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Abstract 

This paper addresses the problem of incorporating topological indices as structural descriptors for correlat- 
ing properties in the design of product molecules with fine-tuned or optimized property values. Three different 
types of topological indices are considered: Randir's molecular connectivity indices, Kier's shape indices and 
the Wiener Index. The adjacency matrix representation which provides a complete description of the connect- 
ivity of a molecule is utilized. Thus, complete molecular interconnectivity information is introduced in the 
optimization framework which, in principle, provides for more accurate property prediction than simple group 
contributions. The nonlinear expressions for the topological indices are systematically transformed into 
equivalent linear relations enabling the formulation of the molecular design problem as a Mixed Integer Linear 
Program (MILP). Two different examples are considered: The first involves the design of alkanes with target 
physical properties correlated with Kier's shape indices and the second the selection of the best substituent of 
a compound with desired fungicidal properties correlated with Randir's connectivity index. In both examples, 
uncertainty in the model regression coefficients is quantitatively taken into account. © 1998 Elsevier Science 
Ltd. All rights reserved 
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1. Introduction 

The demand for application-specific products dem- 
onstrates the necessity and importance of molecular 
design. Traditional molecular design involves an iter- 
ative procedure of compound synthesis and property 
evaluation. Computer-aided molecular design 
(CAMD) reduces experimental effort by pointing out 
only promising compounds for synthesis and experi- 
mental verification. Examples of applications of 
CAMD in the chemical engineering literature include 
the design of polymers with desired thermophysical 
and mechanical properties (Vaidyanathan and E1- 
Halwagi, 1996; Maranas, 1996), environmentally be- 
nign refrigerants (Duvedi and Achenie, 1996; Churl 
and Achenie, 1996), solvents and extractants (Odele 
and Macchietto, 1993; Gani et al., 1991), and herbi- 
cides/pesticides (Reynolds et al., 1995). A thorough 
review can be found in (Mavrovouniotis, 1996). 
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CAMD requires that the properties relevant to 
design be expressed as a function of molecular struc- 
ture. The type of structure-property relations em- 
ployed depend on both the desired level of accuracy 
and the particular property. The input-output rela- 
tions employed in this paper are Quantitative Struc- 
ture Property Relationships (QSPR) and Quantitative 
Structure Activity Relationships (QSAR) (Kier and 
Hall, 1986; de Waterbeemd, 1995). These relations are 
obtained by correlating the structural attributes of 
a set of compounds with their physicochemical prop- 
erties or biological activities using statistical methods. 
The particular class of QSAR/QSPRs considered in 
this paper utilize topological indices as structural 
descriptors. Topological indices characterize com- 
pounds with a single number based on its intercon- 
nectivity and the types of atoms in the molecule. By 
taking into account the interconnectivity of the 
molecule, more accurate property prediction can, in 
principle, be achieved than with simple group contri- 
butions which largely neglect internal molecular 
architecture. It is important to keep in mind, however, 
that topological indices do not necessarily have 
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a causal relationship with the correlated property. 
Instead, they provide a convenient vehicle for provid- 
ing an empirical correlation between structure and 
property. In this paper, the following three most 
popular topological indices are employed: (1) Randir's 
molecular connectivity index 1X; (2) Kier's shape indi- 
ces, and (3) the Wiener index. 

A review of the variety of applications of topologi- 
cal indices in QSAR/QSPR can be found in Trinajstic 
(1992). Some of the key contributions include the 
work of Gordeeva et al. (1990) and Skvortsova et al. 
(1992) who addressed the problem of generating struc- 
tures from Randi6 indices. Baskin et al. (1990) solved 
the problem of structure generation from Wiener and 
Randi6 indices. The method is based on the exhaust- 
ive generation of graphs with a given distribution of 
vertices and edges. Skvortsova et al. (1993) used a sim- 
ilar approach to design molecules with target proper- 
ties that are functions of Kier's shape indices. 
Kvasnirka and Pospichal (1990) proposed an algo- 
rithm for the generation of molecules with a given 
Randib index using graph theory. Kier et al. (1993) 
designed molecules with target molar volumes corre- 
lated with the first and second-order molecular con- 
nectivity index. Kier et al. (1993) and Hall et al. 
(1993a,b) derived relations between vertex degrees 
and distribution of edges to aid in structure genera- 
tion. Skvortsova et al. (1996) used the number and 
nature of basic fragments comprising a molecule to 
generate structures with specified property values cor- 
related with topological descriptors. 

In essence, most of the methods proposed so far for 
generating molecules with specified target property 
values use vertex, edge distribution types and type 
and number of structural fragments to describe the 
molecule. However, these descriptors do not necessar- 
ily define a unique molecule because interconnectivity 
is not fully specified. In this paper, a complete repres- 
entation of the molecular connectivity based on the 
vertex adjacency matrix (Trinajstic, 1992) is em- 
ployed. The rows and columns of this matrix corres- 
pond to atoms in the molecule. An element of the 
matrix is one if the two atoms representing the par- 
ticular row and column are connected by a bond and 
zero otherwise. The advantage of the vertex adjacency 
matrix representation is that it defines a unique mol- 
ecule because the interconnectivity is fully specified. 
However, most topological indices exhibit a nonlinear 
functional dependence on the elements of the vertex 
adjacency matrix. This complicates the application of 
optimization-based techniques. To remedy this, the 
nonlinear functional terms are transformed into 
equivalent linear relations which enable the formula- 
tion of the molecular design problem as a Mixed 
Integer Linear Program (MILP). The resulting formu- 
lation involves a number of important features: 
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• The optimization problem can be solved to global 
optimality with commercially available solvers (e.g., 
CPLEX, OSL etc.). 
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Multiple property targets correlated with different 
topological indices can be handled simultaneously 
and there is considerable flexibility in selecting the 
molecular design objective (e.g., property target 
matching or property value optimization). 

• With the appropriate use of integer cuts, not only 
the optimal structure but also the second best, third 
best etc. structures are obtained. Also, a quantitat- 
ive description of uncertainty in the structure- 
property relations can readily be incorporated 
(Maranas, 1997a). 

In the following sections, the vertex adjacency 
matrix representation of molecular graphs is dis- 
cussed and the proposed optimization framework is 
highlighted. Then, a basic set of relations in molecular 
graphs is presented. This is followed by a detailed 
description of Randi~'s molecular connectivity indi- 
ces, Kier's shape indices and the Wiener index. The 
discussions of the topological indices are divided into 
two parts: Definition and method of calculation of the 
topological index, and proposed reformulation as an 
MILP. The discussion of the three topological indices 
is followed by a brief description of the formulations 
used to quantify uncertainties in the properties. Fi- 
nally, two illustrative examples of the proposed meth- 
odology are presented. The first example deals with 
the design of alkane molecules with targeted physical 
properties correlated with Kier's shape indices. The 
second example involves the optimal active substitu- 
ent selection for a compound to obtain desired fungi- 
cidal properties using the molecular connectivity 
index 1 x as the structural descriptor. For both exam- 
ples, the effect of property prediction uncertainty is 
addressed following the developments of Maranas 
(1997a). 

