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PROCESS DESIGN AND CONTROL

A Hierarchical Lagrangean Relaxation Procedure for Solving
Midterm Planning Problems

Anshuman Gupta and Costas D. Maranas*

Department of Chemical Engineering, The Pennsylvania State University,
University Park, Pennsylvania 16802

An efficient decomposition procedure for solving midterm planning problems is developed based
on Lagrangean relaxation. The basic idea of the proposed solution technique is the successive
partitioning of the original problem into smaller, more computationally tractable subproblems
by hierarchical relaxation of key complicating constraints. The systematic identification of these
complicating constraints is accomplished by utilizing linear programming relaxation dual-
multiplier information. This hierarchical Lagrangean relaxation procedure, along with an upper
bound generating heuristic, is incorporated within a subgradient optimization framework. This
solution strategy is found to be much more effective, in terms of both quality of solution and
computational requirements, than commercial mixed-integer linear programming solvers in
bracketing the optimal value, especially for larger problems.

1. Introduction

In today’s ever-changing markets, maintaining an
efficient and flexible supply chain is critical for every
enterprise. In order to retain and strengthen their
competitive edge in the market, organizations need to
coordinate and integrate all their business operations
right from the production stage to the distribution stage.
Systematic planning and scheduling techniques based
on mathematical programming principles have been
developed to address these vital issues of supply-chain
management.

Most of the production planning problems can be
viewed as extensions of the classic economic lot-sizing
problem.1 This problem involves determining the pro-
duction levels of multiple products which have deter-
ministic demands due at the end of a finite number of
planning time periods. A fixed setup cost is incurred
along with a constant unit production cost and an
inventory holding cost in each time period. The key
constraints of the problem are the inventory balance
constraint and the capacity utilization constraint. The
objective of the problem is to satisfy the total demand
at a minimum cost with the available capacity. The
problem described above is more specifically referred to
as the multi-item capacitated lot-sizing problem (MI-
CLSP). The key trade-off involved is between fixed setup
and inventory holding costs as high (low) production
levels lead to low (high) setup costs and high (low)
inventory costs. Balancing these two cost components
is the main objective of the lot-sizing problem. The
computational complexity of this mixed-integer pro-
gramming (MIP) problem has been extensively studied.

The single-item uncapacitated version of the MICLSP
can be efficiently solved with the Wagner-Whitin
dynamic programming algorithm.2 However, the capaci-
tated problem has been shown to be NP-hard even for
the single-item case.3,4 The resource-constrained multi-
item formulation, which describes most practical plan-
ning and scheduling problems, is even harder to solve.
Aside from being NP-hard, it is also computationally
intractable in the sense that it is difficult to obtain
“good”, not necessarily optimal, solutions for large-scale
problems in reasonable computation time. Various solu-
tion techniques have been explored in order to get
optimal or good suboptimal solutions for the somewhat
idealized variations of the lot-sizing problem. These
include cut generation techniques,5,6 variable redefini-
tion,7 Benders decomposition,8,9 cross decomposition,10

Lagrangean relaxation,11-16 and heuristic search tech-
niques.17,18

The planning models available in the process systems
engineering literature can be broadly categorized into
three distinct groups based on the time frames they
address. Long-range planning or capacity expansion
models19-25 are “strategic” planning models which aim
to identify the optimal timing, location, and extent of
additional investments in processing networks over a
relatively long time horizon. Short-term scheduling
models26-33 or “operational” planning models constitute
the other extreme of the spectrum of planning models.
These models are characterized by very short time
periods over which the various manufacturing tasks
have to be fully sequenced. The third class of models,
the midterm planning models,34,35 is intermediate in
nature. These “tactical” planning models, closest in
structure to the MICLSP, incorporate some features
from both the long-term and the short-term models. For
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example, the midterm planning formulation of Mc-
Donald and Karimi,35 which is going to serve as the
benchmark formulation in this work, models the inven-
tory balance much like the short-term scheduling mod-
els. Similarly, contrary to most short-term scheduling
models which deal primarily with a single manufactur-
ing site, the midterm formulation is characterized by
multiple production facilities. This overlap and consoli-
dation of modeling features in the midterm planning
problem make it a challenging problem to solve.

