one additional 

unit is added at stages 5 and 6. Note that if no plant ex- 

pansion was allowed, the maximum expected NPV value 

would have been $2,168~ lo3 (about 5% less). 

SUMMARY 

This paper extended previous work of Petkov and 

Matanas (1998) on the design of multiproduct batch 
plants under demand uncertainty to account for staged 
capacity expansions. The resulting formulation is a T- 

parameter convex MINLP for product demand satisfac- 

tion probabilities which ate higher than 50%. The Kt 
variables ate revealed to be the only source of noncon- 

vexities. This provides an avenue for the construction of 

an efficient global optimization approach by selectively 
branching on only the Kt variables. 
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