2. Molecular graph background 

A graph is characterized by two sets (Harary, 1972; 
Trudeau, 1976): 

1. Vertex Set ~ = {1, 2 . . . . .  N} 
2. Edge Set ~ = ((i,j)l vertices i and j are connected 

by an edge} 

In particular, a molecular graph is the graph repres- 
entation of a molecule where atoms and bonds corres- 
pond to vertices and edges respectively. Usually, 
molecular graphs are hydrogen-suppressed (Spialter, 
1964) since hydrogen has a valency of one and cannot 
participate in the molecular backbone. The graphs 
which do not account for bond multiplicities (i.e., 
double or triple bonds) are referred to as simple 
graphs. For example, the conventional and the mo- 
lecular graph representation of 2-methyl butane are 
shown in Figs 1 and 2 respectively. The vertex and 
edge sets for this molecular graph representation of 
2-Methyl Butane are: 

~v" = {1,2, 3,4,5} 

,~ = {(1,2), (2, 3), (2,4), (4,5)} 
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Fig. 1. Conventional representation of 2-methyl butane. 
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Fig. 2. Molecular graph of 2-methyl butane. 
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Generate a ranked list of  all molecules whose prop- 
erty values either match some prespecified targets or 
are optimized, when the available QSAR/QSPR employ 
topological indices as structural descriptors. 

This problem can be recast in an optimization 
framework as proposed by Maranas (1996). The vari- 
ables describing the molecular structure are the ele- 
ments of the vertex adjacency matrix a w Additional 
variables in the include the properties p, which depend 
on the topological indices TIk which in turn are func- 
tions of a~j. The objective function to be optimized is 
a function of the properties p,. The minimization of 
the maximum scaled deviation from some target 
values is formulated as (Problem (I)), 

1 
min max1 ~ l P z  - P~"'ge'l 

subject to p, = pl(T11,TI2 . . . . .  TIT), l = 1,2 . . . .  ,P  

TIk = TIk(alj), k = 1, 2 . . . . .  T 

A molecular graph can be represented by a variety 
of matrices (Trinajstic, 1992) such as vertex adjacency 
matrix, edge adjacency matrix, incidence matrix, cycle 
matrix or distance matrix. The vertex adjacency 
matrix representation of a molecular graph is em- 
ployed in this paper and is simply referred to as the 
adjacency matrix in subsequent sections. The adjac- 
ency matrix of a graph is a N x N matrix, where N is 
the number of vertices in the graph. It is given by: 

where pl(TIk) are the QSAR/QSPR's with p~ denoting 
activities/properties and TIk are the topological indi- 
ces serving as structural descriptors. Tlk(a~) relate the 
elements of the adjacency matrix to the topological 
index. Note that property p~ can be a function of any 
number of topological indices TIk. 

The maximization/minimization of a given prop- 
erty subject to lower and upper bounds is formulated 
as (Problem (II)), 

A = (alj) 

aij = {~ 
if vertex i is connected to vertex j 

otherwise 

max/min pj 

subject to (pl) z < Pz < (p])V, l--- 1,2 . . . .  ,P  

Based on the definition it is clear that the adjacency 
matrix is symmetric and the diagonal elements are 
zero. Given the adjacency matrix, the connectivity of 
a molecule is uniquely and unambiguously deter- 
mined. For  example, the adjacency matrix of the mo- 
lecular graph in Fig. 2 is: 

0 

1 

A =  0 

0 

0 

1 0 0 0  t 

0 1 1 0  

1 0 0 0  

1 0 0 1  

0 0 1 0  

Because the adjacency matrix provides complete in- 
formation about the connectivity of a molecule, it 
follows that topological indices are uniquely defined 
by the elements of the adjacency matrix a~ i, 

3. Problem definition 

where (pz) L and (pl) v are lower and upper bounds on 
values of Pt respectively. 

4. Basic relations 

In this section, the fundamental relations pertaining 
to the description of molecular graphs with binary 
variables are discussed. These relations are applicable 
to all formulations irrespective of the type of topologi- 
cal indices being considered. The order of the adjac- 
ency matrix is denoted as N v, which is the maximum 
number of atoms (vertices) allowed to participate in 
a molecule. The valency of a vertex i, V~, is equal to the 
number of edges originating from it. The valency of 
the ith vertex is the sum of the elements in the ith row 
of the adjacency matrix: 

NV 
Vi=  ~ aij, i = l , 2  . . . . .  N v j=l 

The basic question addressed in this paper is de- Due to the symmetry of the adjacency matrix only the 
fined as follows: elements of the upper triangular part of the adjacency 
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matrix (i < j) need to be considered. This implies that 

N ° i -  1 N v 

V,= 2 ao= ~ ao + ~ao  
j = l  j = l  j = i  

i - -1  N v 

= ~ ajl + ~ aij, i = 1, 2 . . . . .  N v 
j = l  j = i  

The maximum allowed valency of a vertex in the 
molecular graphs considered here is four. Because the 
valency of a vertex can take only integral values from 
zero (no atom) through four, it can be expressed with 
binary variables (Glover, 1975): 

4 

V~= ~, k6~, i = 1 , 2  . . . . .  N v 
k = l  

4- 

~ 3~'<1, i = 1 , 2  . . . . .  N v 
k = l  

where 3 k is a binary variable which is equal to one 
only if vertex i has a valency of k and is equal to zero 
otherwise In general, any function g(Vi) of Vi can be 
recast as (Glover, 1975): 

4 

g(V,) = X g(k) fit[, i =  1,2 . . . . .  N v 
k = l  

4 

6~<1,  i = 1,2, ... ,N v 
k=l 

The above expressions aid in the transformation of 
the nonlinear functional dependences on valencies 
into equivalent linear relations. 

An additional useful relation in subsequent devel- 
opments is Euler's Polyhedral formula as applied 
to planar graphs (Trinajstic, 1992; Harary, 1972; 
Trudeau, 1976): 

N + R = ( * P ) +  1 

where N is the number of vertices, R is the number of 
rings and ip  is the number of edges or l-length paths 
in the molecular graph. A formal proof for this for- 
mula can be found in Trudeau (1976). A value of one 
for ~4= x 3~ indicates the presence of vertex (i.e., atom) 
i. Hence the total number of vertices is given by the 
expression: 

N v 4 

N=y  y a 
i = l  / = 1  

5. T o p o l o g i c a l  ind i ce s  

Each topological index requires a different set of 
transformations for recasting it into an MILP form. 
These transformations are provided for the three 
topological indices addressed in this work starting 
with the molecular connectivity indices Z. 