Most of the work in chemical engineering literature
has dealt primarily with either the capacity expansion
problem or the short-term scheduling problem. A num-
ber of specially tailored solution techniques have been
developed for efficiently solving large-scale instances of
these problems. Cutting plane techniques and Benders
decomposition are discussed in Sahinidis et al.19 for the
long-range planning problem. Sahinidis and Gross-
mann22 give a strong reformulation of the capacity
expansion problem which is based on variable disag-
gregation. This results in a large number of additional
variables which are projected out using polyhedral
theory in Liu and Sahinidis.36 Iyer and Grossmann25

developed a bilevel decomposition algorithm which
solves the long-range planning problem in the reduced
space of the binary variables. For short-term scheduling
problems, a number of time-based decomposition ap-
proaches are presented in Bassett et al.37 Schilling and
Pantelides38 described a RTN-type formulation for short-
term scheduling. Lately, Ierapetritou and Floudas39,40

discussed novel mathematical formulations based on a
continuous-time representation for the short-term sched-
uling of batch as well as continuous and semicontinuous
processes. While extensive research work exists for
short-term and long-term planning formulations, very
little attention has been devoted at devising customized
solution procedures for the computationally challenging
midterm planning formulations. In this paper, a decom-
position strategy is explored which successively parti-
tions the original problem into smaller, more tractable
subproblems. This decomposition is driven by a hierar-
chical Lagrangean relaxation-based procedure aimed at
providing tight lower bounds to the original problem.
The information contained in the Lagrangrean relax-
ation solutions provides the basis for generating upper
bounds by a heuristic procedure. This lower and upper
bounding scheme is implemented within an iterative
framework and customized for the efficient solution of
the midterm planning model of McDonald and Karimi.35

This paper is organized as follows: In the next section
the midterm planning formulation of McDonald and
Karimi35 is briefly discussed. Next, a brief introduction
to the Lagrangean relaxation technique is provided
followed by the proposed hierarchical Lagrangean re-
laxation (HLR) procedure. Applications of the proposed
solution algorithm to two example supply chains are
then presented followed by concluding remarks.

2. Midterm Production Planning Problem

The midterm production planning model of McDonald
and Karimi35 is adopted in this work to serve as a
benchmark for the proposed decomposition algorithm.
Nevertheless, the developed procedure can be applied
with only minor modifications to general planning
formulations having the underlying structure of the

MICLSP problem. This formulation,35 which has the
structure of a multi-item, multi-facility capacitated lot-
sizing problem, balances costs incurred in the supply
chain subject to production and supply-chain con-
straints. The production facilities process multiple
products on one or more semicontinuous single-stage
processors. Demands for these products are imposed by
external customers at the end of each time period of the
planning horizon. The optimal operating policy for the
manufacturing facilities is determined so that these
demands can be met effectively. Other activities, such
as inventory management, are also coordinated over the
entire enterprise to keep the total cost at a minimum.
The midterm production planning model provides an
elaborate description of the complex supply chain of
large chemical companies. The formulation is flexible
as additional features such as customer qualification
and transportation time lags can be easily incorporated.
The planning horizon for this model, which is typically
between 1 and 3 years, lies in between the planning
horizons for the long-term planning models (5-10 years)
and the short-term scheduling models (2-6 months).
This is divided into time periods of about 1 month
duration.

The following notation is used in the model formula-
tion:35

Sets

I ) {i} ) set of products
I RM ⊂ I ) {i} ) set of raw materials
I IP ⊂ I ) {i} ) set of intermediate products
I FP ⊂ I ) {i} ) set of finished products
F ) {f} ) set of product families
J ) {j} ) set of machines
S ) {s} ) set of facilities where these machines are located
u ) {t} ) set of time periods
C ) {c} ) set of customers

Parameters

hist ) inventory holding cost for a unit of product i at site
s for the duration of time period t

µic ) revenue per unit of product i ∈ I FP sold to customer
c

pis ) price of raw material i ∈ I RM at site s
úis ) penalty for dipping below safety target of product i

at site s
νijs ) variable cost for producing a unit of product i ∈

I \I RM on processor j at site s
Rijst ) rate of production of product i ∈ I \I RM on processor

j at site s in time period t
âi′is ) yield adjusted amount of raw or intermediate i ∈

I \I FP that must be consumed to produce a unit of i′ ∈
I \I RM at site s

Hjst ) amount of time available for production on processor
j at site s in time period t