5. l. Molecular connectivity indices Z 

The molecular connectivity indices Z provide 
a quantitative assessment of the degree of branch- 
ing of molecules. Randi6 (1975) first addressed the 
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problem of relating the physical properties of alkanes 
to the degree of branching across an isomeric series. 
The degree of branching of a molecule was quantified 
using a branching index which subsequently became 
known as first-order molecular connectivity index ~Z. 
Kier and Hall (1986) extended this to higher orders 
and introduced modifications to account for hetero- 
atoms. Currently, molecular connectivity indices are 
the most popular class of indices (Trinajstic, 1992) 
employed in QSAR/QSPR. They have been used in 
a wide spectrum of applications ranging from predic- 
ting physicochemical properties such as boiling point, 
solubility, partition coefficient etc. (Murray et al., 
1975; Kier and Hall, 1976) to predicting biological 
activities such as antifungal effect, anesthetic effect, 
enzyme inhibition etc., (Kier et al., 1975; Kier and 
Murray, 1975). 

Molecular connectivity indices are characterized by 
their order. The nth order molecular connectivity in- 
dex is equal to, 

1 

where 8, is the set of n consecutive edges in a molecu- 
le, io, il, . . . ,  i, denote the n + 1 vertices forming the 
n consecutive edges, and Vi,, k = 0 . . . . .  n is the valency 
of the ik vertex. The order of a connectivity index 
Z defines the number of consecutive edges forming the 
path involved in each term of the summation. Specifi- 
cally, the first-order molecular connectivity index is 
defined as: 

1 l g =  
(i , j)eg N ~ i  V j  

where d ~ is the edge set of the graph. The calculation of 
1X and 2;( for 2,3-dimethyl hexane is next illustrated. 
The molecular graph along with the 1-path and 2- 
path fragments used for this calculation arc shown in 
Figs 3 and 4 where the numbers denote the valency of 
each vertex. Based on the fragments shown in Figs 3 
and 4 the first and second-order connectivity indices 
are equal to: 

1 1 1 1 lig = _ _  + _ _  + 

1 1 1 + - - + - - - ~  

= 3.6807 

1 
2 Z 

1,/i 1 
1 + - -  

1 + - -  
, / 3 . 2 - 2  

= 3.01 

1 1 
. - -  .J/.. _ _  

4 1 ' 3 " 3  

1 1 

- -  3,/5  + , /1 .3 .2  
1 } - - -  

~ - ~ 2 . 1  
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After replacing 6~cS~a~Fith 

J'l, i f 6 ~ = l  and 6~=1 and a ~ j = l  
C~ 

! "[0, otherwise 

we have: 

3 2 2  2 2  I ~ @ - - - - . ~  @ - - - - - ~  ~ - - - . ~  

Fig. 3. Fragments of one-length paths for 2,3-dimethyl 
hexane. 

The transformation of the nonlinear expression for 
1~ into a set of linear inequalities is addressed next. 
The value of a o indicates the presence or absence of an 
edge, therefore tX can alternatively be expressed as: 

Nu N v 
, z = E E  ao 

i=a j = , ~  (1) 

Furthermore, 

N / ~  k=l 

4 
6~<1 ,  i = 1 , 2  . . . . .  N v 

k=l 

Consequently the equation for tX transforms to: 

N V N V /  4 (~/kXt/ 4 6~ ~ 

= fit f i jai j  

i= l  j = i k = l  l= l  ~ l  
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N v N ° 4 4 ~kl 

Note that ci~J is equal to one if and only if all of the 
following relations are satisfied, 

1, Both vertices i and j must exist. 
2, Vertex i must have valency k and vertex] valency I. 
3, Vertices i and j must be joined by an edge. 

Though ~] is a binary variable, it can be treated as 
a continuous variable by adding constraints that force 
kt C 0 to take only zero or one values. If an edge between 

vertices i and j exists, (air = 1), then the c~k~ element 
with the correct valency combination (k, l) is equal to 
one and the rest of them are equal to zero. Alterna- 
tively, if there is no edge connecting vertices i and j, 
(a o = 0) then all c k] elements are equal to zero. Both of 
these arguments are cast mathematically as: 

Ci~ ~- ai r 
k=l I=l  j = i + 1 . . . . .  N v 

If a vertex i has valency k, then exactly k elements of 
ci~], corresponding to the total number of vertices j of 
any valency l connected with vertex i, assume the 
value of one: 

~1 ~ 'k N" ~ k,} i=1 ,2  . . . . .  N U 
k6~ = c j, + Y, c~j 

j=xl=t  j= i l= l  k = 1,2,3,4 

Based on the relations described above the problem 
of finding a molecular graph which matches a given 
target for the molecular connectivity index 1 x can be 
expressed as an MILP problem. This formulation was 
solved for a target value of ~ = 3 . 5  using 
GAMS/CPLEX (Brooke et al., 1988) on a IBM 
RS6000 43P-133 workstation with an absolute con- 
vergence tolerance of 10 -6 . The molecular graphs 

3 2 2 
A 
w • w 

k. 3_ 3._3 3_ 2_ 

Fig. 4. Fragments of two-length paths for 2,3-dimethyl hexane, 

2 2 1 



752 

Table 1. Compounds generated for aX'°'g't = 3.5 

Rank 1 x Molecule 

1 3.5040 2,3,3-trimethyl pentane 
2 3.4814 2,2,3-trimethyl pentane 
3 3.5534 2,3,4-trimethyl pentane 
4 3.5607 2,2-dimethyl hexane 
5 3.4165 2,2,4-trimethyl pentane 

closest to the target index x X = 3.5 and corresponding 
x X values are shown in Table 1. Next, the Kier's shape 
indices are addressed. 

5.2. Kier's shape indices 
Kier (1985, 1986) proposed three indices to quantit- 

atively characterize the shape of a molecule. These 
three indices are the first, second and third order 
shape indices and are denoted by ~x,2x and 3x respec- 
tively. Index x x quantifies the cyclicity of a molecule. 
For molecules with the same number of atoms, t x de- 
creases as the number of rings in the molecule in- 
creases. Index 2x quantifies the star-like attributes of 
a molecule. As the isomers in an acyclic isomeric series 
go from linear to star-like shape the values of 2x de- 
crease. Index 3x quantifies the place in the chain 
where the branching occurs. The values of 3x for 
acyclic isomeric molecules reduce as the branching 
occurs closest to the center of the main chain. The 
main idea of the shape indices is to characterize a mol- 
ecule by the number of n-length paths and normalize 
it with respect to two reference structures. The general 
formula for the nth order shape index is given by: 

f("P,,x)("P,,,,) 
n K (.p)2 

where "P is the number of n-length paths in a molecu- 
le, "Pmax and nP.,i, are the number of n-length paths in 
the two reference structures, and f is a normalizing 
factor. Kier has considered shape indices of up to 
order 3. The details of the derivation of the shape 
indices of first and third order can be found in Kier 
(1986) and of the second-order in Kier (1985). 

The first-order shape index is given by (Kier, 1986), 

Ix N(N - 1) 2 
(1p)2 

where the number of l-length paths is equal to: 

Nv N v 

1 P =  Z 2 a  U 
i = 1 j=i  

The second-order shape index is given by the relation 
(Kier, 1985): 

2x = (N - 1)(N - 2) 2 
( 2 / ) ) 2  

The number of 2-length paths (i.e., two consecutive 
edges), with vertex i at the center is equal to the 
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number of ways of selecting two out of the Vi edges 
emanating from i. 

2 P = Z  = 2 ~  
i = l  i = l  

Following the analysis of Section 4 the number of 
2-length paths transforms to the following linear ex- 
pression: 

No ~ k(k 
2p= ~= 1 ~-1)3~ 

"= k = l  

The expression for the third-order shape index 
(Kier, 1986) is: 

3 x = ( N - 3 ) ( N - 2 )  2 i f N i s e v e n  (~p)~ 

3 x _ ( N - 1 X N - 3 )  2 i f N i s o d d  
(ap)2 

The number of 3-length paths in a molecular graph 
can be identified as follows: Consider an edge (i,j) 
incident to vertices i and j. The edge (i,j) can be 
reached through vertex i in V~ - 1 ways and through 
vertex j in Vj - 1 ways. Each set of these three con- 
secutive edges, (i.e., the edge (i,j) and the edges 
through which (i,j) is reached from i and j), constitutes 
a 3-length path. The number of 3-length paths with 
(i,j) as their middle edge is given by (V~ - 1)(V i - 1). 
After summing over all the edges of the graph the 
number of 3-length paths in a molecule is equal to 
(Hall et al., 1993b): 

sp= ~ ( V , - 1 ) ( V j - 1 )  
(i,j)eg 

Consequently, the number of 3-length paths trans- 
form to: 

N U N U 4 4 

3p= E E E Z ( k -  lXl-1)6~6;aiy 
i = 1  j = i k = l  1=1 

k l k l  After replacing 6i3~aij with clj, the expression for 
3p yields: 

N v N v 4 4 

a p =  ~ ~ ~ ~ ( k - 1 ) ( l - l ) c  k] 
i = 1  j = i k = l  | = 1  

The following additional constraints, (same as those 
used for the 1Z index) must be added: 

Ci~J ~ ai j  
k = l  I=1 j = i , i  + I , . . .  ,N v 

i - 1 ~  N V ~  } / = 1 , 2  . . . . .  N v 

j = l l = l  j = i l = l  k = 1,2,3,4 

So far, the linear representation of the expressions for 
the number of/-length, i = 1,2,3 paths 1p, 2p and 
3p is presented. Next, the linear equivalent repres- 
entation of the shape indices "x,n = 1,2, 3 is ad- 
dressed. The general expression for the nth order 
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shape index is considered first since some of the trans- 
formations are common to all orders. The expression 
for the nth order shape index is given by, 

f (" P m.x)(" P ,,..) n K (.p) z 

which can equivalently be written as: 

("P)("PX "to) = f("P,,~:,)("P,,,i.) (2) 

Because "P is an integer variable, it can be expressed 
as the sum of the binaries in the following way (Nem- 
hauser and Wolsey, 1988; Salkin and Mathur,  1989): 

l 

"p = ~ 2ipui 
i = 0  

pul~ {0, 1 } 

where I is the smallest integer satisfying the relation: 

2 I+1 - 1 _> ("P),..~ 

Next,  the product ("P)("K) is replaced by a new vari- 
able pk.,  

Pk. = ("P)("x) = (,=~o 2'pu,)("x) 

where pk.  consists of terms involving products 
of binaries and continuous variables. The general 
method of transforming a product of a binary variable 
y with a variable x into a set of linear inequalities was 
introduced by Glover  (1975). Specifically, the product 
of pui and "r  in the expression for pk .  is transformed 
as follows, 

(puiX"~) = pvi 

PUi(nl¢,) L <-- pvi < pUerile) v 

"to -- (%c)v(1 -- pui) <- pvl < "K -- ("K)L(1 -- pui) 

where ("~c) L and ("x) v are lower and upper bounds on 

Next, the product ("P)("P)("K) is replaced by vari- 
able q. and the following relations are introduced: 

I 

q. = ("P)("P)("I¢) = ("P)(pk.) = ~ 2'puipk. 
i = 0  

where pwl = puipk. 

pui(pk.) L <_ pw~ < pu,~pk.) v 

pk .  - (pk.)V(1 - pul) <_ pw, <_ pk .  - (pk.)Z(1 - pu,) 

The right handside of Eq. (2) is treated separately 
for indices of different orders. They contain terms 
such as N 2 and N 3 which are transformed using the 
relations introduced by Glover  (1975). Because N is 
an integer variable, it can be expressed as the sum of 
binaries in the following way, 

K 

N = ~, 2knuk 
k = 0  

nuk ~ {0, 1} 
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where K is the smallest integer such that 

2 K+I - 1 > N v 

Next, N 2 is replaced by variable n2 and the following 
relations are introduced: 

n2 = N2 = (k=~o 2knUk)N = k~=O (2knuk N)  

where nUk N = nv k 

nUk(N L) < nVk < nUR(N v) 

N -- NV(1 -- nuk) <-- rtVk <-- N -- NL(1 - r / t /k )  

The following expressions are obtained after substitu- 
ting na for N a. 

K K 

na = N 3 =  ~ (2knukN 2) = ~ (2knukn2) 
k = 0  k = 0  

where lqW k -~- ?lUkl'l 2 

nUk(n2) L ~ nWk ~ nuk(n2) U 

n2 -- (n2)V(1 -- nuk) < nWk < n2 -- (n2)Z(1 -- nUk) 

Eq. (2) yields for the first-order shape index: 

(1P)E(lx) = N ( N -  1)2 = N a - 2N 2 + N 

Based on the proposed transformations this can be 
written as: 

ql = n3 -- 2n2 + N 

Equivalently, for the second-order shape index we 
have, 

(2p)2(21¢) = (N - 1)(N - 2) 2 = N 3 - 5N 2 -q- 8N - 4 

which transforms to: 

q 2  = n 3  - -  5/ ' /2 -~  8N - 4 

The third-order shape index takes different forms 
depending on whether N is odd or even. When N is 
even we have, 

(3P)2(aK) = (N -- 3)(N - 2) 2 

= N s - 7N 2 + 1 6 N - -  12 

which is equivalently written: 

q3 = n3 - 7n2 + 16N - 12 (3) 

When N is odd Eq. (2) yields: 

(3P)2(3x) = (N - 1)(N - 3) 2 = N 3 - 7N 2 + 15N - 9 

which means that 

q3 = n3 - 7n2 + 1 5 N -  9 (4) 

The two different expressions for q3 can be recast 
within the same form by introducing an integer vari- 
able ne and a binary variable ny. 