MRLfjs ) minimum run length for family f on processor j
at site s

FCfjs ) fixed cost of production for family f on processor j
at site s

τif ) 0-1 parameter indicating whether product i belongs
to family f

dict ) demand for finished product i ∈ I FP at customer c
due at the end of time period t

I ist
L ) safety stock target for product i at site s in time
period t

I is
0 ) inventory of product i at site s at the start of the
planning horizon

tsc/tss′ ) transportation cost to move a unit of product from
site s to site s′ or customer c
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Variables

Pijst ) production amount of i ∈ I \I RM on processor j at
site s in time period t

RLijst ) corresponding run length of product i ∈ I \I RM

on processor j at site s in time period t

FRLfjst ) run length for family f on processor j at site s in
time period t

Cist ) consumption of raw material or intermediate i ∈
I \I FP at site s in time period t

σiss′t ) flow of intermediate product i ∈ I IP from facility s
to s′ in time period t

Sisct ) supply of finished product i ∈ I FP from facility s to
customer c in time period t

Iist ) inventory level for i ∈ I FP at the end of time period
t at site s

I ict
- ) amount of shortage of finished product i ∈ I FP at
customer c in time period t

I ist
∆ ) deviation below safety stock target for product i ∈ I
at site s in time period t

Using the notation listed above, the midterm planning
model of McDonald and Karimi35 is formulated as the
following mixed-integer linear problem:

subject to

The objective function of formulation MP minimizes the
sum of manufacturing and supply-chain costs incurred
in the production-distribution system of a typical
process industry. These costs consist of the raw material
costs, variable and fixed production costs, inventory
holding, transportation, and underproduction charges.
This objective function is minimized subject to the
various constraints defining the system. These con-
straints are briefly discussed below. Equation 1 defines
the production amount in terms of the rate of production
and the campaign run length. The bill of materials
relations are utilized in eq 2 to model the consumption
of intermediate products. Equation 3 eliminates redun-
dant flows in the supply chain by ensuring that products
shipped to a particular site in a given time period are
consumed in the same time period. Equations 4 and 5
provide upper bounds on production and run lengths,
respectively. Equation 6 is the family run length defin-
ing constraint. Equation 7 is the capacity competition
constraint which ensures that the total production time
does not exceed the time available for production.
Equations 8 and 9 are the setup enforcing constraints.
These constraints ensure that a fixed cost is incurred
whenever there is a production run. Equation 10
represents the basic inventory balance at the end of a
time period. Equation 11 indicates the carryover of
customer shortage from one period to the next. Equation
12 safeguards against oversupply. Forcing the inventory
shortfall to the maximum of zero and the deviation
below the safety stock target is achieved by eq 13 in
conjunction with the non-negativity of the inventory
shortfall variable. Equations 14-16 provide upper
bounds for the supply, customer shortage, and inventory
shortfall, respectively.

The planning problem constraints can be divided into
two distinct categories: Manufacturing (or production)
constraints (eqs 1-9) establish the capacity utilization
policy as well as the consumption and production of
products at the manufacturing facilities. The second
group of constraints (eqs 10-16) is denoted as the
supply-chain constraints. These constraints link the

Yfjst ) {1 if family f is processed on machine j
at site s in time period t

0 otherwise

(MP): min z ) ∑
f,j,s,t

FCfjsYfjst + ∑
i,j,s,t

νijsPijst +

∑
i,s,t

pisCist + ∑
i,s,s′,t

tss′σiss′t + ∑
i,s,c,t

tscSisct +

∑
i,s,t

histIist + ∑
i,s,t

úisIist
∆ + ∑

i,c,t
µicIict

-

Pijst ) RijstRLijst ∀ i ∈I \I RM, j, s, t (1)

Cist ) ∑
i′:âi′is*0

âi′is ∑
j

Pi′jst ∀ i ∈I \I FP, s, t (2)

Cist ) ∑
s′

σis′st ∀ i ∈I IP, s, t (3)

Pijst e RijstHjst ∀ i, j, s, t (4)

RLijst e Hjst ∀ i, j, s, t (5)

FRLfjst ) ∑
i∈τif

RLijst ∀ f, j, s, t (6)

∑
f

FRLfjst e Hjst ∀ j, s, t (7)

FRLfjst - HjstYfjst e 0 ∀ f, j, s, t (8)