N - 2ne = ny 
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Table 2. Structures generated for lxt"'ger = 8.0, 2xtarge t  = 3.1, 3Xta'get = 2.8 

Rank 1re Found 2K Found 3~c Found % Max.Violation Structure 

1 8.000 3.111 2.813 0.5 2,3,4-trimethyl pentane 
2 7.000 3.061 2.667 12.5 2,3-dimethyl pentane 
3 8.000 2.520 2.813 1 8 . 7  2,2,3-trimethyl pentane 
4 8.000 3.111 2.222 2 0 . 6  3-methyl,3-ethyl pentane 
5 8.000 2.520 2.222 2 0 . 6  2,3,3-trimethyl pentane 

Eqs. (3) and (4) representing "either-or" type of con- 
straints are modeled using binary variables as ex- 
plained in Ravindran et al. (1987). 

- Bny < q3 - (n3 - 7n2 + 16N - 12) < Bny (5) 

- B(1 - ny) <_ q3 -- (n3 - 7n2 + 15N - 9) 

< B(1 -- ny) (6) 

where B is a large positive number. 
The linear transformations described above for 

ar,2x and 3x recast the problem of finding molecular 
structures with shape indices as close as possible to 
some target values as an MILP problem. For 
example, the results for the five molecular graphs 
closest to the targets ~ --- 8.0, 2x = 3.1 and 3~c = 2.8 
are summarized in Table 2. 

5.3. The Wiener index 

The Wiener index was introduced by Wiener 
(1947a) as path number representing the number of 
bonds between all pairs of atoms in a molecule. 
Wiener (1947a, b, c, 1948a, b) used the path number to 
predict the boiling point, heat of vaporization, molar 
refraction and other properties of alkanes. The 
Wiener index was first defined in graph theoretical 
terms as function of the elements of the distance 
matrix by Hosoya (1971) and since then has found 
applications in a wide range of QSARs and QSPRs 
applications (Gutman, 1993). 

Evaluation of the Wiener index requires the defini- 
tion of the distance matrix. The distance matrix of 
a molecular graph is defined as: 

D =(d  0 

where dlj is the number of edges in the shortest path 
connecting vertices i and j. It is evident from the 
definition that the distance matrix is symmetric and 
the diagonal terms are zero. For example, the distance 
matrix of 2-Methyl Butane shown in Fig. 2 is: 

D = 
(11221) 0 1 1 

1 0 2 

1 2 0 

2 3 1 

The Wiener index is given by the sum of the elements 
of the upper (or lower) triangular part of the distance 
matrix. This can be written mathematically as: 

N N 

w=E Ea,  
i = 1  j = i + l  

Using this expression, the Wiener index for 2-Methyl 
Butane is equal to: 

W = 1 + 2 + 2 + 3 + 1 + 1  + 2 + 2 + 3 + 1 = 1 8  

The problem of generating the distance matrix from 
the adjacency matrix has been addressed by (Bersohn, 
1983; Miiller et al., 1987; Senn, 1988). The algorithm 
of Miiller et al. (1987) is used in this work to en- 
compass the problem of generating the adjacency 
matrix from the distance matrix within the optimiza- 
tion framework. The algorithm of Miiller et al. (1987) 
can be summarized with the following steps: 

Step 1: A new matrix A0 is generated from the adjac- 
ency matrix A by replacing all non-diagonal 
elements which are zero with N. The value of 
N is chosen because an acyclic molecule does 
not contain a path of length longer than 
N - 1 .  

Step 2: Set l = 1. 
Step 3: The matrix A~ is recursively generated from 

matrix At-1 in the following way: 

at(i,j) = min (a,_ 1(i, k) + at-  l(k,j))~ 
i 1, 2 N 

k=l ..... N J j =  1,2, ,N 

(7) 
Step 4: Set l = l +  1 
Step 5: If 2 t- l < N - 1 go to Step 3 
Step 6: AL is the distance matrix of the molecule 

where L is the smallest integer for which 
2 L > N - -  1. 

The variables that are implied by the above de- 
scribed algorithmic procedure and need to be added 
in the optimization formulation are: 

ao( i, j) 

al(i , j)  
i =  1,2, . . . ,N  

j = 1,2 . . . . .  N 
aL- l(i, j) 

aL(i,j) 
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Based on the above definitions, the Wiener index is 
equal to: 

N N 

W =  ~. ~. aL(i,j) 
i = 1  j = i + l  

Step 3 of the algorithmic procedure is accomplished 
through the use of the following constraints: 

a~i,j) < al-l(i,k) + at-l(k, /)/ i = 1,2 . . . . .  N 
I 

at(i,j) > al-~(i,k) + at-~(k,j)~ j = 1,2 . . . . .  N 
¢ 

- 2 N ( 1  -ayz(i,k,j)) [ k =  1,2 . . . . .  N 
/ 

ayt(i,k,j)~{O,1} ) l =  1,2 . . . . .  L 

I i = 1 , 2 , . . .  N 
N 

~ ayz(i,k,j) = 1 , j = 1,2 . . . . .  N 

k= l = l , 2 , . . . , L  

where aye(i, k, j) is an additional binary variable which 
selects the minimum term. 

Given a target Wiener index of 18 the structure of 
2-methyl butane was correctly generated when this 
MILP formulation was solved using GAMS/CPLEX 
on a IBM RS6000 43P-133 workstation with an abso- 
lute convergence tolerance of 10 -6. 

6. Stochastic formulation 

The estimation of the QSAR/QSPR model para- 
meters is typically accomplished through multilinear 
regression. This implies that the employed values are 
only "best" estimates and in reality fluctuations 
around them must be expected. This uncertainty in 
model parameters can be quantified using the method 
described in Maranas (1997a). The stochastic formu- 
lation and the deterministic equivalent formulation 
for the molecular design problems (I) and (II) are 
described in this section. Only the final expressions for 
the formulation are given, the details of the formula- 
tion can be found in Maranas (1997a). The stochastic 
formulation of problem (I) is: 

Max 

subject to Prlso > ~jo. I P j - p ° l l  > ~, V j e J  

The properties being considered are denoted by the 
set J. The property j is denoted by the random vari- 
able P~ and p~ is the target value of propertyj. So is the 
maximum allowable scaled violation from the target 
property values. Formulation (1) finds the maximum 
probability ct for which all scaled property viola- 
tions are less than So. The deterministic equivalent 
formulation of (I) is: 

Max ct 

subject to py(1 - So) - #(P~) <- - t~a( P j), Vj e J 
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p°(1 + So) -- p(Pj) > t~g(Pj), V j e J  

• (tl) + ~(t9 >- 1 + ~, v j ~ J  

where p(Pj) and a(P~) are the mean and standard 
deviation of the realization of property Pj respective- 
ly, and • denotes the standardized normal cumulative 
distribution. 

The stochastic formulation of (II) is: 

Max Pk 

Subject to PrCPk >- Pk] >- 

er[Ig < P~ < uf] > fl, V j~J  

where l~, u~ are the imposed lower and upper bounds 
on the value of property j. The deterministic equiva- 
lent formulation of (II) is: 

Max Pk 

Subject to p, - # ( P k )  <-- - -  ~ - l ( ~ t ) o ' ( P k )  

u~ - ~ P i )  >-- tT~(P~), v j ~  J 

• (t~) + ~(tT) >_ 1 + ~, Vj ~ J 

Subsequent discussion in this section addresses the 
estimation of the mean and variance of the random 
variable P denoting the property value. This is ac- 
complished using the method outlined in Snedecor 
and Cochran (1989). The employed regression model 
is: 

M 

P = b o +  ~ bixi+ 
i = 1  

where 

(i) P is the random variable whose realization is the 
property value. 

(ii) xi, (i = 1, 2 . . . . .  M) are the structural descriptors 
(i.e., Wiener index, Kier's shape indices, etc.). 

(iii) bi, (i = 0,1 . . . . .  M) are the unknown parameters 
of the model. 

(iv) ~ is a normal random variable with mean zero and 
variance cr~.~ which is independent of the com- 
pound under consideration. 

Based on the above definition the mean of P is 
equal to: 

M 

I~(P) = bo + ~ blxi 
i = l  

The model parameters are estimated based on the 
known property values of a set of K compounds. 
These values, denoted by p[*P, k = 1,2, ... ,K, are 
realizations of the random variables, 

M 

P k = b o +  ~ bix,i+~k, k = l , 2  . . . . .  K 
i = l  
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respectively. Using matrix notation, the column vec- 
tor p,Xp is a realization of the random vector Xb + g 
where: 

(i) X is the augmented (K x (M + 1)) data matrix 
(Xki) in which xko = 1 and Xki, i # 0 is the struc- 
tural descriptor i of compound k from the data 
set. 

(ii) b = (bo, bl . . . . .  bM) r 
(iii) g = (el,e2 . . . . .  ~K) r 

The random vector, 

a = (ao, al ,  "" aM) r = (XTX) - xXT(Xb + D 

is an unbiased estimator of the unknown model  para- 
meter vector b. This relation implies that, 

(i) the mean of the random vector a is equal to the 
unknown model  parameter vector b, and 

(ii) the variance-covariance matrix of a is given by: 

[_Cov(ai, a~)] = tr}.~(XrX)-, 

Since p'*P is a realization of the random vector 
Xb + g, an unbiased estimate of the unknown model  
parameter vector b is given by: 

a = (ao, al ,  "" a~)  r = ( x X x ) -  1XTpexp 

Therefore, an unbiased estimate of the mean of 
a property with structural descriptors xi is: 

M 

f~(P) = ao + ~, alxi 
i=1  

The variance of the predicted property value for 
a new compound consists of two terms: 

V. S. RAMAN and C. D. MARANAS 

1. Uncertainty in the estimation of ~P).  This is speci- 
fic to the compound under consideration and is 
quantified by the variance 

M M 

X X s,j,,, 
i = 0  j = 0  

where S O is the (ij)th element of the matrix (XTX)- 1. 
2. Uncertainty due to the random error e, which 

according to the model  is independent of the com- 
pound under consideration. The variance of e is 
O'p2x. 

Therefore, the variance of P is given by: 

M M 

Vat(P) = s~.x + s}.x E ~ Sijx,xl 
i = 0  j = 0  

where 

/EL_  - 

sv'" = ~ /  K -- M - 1 

is an unbiased estimator of ap.x. Note  that the denom- 
inator (K - M - 1) indicates that (M + 1) degrees of 
freedom have been eliminated in estimating the 
(M + 1) parameters of the model. 

7. E x a m p l e s  

The application of the proposed linearization tech- 
niques enabling the incorporat ion of topological 
indices as structural descriptors within an M I L P  
optimization framework is next highlighted with two 
example problems. The first example involves the 
identification of alkane molecules with targeted phys- 
ical property values correlated with Kier's indices. In 
the second example, a search is conducted for an 

Table 3. Abbreviations and units of properties in example 1 

Boiling point Molar volume Molar refractivity Heat of vaporization 

Units °C cma/mol at 20°C cm3/mol at 20°C K J/tool at 25°C 
Abbr. BP MV MR HV 

Critical temperature Critical pressure Surface tension 
Units °C atm dyn/cm at 20°C 
Abbr. TC PC ST 

Table 4. Regression coefficients for property = ao + al(lx) + a2(2K) + aa(3r) in example 1 

Property ao al a2 a3 r s n 

BP - 98.037 24.871 4.65 - 1.596 0.991 4.258 70 
MV 39.982 14.571 -- 0.226 1.242 0.995 1.724 69 
MR 2.379 4.535 -- 0.009 0.091 0.999 0.125 69 
HV 2.683 3.971 1.285 - 0.253 0.996 0.48 69 
TC 41.888 30.98 3,845 -- 3.826 0.976 8.358 70 
PC 43.498 - 1.791 - 0.219 - 0.426 0.947 0.858 70 
ST 9.534 1.417 0.478 - 0.453 0.974 0.447 68 
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Table 5. Target values of properties in example 1 

Target 

BP MV MR HV TC PC ST 
80.0 144.0 34.0 32.0 260.0 30.0 20.0 

agrochemical molecule which maximizes affinity 
while satisfying lower and upper bounds on mobility 
and retention. 

7.1. Design of  alkane molecules with targeted physical 
properties 

This example addresses the design of alkanes 
with customized physical properties. The employed 
topological indices which serve as descriptors in the 
QSPRs are the Kier's shape indices of order one, two 
and three (see Skvortsova et al. (1993)). As mentioned 
earlier Kier's shape indices quantify the shape of 
a molecule by accounting for different degrees and 
location of branching. The seven properties con- 
sidered in this example are boiling point, molar vol- 
ume, molar refraction, heat of vaporization, critical 
temperature, critical pressure and surface tension. The 
data units and abbreviated acronyms for these prop- 
erties (taken from Needham et al. (1988)), are given in 
Table 3. The regression equations of the physical 
properties, correlated with Kier's shape indices of 
order one, two and three, are given in Table 4. The 
target values of the properties are given in Table 5. 
Based on the discussion of Section 3, this example 
corresponds to the optimization problem (I). The 
mathematical formulation is given by: 

Minimize s 

1 > [~ ~taroet't S - - ~ W t - - k "  " / 
subject to 1 (, l = 1,2 . . . . .  7 

s >__ ~ ( p ,  - p~°"~') ) 
where p; = a,0 + all(ix) + a12(2x) + al3(ax), l = 1, 
2, ... ,7 and ato, at1, at2 and at3 are the regression 
coefficients. The equivalent linear representations for 
the Kier's shape indices discussed in subsection 5.2 
and the basic graph relations discussed in Section 4 
complete the formulation. This example is solved us- 
ing the GAMS/CPLEX interface on an IBM 43P-133 
RS6000 workstation with an absolute converge toler- 
ance of 10 -4 . The five structures which most closely 
match the imposed property targets are summarized 
in Tables 6-8. The predicted and experimental prop- 
erty values of the compounds found using the formu- 
lation are given in Table 6. Table 7 shows the values 
of the shape indices of the compounds generated. 
Table 8 summarizes the generated compounds names 
along with the CPU time used. 