FRLfjst - MRLfjsYfjst g 0 ∀ f, j, s, t (9)

Iist ) Iis(t-1) + ∑
j

Pijst - ∑
s′

σiss′t - ∑
c

Sisct

∀ i ∈ I \I RM, s, t (10)

Iict
- g Iic(t-1)

- + dict - ∑
s

Sisct ∀ i ∈ I FP, c, t (11)

∑
s,t′et

Sisct′ e ∑
t′et

dict′ ∀ i, c, t (12)

Iist
∆ g Iist

L - Iist ∀ i, s, t (13)

Sisct e ∑
t′et

dict′ ∀ i, s, c, t (14)

Iict
- e ∑

t′et

dict′ ∀ i, s, c, t (15)

Iist
∆ e Iist

L ∀ i, s, t (16)

Pijst, RLijst, FRLfjst, Cist, σiss′t, Iist, Iict
- , Sisct, Iist

∆ g 0

Yfjst ∈ {0, 1}
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supply of products to the customer with the production
site inventory. The idea of distinguishing between
production constraints and supply-chain constraints is
extended to the decision variables. Variables RLijst,
FRLfjst, Pijst, Cist, σiss′t, and Yfjst are referred to as
production variables. They can be construed as decision
variables that determine the production levels at dif-
ferent manufacturing facilities. The remaining vari-
ables, Sisct, Iist, Iist

∆ , and Iict
- , comprise the supply-chain

variables establishing the product supply and inventory
policy. The midterm planning formulation thus tries to
obtain an optimal allocation of an enterprise’s resources
over the production and supply-chain processes.

A simplified pictorial representation of the supply-
chain modeled by formulation MP is shown in Figure
1. The production system shown comprises of two sites
S1 and S2, each having a single processor J1. Products
I1-I7 are produced at these two facilities. Demands for
each of these products may exist for one or more
customers. Products at site S1 have been aggregated into
two product families. Family F1 comprises of products
I1, I2, and I3 while products I4 and I5 constitute family
F2. The concept of a family is employed to lump products
with identical “routes” through the supply-chain net-
work. At the expense of enforcing the same production
schedule for all products belonging to a family, a
significant reduction in the combinatorial alternatives
is achieved.35 Finally, products I3 and I4 serve as
intermediates in site S2 for producing products I6 and
I7.

Formulation MP utilizes the concept of slots for
modeling the planning horizon. The exact sequencing
and timing of processing events is thus not considered.
This implies that run lengths are assumed to be much
smaller than the slot lengths. This prevents the “spill-
over” of a production run from one time period to the
next. This assumption can, however, be relaxed by
introducing additional binary variables into the formu-
lation, as discussed by McDonald and Karimi.35 In the
spirit of the classic MICLSP, the key trade-off involved
in the midterm planning problem is between inventory
holding costs and setup costs.

Problem MP is a difficult problem because of the
presence of binary variables modeling (i) the fixed-
charge cost term incurred for each setup and (ii) the
minimum run length constraint. Both of these modeling
features attempt to restrict the number of setups and
the problem remains difficult after the omission of one
of the two. Direct solution of problem MP using com-
mercial solvers such as OSL or CPLEX first produces
good solutions with relatively small relaxation gaps.
Subsequent iterations, though, fail to substantially
reduce this gap. This result is consistent with the fact

that the underlying structure of formulation MP is the
classic MICLSP, which is NP-hard.3

In the context of this paper, we explored a number of
solution approaches with an emphasis on decomposition
procedures. Benders decomposition,41 which is one of the
standard decomposition techniques, was thoroughly
explored. This technique failed to provide tight lower
bounds for the midterm planning problem even after a
large number of iterations (see examples section). On
the other hand, as will be discussed in the next section,
Lagrangean relaxation involving a judicious selection
of the complicating constraints provides encouraging
results. An attempt to combine Benders decomposition
and Lagrangean relaxation through cross decomposi-
tion42 was unsuccessful because of the low quality of the
Benders cuts. Therefore, a hierarchical decomposition
through Lagrangean relaxation is pursued in this paper,
exploiting both the primal and dual structure of the
underlying MICLSP model.