From the target property violations of predicted 
and experimental values, listed in Table 8, it is clear 

" 0  

m m m m m  

. ~ - 6 ~  
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Table 7. Shape indices of the five compounds in example 1 

Cmpd. ix 2x 3K 

1 7.000 2.344 2.667 
2 7.000 1.852 2.667 
3 7.000 3.061 2.667 
4 7.000 4.167 6.000 
5 7,000 3.061 6.000 

that the predicted ranking of compounds after ignor- 
ing uncertainty does not perfectly reflect reality. Spe- 
cifically, the compound which is ranked as number 
one is in fact the second best based on the experi- 
mental information. This discrepancy is due to errors 
(uncertainties) in the parameters of the regression 
models. This uncertainty can be quantified using the 
stochastic formulation for problem (I) described in 
Section 6. The deterministic equivalent of the prob- 
lem is solved as an MINLP using GAMS/DICOPT 
on a IBM RS6000 43P-133 machine for different 
values of So. The results are summarized in Table 9. It 
can be seen that as the value of allowable maximum 
scaled deviation so increases, the probability ~ of 
satisfying it becomes larger. Most notably by selecting 
a high enough probability, (i.e., ~ > 0.7) the true 
ranking of the best three solutions, as identified from 
experimental data, is preserved by the stochastic optim- 
ization formulation. This is not the case when uncer- 
tainty is ignored (see Table 8). The trade-off curves 
between probabilities and maximum scaled devi- 
ations are given in Fig. 5. The labels for the curves in 
Fig. 5 refer to the ranking of the compound in the 
deterministic formulation. These trade-off curves give 
a systematic way to choose a molecule based on the 
maximum target violation tolerated and the min- 
imum probability of satisfying it. 

7.2. Substituent selection for optimal fungicidal and 
insecticidal properties of  dialkyldithiolanylidenemalo- 
nates 

This example addresses the optimal substituent se- 
lection for Dialkyl Dithiolanylidenemalonates (DD) 
shown in Fig. 6 which protect rice plants against the 
blast disease. Uchida (1980) quantified the effects of 
DD in terms of the affinity, mobility and retention of 
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Table 9. Probabilities ct and best compounds for different 
scaled property violations So 

so a Compound CPU (sec) 

0.0338 0 .3937 3,3-Dimethyl pentane 57.6 
0.0500 0.6118 2,2,3-Trimethyl butane 232.55 
0.0750 0.8295 2,2,3-Trimethyl butane 218.67 
0.1000 0 .9324 2,2,3-Trimethyl butane 53.97 
0.1250 0 .9776 2,2,3-Trimethyl butane 151.29 
0.1500 0 .9939 2,2,3-Trimethyl butane 152.23 
0.1750 0 .9986 2,2,3-Trimethyl butane 226.39 
0.2000 0 .9997 2,2,3-Trimethyl butane 19.35 

the compound to the plant. Uchida (1980) correlated 
log(VE), log(p) and log[R/(1 - R)] (referred to as affinity, 
mobility and retention) with the hydrophobic para- 
meter log(P). Murray et al. (1975) showed that log(P) is 
correlated linearly with the first-order molecular con- 
nectivity index 1X. In this example the affinity, mobil- 
ity and retention are correlated with the topological 
index 1Z- The regression equations are given in 
Table 10. The 1 x value is computed only for that part 
of the compound which changes (active substituent). 
The objective in the optimization formulation is to 
maximize the affinity subject to lower and upper 
bounds on the values for mobility and retention. This 
corresponds to the optimization formulation (II) of 
Section 3 and is expressed mathematically as: 

max log(Vr) 

subject to m L < log(g) < m v 

log (VE) = 0.5751(1Z) -- 0.2942 

log (p) = -- 0.6983(~)0 + 2.0143 

log (1 _ - ~ R  R ) =  0.787(~Z)-2 

The lower and upper bounds on mobility are 
m z =  - 0 . 3  and m v =  0.3 and those for retention 
r L = - 0 . 3  and r v =  1.0 respectively. This formula- 
tion is solved using the GAMS/CPLEX interface on 

Table 8. Generated structures and CPU times 

Cmpd. no. Cmpd. name CPU (sec) % Maximum target violation of 

Found value Exptl. value 

1 3,3-Dimethyl pentane 
2 2,2,3-Trimethyl butane 
3 2,3-Dimethyl pentane 
4 2-Methyl hexane 
5 2,4-Dimethyl pentane 

78 3.4 7.6 
59 4.4 6.2 
91 7.6 12.2 
95 8.4 12.6 

506 9.0 9.3 
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Fig. 6. Dialkyl dithiolanylidenemalonates. 

a IBM 43P-133 RS6000 workstation with an absolute 
convergence tolerance of 10 -6 . The results are sum- 
marized in Table 11. The experimental data set in 
Uchida (1980) mostly contained compounds for 
which R1 and R2 are the same. However, the solution 
of this formulation generates structures which do not 
always have the same substituents R1 and R2. In fact, 
most of the compounds shown in Table 11 were not in 
the initial data set. This validates the importance of 
molecular design in cases where experimental data are 
scarce. The compounds in this example may not ne- 
cessarily give the predicted activity in practice, but it 
gives a possible direction of substituent selection for 

compound (DD). Since there is uncertainty in the 
parameters of the regression estimates, the second 
best structure, third best structure etc. are also gener- 
ated along with the optimal structure. The uncertain- 
ty in this example is quantified using the stochastic 
formulation of problem (II) discussed in Section 6. 
The analysis for this example is performed as de- 
scribed in (Maranas, 1997a). For  each of the struc- 
tures determined by the deterministic formulation, the 
maximum probability that all properties will satisfy 
their respective bounds is determined by solving the 
deterministic equivalent of the following problem. 

Max fl 

subject to Pr[lj  < P i < ui] > fl 

In this example the properties which should remain 
within bounds are the mobility and the retention. The 
values of fl obtained for the five structures of the 
deterministic formulation are listed in Table 12. Note 
that the probability fl of satisfying the property 
bounds increases as the ranking of the compound 
decreases as observed elsewhere (Maranas, 1997a). 