3. Proposed Solution Procedure

The basic idea of the proposed solution methodology
is to bracket the optimal solution by decomposing the
original problem into a collection of smaller, more
tractable subproblems. A three-stage hierarchical
Lagrangean relaxation scheme drives the decomposition
procedure, providing lower bounds to the original prob-
lem. Upper bounds are obtained by utilizing the infor-
mation obtained from the Lagrangean relaxations. A
key issue which determines the quality of the problem
relaxations is the inherent trade-off between the quality
of lower bounds obtained and the computational effort
involved in solving the relaxed problem. Specifically,
relaxing a large number of constraints may result in
easy to solve subproblems, but the obtained lower bound
will most likely be poor. On the other hand, if only a
few constraints are relaxed, aiming at a tight lower
bound, the resulting subproblems may be intractable.
A hierarchical three-stage decomposition scheme aimed
at setting the optimal trade-off between the degree of
relaxation and solvability is introduced in this paper.
The employed relaxation method (i.e., Lagrangean) is
briefly discussed in the next subsection.

3.1. Overview of Lagrangean Relaxation.
Lagrangean relaxation provides an elegant way for
obtaining lower bounds for certain classes of combina-
torial problems. These problems are characterized by a
set of side (i.e., complicating) constraints whose removal
yields a minimization problem which either is decom-
posable over subsets of variables or has special structure
(e.g., knapsack problem) that can be exploited by
customized algorithms. In Lagrangean relaxation, the
complicating constraints are removed from the con-
straint set and replaced with a penalty term in the
objective function.43-45 Consider the following problem:

The Lagrangean relaxation of P relative to the
complicating constraint Ax e b is defined as

The problem

Figure 1. Simplified supply chain of a typical process industry.

(P): min {cTx|Ax e b, Cx e d, x ∈ X} (17)

LRλ ) min {cTx + λT(Ax - b)|Cx e d, x ∈ X} (18)

LR ) max
λg0

LRλ (19)
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is called the Lagrangean dual relative to constraint Ax
e b, which is referred to as the dualized constraint set,
and λ is the Lagrange multiplier or dual vector. The
dualized constraint set must be appropriately chosen
so that problem LRλ is easy to solve. Note that since λ
g 0 and Ax - b e 0 for every optimal solution x of P we
have

where V(‚) is the optimal solution operator. Further-
more, it can be shown that the Lagrangean dual LR is
equivalent with the original problem after replacing the
noncomplicating constraints with their convex hulls:45

where Co(‚) is the convex hull operator. Therefore,

where V(LP) is the optimal LP relaxation value. In
addition, if the optimal LP relaxation multipliers for the
complicating constraints are used to derive V(LRλ), then
it can be shown that the bound obtained is at least as
good as the LP relaxation bound.

If Co{Cx e d, x ∈ X} ) {Cx e d, x ∈ X}, then V(P) g
V(P*) ) V(LR) ) V(LP). In this case, the Lagrangean
dual bound provides no improvement over the LP
relaxation bound. However, if Co{Cx e d, x ∈ X} ⊂ {Cx
e d, x ∈ X}, then the Lagrangean dual bound is strictly
better than the LP bound. Clearly, complying with the
latter relation determines the selection process of the
complicating constraints. Figure 2 (see Guignard46)
provides a geometric interpretation of Lagrangean
relaxation.

Subgradient optimization is typically employed to
maximize V(LRλ) over λ. This involves searching the
dual variable space starting from the LP relaxation
Lagrange multiplier values using the following updating
procedure:

Here a(l) is a scalar step size, whose value is monotoni-
cally decreasing. Convergence to the optimum is as-
ymptotic. Excellent reviews on Lagrangean relaxation
can be found by Visweswaran47 and Guignard.46

3.2. HLR Procedure. It is evident from the above
discussion that selecting which constraints to dualize
(complicating constraints) is, in general, a nontrivial
task. For example, the inventory balance constraint (eq
10) appears to be an intuitive choice to relax as it is the
only constraint that couples production and supply-
chain variables. The Lagrangean relaxation of the
inventory balance constraint decomposes the original
problem into a production setting subproblem and a
supply-chain management subproblem. However, it is
found that the LR bound obtained in this case never
improves over the LP relaxation bound. This is consis-
tent with the results of Chen and Thizy48 for the
MICLSP model. Therefore, an alternative relaxation
scheme has to be explored to obtain bounds tighter than
the LP relaxation. In the context of the MICLSP
formulation, relaxation of the capacity constraint has
been suggested in the OR literature.49 In fact, Bitran
and Matsuo49 have shown that the gap between the
above-mentioned relaxation and the original problem
decreases as the total number of products increases.
This relaxation decouples formulation MICLSP over
single products, yielding a set of separable single-item
multi-site problems.13,14

3.2.1. Stage 1. The relaxation of the capacity com-
petition constraint in the midterm planning problem MP
(eq 7) defines the first stage of the proposed hierarchical
relaxation procedure. The relaxation of this constraint
set provides the tightest lower bounds, and thus it is
moved at the top of the hierarchical relaxation. The
capacity competition constraint ensures that the run
lengths of all products on a particular machine at a
given site in a given time period do not exceed the total
time available for production. When multipliers λjst are
assigned to each capacity competition constraint and
dualized, the following problem is obtained:

subject to

While for the standard MICLSP model stage 1 relax-
ation completely decouples the original problem into
single-item subproblems, this is not the case for the
more complex MP formulation. In the resulting relax-
ation LRMP of MP, some product linking remains
through the bill of materials (BOM) or material balance
constraint (eq 2) which establishes the mass balances
between raw materials and products. Thus, decomposi-
tion over subgroups of products rather than over single
products is achieved. This is illustrated with the help
of the supply chain shown in Figure 1. If the capacity
competition constraints at both sites S1 and S2 are
relaxed, then the problem decomposes into subproblems
SP1

st)1 and SP2
st)1, as shown in Figure 3. Problem SP1

st)1

involves products I1, I2, I3, and I6 while SP2
st)1 involves

Figure 2. Geometric interpretation of Lagrangean relaxation.

V(LRλ) e V(LR) e V(P)

(P*): min {cTx|Ax e b, Co{Cx e d, x ∈ X}} (20)

V(LP) e V(P*) ) V(LR) e V(P)

V(LRλ) g V(LP)

λ(l+1) ) max {0, λ(l) +
a(l)(UBD - LRλ(l))(Ax - b)

||Ax - b||2 }
(21)

(LRMP): min z ) ∑
f,j,s,t

FCfjsYfjst + ∑
i,j,s,t

νijsPijst +

∑
i,s,t

pisCist + ∑
i,s,t

histIist + ∑
i,s,s′,t

tss′σiss′t + ∑
i,s,c,t

tscSisct +

∑
i,s,t

úisIist
∆ + ∑

i,c,t
µicIict

- + ∑
j,s,t

λjst(∑
f

FRLfjst - Hjst)

constraints 1-6 and 8-16

Pijst, RLijst, FRLfjst, Cist, σiss′t, Sisct, Iist, Iist
∆ , Iict

- g 0

Yfjst ∈ {0, 1}
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products I4, I5, and I7. In general, problem LRMP is
composed of m first-stage separable subproblems, de-
noted as SPm

st)1, over disjoint subsets of products which
are not linked through the BOM constraints. This first
stage of problem decomposition is referred to as hori-
zontal partitioning.

The first-stage subproblems are more tractable than
the original problem, but they are still NP-hard. Bitran
and Yanasse3 have shown that even special cases of
single-item lot-sizing problem solvable in polynomial
time become NP-hard after the introduction of a second
item. This implies that some of the first-stage subprob-
lems may potentially be computationally intractable and
hence would require further decomposition. The work
of Bitran and Yanasse3 suggests that further decompo-
sition over production sites is a promising alternative.
This defines the second stage of relaxation.

3.2.2. Stage 2. Stage 2 relaxation involves relaxation
of the BOM constraints (eq 2) which establish links
between raw materials and products. Conceptually, this
decouples different production sites in the supply chain,
and hence it is referred to as vertical partitioning.
Relaxation of the BOM constraints further decomposes
the first-stage subproblems over production sites. For
example, suppose that subproblem SP1

st)1 (Figure 3) is
intractable. Relaxation of the BOM constraint linking
products I3 and I6 results in two second-stage subprob-
lems, one over site S1 and the other over S2, as shown
in Figure 4. In general, the stage 2 relaxation decom-
poses any intractable stage 1 subproblem SPm

st)1 into n
second-stage subproblems SPm,n

st)2 by relaxing some or
all of the BOM constraints. A site is referred to as either
capacitated or uncapacitated depending on whether an
upper bound Hjst is enforced on the run lengths RLijst.
Computational experience indicates that it is efficient
to keep at least one capacitated site for each second-
stage subproblem, restricting second-stage relaxation
over only capacitated sites. This prevents isolation of

uncapacitated sites, which tend to provide poor lower
bounds. This vertical partitioning of the supply chain
constitutes the second phase of the hierarchical relax-
ation scheme.