Table 10. Regression coefficients for property = ao + al(lJ0 in example 2 

Property ao al r s 

affinity: log(Vn) -- 0.2942 0.5751 0.9844 0.1002 
mobility: log(#) 2.0143 - 0.6983 0.9801 0.1376 

retention: log -- 2.0000 0.7870 0.9589 0.2269 
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Table 11. Five structures generated in example 2 

Number Found values of CPU (sec) 

Mobility Affinity Retention 
log (~) log (VE) log ( ~ )  

R1 R2 

1 -0.2957 1.6083 0.6034 209 

2 -0.2691 1.5864 0.5735 212 

3 -0.2068 1.5350 0.5032 244 

4 -0.1685 1.5035 0.4601 193 

5 -0.1653 1.5009 0.4565 281 

methyl 3-methyl-butyl 
methyl 2-pentyl 
ethyl sec-butyl 

methyl iso-pentyl 
ethyl iso-butyl 

n-propyl iso-propyl 

methyl 2-methyl-2-butyl 

iso-propyl iso-propyl 

methyl tert-pentyl 

Table 12. Probabilities fl that property values are within 
bounds for five designs 

Number 15 

1 0.5116 
2 0.5839 
3 0.7395 
4 0.8170 
5 0.8227 

8. Summary and conclusions 

A new methodology was proposed for incorporat- 
ing topological indices as structural descriptors for 
property correlation within an MILP optimization 
framework. The advantage of topological indices is 
that they encode information about molecular inter- 
connectivity yielding, in principle, more accurate 
correlations of properties than simple group contribu- 
tions. Three popular topological indices were con- 
sidered: Randiffs molecular connectivity indices, 
Kier's shape indices and the Wiener index. It was 
shown how to systematically recast the original non- 
linear functional dependence of topological indices on 
the elements of the adjacency matrix with linear rela- 
tions. This enabled the formulation of the problem as 
a Mixed Integer Linear Program (MILP). The pro- 
posed methodology was illustrated with an example 
involving the design of alkanes with target physical 
properties correlated with Kier's shape indices and 
a second example involving optimal substituent selec- 
tion for a compound to obtain desired fungicidal 
properties correlated with the molecular connectivity 
index ~Z. These examples illustrated the ability of the 
method to (i) simultaneously consider multiple target 
properties, (ii) generate not only the optimal structure 
but also the second best structure, third best structure 
etc., and (iii) quantify the effect of property prediction 
uncertainty. 

The employed adjacency matrix description of mo- 
lecular graphs provides a paradigm for the develop- 
ment of structure-property prediction methods 
beyond topological indices to supplement group con- 
tributions. For example, group contribution tech- 
niques provide information only about the number of 
different groups participating in the molecule. Using 
the principles described in this paper the next step of 
generating all structures consistent with the obtained 
group distribution can be accomplished. While in this 
paper heteroatoms and/or multiple bonds are not 
taken into account the extension of the proposed 
approach to account for the presence of multiple 
bonds and heteroatoms is necessary and conceptually 
straightforward. The penalty for the additional 
detail will be increasing the complexity of the 
problems to be solved. So far, no attempt has 
been made to take advantage of the structure of 
the resulting MILP formulations. This will become 
imperative for larger molecular design problems 
especially when process design considerations are 
embedded in the model. Additional issues which 
require further study include the problems of graph 
isomorphism and disconnected graphs which are 
briefly discussed in Appendix A. 
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Appendix A. Graph isomorphism and disconnected 
graphs 

The importance of generating the second, third, etc. 
best structures was mentioned in many places in the 
paper. This is performed by adding constraints refer- 
red to as integer cuts to make the previous solution 
infeasible (Floudas, 1995). However, different labeling 
permutations of the same graph give rise to as many 
as N! vertex adjacency matrices. Two graphs which 
are the same in all respects except for the labeling of 
vertices are called isomorphic graphs. Different label- 
ings of the same graph have different adjacency ma- 
trices. Hence adding integer cuts may give rise to the 
same structure though with a different adjacency 
matrix corresponding to a different labeling of the 
same graph. The problem of graph isomorphism has 
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attracted the attention of both mathematicians and 
chemists. In particular, considerable work has been 
expended into enumerating non-redundant chemical 
structures. The adjacency matrix of two isomorphic 
graphs are related by (Trinajstic, 1992): 

PrA1P = A2 (8) 

where A, and A2 are the adjacency matrices of the 
two isomorphic graphs. P is the N x N permutation 
matrix whose elements are: 

PU 

J ' l  if vertex i in graph 1 is labeled as j in 2 

0 otherwise 

In principle, the generation of isomorphic graphs 
can be avoided by adding constraints of the form: 

N N 

~,, I(PrA1P)o - A,Sl > 1 
i= 1 j = i  

where A1 is the adjacency matrix of the previous 
solution. This constraint must be added for all pos- 
sible permutation matrices which becomes prohibi- 
tively large even for moderate size problems. An 
alternative approach is to number the atoms of a mol- 
ecule in a specific way referred to as canonical index- 
ing. Randi6 (1977) proposed a numbering which gives 
rise to a minimal code of the adjacency matrix. The 
code of an adjacency matrix is found by writing all the 
rows of the adjacency matrix in a single line thus 
giving rise to a single binary number. The minimal 
code is the code with the smallest binary number. For 
example, the binary code of the adjacency matrix: 

( 11 )0 0 
A =  

0 0 

0 0 

is found by arranging the elements of all the rows in 
a single line. 

0111 1000 1000 1000 

Other criteria include the maximal code of the whole 
adjacency matrix and the maximal/minimal code of 
the upper triangular/lower triangular part of the ad- 
jacency matrix (Kvasni6ka and Pospichal, 1990). Gor- 
deeva et al. (1990) used a labeling in which the valency 
of a vertex does not increase as the number of the label 
increases. In this framework considerable improve- 
ment has been obtained in generating non-redundant 
structures by incorporating two properties of the in- 
dexing proposed by Randi6 (1977): 

1. Lower numbering is assigned to vertices with lower 
valencies. 

2. The vertices with the lowest possible label are con- 
nected to vertices with highest possible label. 



Optimization in product design 

These two rules are incorporated in the MILP 
optimization framework in the form of the following 
constraints: 

Vi <_ Vi+l, i = 1,2 . . . . .  N - -  1 

For  vertices with the same valency the following con- 
straints must hold: 

N N 
jaij >_ ~., jati+l)j, i = 1,2 . . . . .  N - 1 

j=l j=l 

This is ensured by introducing a binary variable 
yl and transforming the two constraints as follows: 

Vi "< Vi+l -- (1 - Yi) ] 

Vi > Vi+l - M(1 - Yi) I i= 1,2, ... , N - 1  

~ jaij>--- ~ ja(i+l)j--M(1--yi) 
j=l j=l 

where M is a large positive number. Though this does 
not guarantee that the generation of equivalent struc- 
tures will not happen, the occurrence of these have 
considerably reduced and no longer pose a significant 
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problem in terms of the effort spent in enumerating 
them. 

Another problem which arises in the MILP optim- 
ization framework is the generation of adjacency ma- 
trices which correspond to more than one distinct 
molecules (disconnected graph). Churi and Achenie 
(1996) proposed a straightforward way to avoid the 
occurrence of disconnected graphs. This is done by 
visualizing the construction of a molecule as a step by 
step process and specifying that the latest vertex (i) 
being added is connected to at least one of the already 
existing vertices (1, 2 . . . .  , i - 1). In the context of this 
work, this can be mathematically expressed as: 

i-1 4 t 
j=l k=l i = 2,3, ... ,N v 4 4 
E 6i-k 1~___ E fiik 

k=l k=l 

However, these restrictions on the elements of the 
adjacency matrix are not compatible with the con- 
straints imposed to prevent graph isomorphism. 
Hence they have not been incorporated in the optim- 
ization framework. 