A key issue associated with the second-stage relax-
ation is how many and which BOM constraints need to
be relaxed. This is critical as it governs the strength of
lower bounds obtained and the computational tractabil-
ity of the second-stage subproblems. Obviously, the
relaxation of the smallest possible number of BOM
constraints yielding tractable second-stage subproblems
is desired. For example, for three consecutive sites, S1,
S2, and S3, the question is whether it is better to first
decompose between sites S1 and S2 or between sites S2
and S3. To answer this question, a procedure is intro-
duced which uses the information provided by the LP
relaxation Lagrange multipliers associated with the
BOM constraints. This procedure is explained with
respect to a general LP problem.

Consider the following LP in standard form:

Let λ1 and λ2 be the Lagrange (dual) multipliers associ-
ated with the constraints. Relaxation of a particular
constraint, for example, A1x g b1, can be achieved by
simply omitting it from the constraint set. Alternately,
this can also be viewed as decreasing the right-hand side
b1 of the constraint to a sufficiently small value to
ensure that this constraint is redundant. From LP
duality theory it is known that

Thus, for a unit decrease in the value of the constant
term b1, the Lagrange multiplier λ1 equals the corre-
sponding decrease in the objective function. This implies
that a smaller relaxation gap (based on local informa-
tion) will be obtained if the constraint with the smaller
Lagrange multiplier is relaxed. Therefore, if λ1 e λ2,
then the first set of constraints is more likely to provide
a tighter relaxation.

Going back to the original problem, relaxation of only
the constraint with the smallest Lagrange multiplier
associated with the BOM constraints is first employed.
If a single site-to-site disconnection retains some in-
tractable second-stage subproblems, then the BOM
constraint with the second smallest Lagrange multiplier
associated with these subproblems is relaxed. This is
continued until all subproblems are tractable or, oth-
erwise, all capacitated sites have been decoupled. The
intractable stage 2 subproblems, each containing a
single capacitated site, are then subjected to stage 3
relaxation.

3.2.3. Stage 3. The third-stage relaxation addresses
the solution of single-capacitated site problems which
remain intractable with a commercial MILP solver (e.g.,
CPLEX 4.0) within the alloted time (e.g., 10-20 s). The
NP-hard characterization of these subproblems is due
to the presence of the capacity constraint (eq 8).
Relaxation of this constraint yields uncapacitated,

Figure 3. Horizontal partitioning by first-stage relaxation.

Figure 4. Vertical partitioning by second-stage relaxation.

z ) min cTx

A1x g b1 r λ1 g 0

A2x g b2 r λ2 g 0

x g 0

λ1 ) ( ∂z
∂b1

)
b2

and λ2 ) ( ∂z
∂b2

)
b1
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single-product, single-site problems SPm,n
st)3 which can

be solved in polynomial time.3 This defines the third and
last stage in the hierarchy of relaxations because the
resulting subproblems are no longer NP-hard. The LP
relaxation Lagrange multiplier based constraint iden-
tification procedure is employed to decide which capacity
constraints to relax. Unlike stages 1 and 2, which
impose horizontal and vertical cuts on the supply chain,
respectively, stage 3 does not decouple the supply chain
any further but rather changes the processing attributes
of the sites from capacitated to uncapacitated.

Figure 5 summarizes the proposed three-stage HLR
procedure. This procedure progressively partitions the
original problem into smaller subproblems, as shown
in Figure 5. Specifically, the original problem MP is
decomposed into M (m ) 1, ..., M) first-stage subprob-
lems SPm

st)1 by relaxing the capacity competition con-
straints. Some of these subproblems may solve to
optimality in the alloted time. These tractable first-stage
subproblems are those which do not have any successor
nodes in Figure 5. The first-stage subproblems which
do not solve in the specified resource limit are further
decomposed into subproblems SPm,n

st)2 (n ) 1, ..., Nm) by
relaxing the BOM constraints. Relaxation of the capac-
ity constraints is required only for those stage 2
subproblems which fail to solve in the specified compu-
tational time.

The sum of the optimal solutions for the first-stage
subproblems SPm

st)1 (m ) 1, ..., M) provides a valid
bound for the optimal solution of the original problem
MP. This is because the first-stage subproblems are
obtained by relaxing (dualizing) the capacity competi-
tion constraint in the MP formulation, yielding a set of
separable lower bounding problems. If the optimal
solution of one of the first-stage problems is not reached
within the alloted CPU time, then additional Lagrangean
relaxation of the BOM constraints is performed. This
yields a set of second-stage subproblems whose sum of
optimal solutions provides a lower bound to the optimal
solution of the first-stage subproblem that did not solve
to optimality. In general, the sum of the optimal
solutions of the successor nodes (subproblems) of the
partitioning graph shown in Figure 5 provides a lower
bound for the parent subproblem (node) because the
successor subproblems are obtained through Lagrangean
relaxation of one or more constraints of the parent
subproblem. This implies that the sum of the optimal
solutions of the end nodes (nodes with no successors)
in the partitioning graph (see Figure 5) provides a lower

bound to the optimal solution of the root node corre-
sponding to problem MP.

3.3. Upper Bounding Procedure. Any feasible
solution of MP provides an upper bound for the optimal
solution. The lower bounding HLR procedure also
provides information for constructing good upper bounds
for the original problem. The basic idea is to impart part
of the solution structure obtained from the lower bound-
ing problems to the upper bounding problem UBMP.
This is accomplished by postulating as many setups as
possible, implied by the solution of the LRMP problems,
on the MP formulation. Specifically, the original MP
formulation is solved with the additional restriction that
the binary variables which were equal to 1 in the lower
bounding solution are forced to remain equal to 1. The
remaining binary variables are left free. This defines
the UBMP formulation. If UBMP is feasible, then an
upper bound for MP is obtained. Otherwise, UBMP is
infeasible, and some of the prepostulated setups must
be removed to restore feasibility. There exist three
constraint sets that may have been relaxed in the LRMP
problems and thus could render formulation UBMP
infeasible after fixing some of the setups. These are the
capacity competition constraint (eq 7), the BOM con-
straint (eq 2), and the capacity constraint (eq 8). The
BOM constraint defines consumption variables Cist
whose value may change to always restore feasibility.
Also, the capacity constraint is implied by the capacity
competition constraint. This means that the capacity
competition constraint (eq 7) is the only one that could
render formulation UBMP infeasible after prepostulat-
ing some setups.

Forcing a setup binary variable Yfjst to be equal to 1
is equivalent with postulating that the corresponding
run length FRLfjst must be positive and thus greater
than MRLfjs. This means that the capacity competition
constraint ∑fFRLfjst e Hjst will be violated if too many
setups are prepostulated and the maximum available
capacity is exceeded. This implies that some forced
setups have to be eliminated to restore feasibility of the
capacity competition constraints. Forced setups whose
“unfixing” carries the highest chance of restoring fea-
sibility thus need to be identified. The differences

where FRLfjst
LRMP,sol is the solution from the LRMP for-

mulation, measure by how much each run length FRLfjst
may be reduced to restore feasibility of the capacity
competition constraint without violating the minimum
run length bound. Clearly, the run length with the
smallest difference is the one with the least leverage
for restoring feasibility and thus it is the best candidate
to “unfix” in the UBMP formulation. This calls for an
iterative procedure where additional setups are unfixed
until feasibility is restored for UBMP. It is straightfor-
ward to show that only a finite number of them is
needed to guarantee feasibility. In practice, only a few
are needed. This iterative upper bounding procedure is
summarized as follows:

Step 1: Set Yfjst ) 1 for the UBMP model if Yfjst is
equal to 1 in the optimal solution of the LRMP model.

Step 2: Solve UBMP. If it is feasible, terminate.
Otherwise, continue with step 3.

Step 3: Identify f which minimizes

Figure 5. Decomposition structure obtained by the three-stage
HLR procedure.

FRLfjst
LRMP,sol - MRLfjs

FRLfjst
LRMP,sol - MRLfjs
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Free corresponding Yfjst variable in formulation UBMP.
Exclude current f from subsequent consideration. Go to
Step 2.

3.4. Algorithmic Procedure. The algorithmic steps
of the HLR procedure incorporating the hierarchical
constraint relaxation scheme and the heuristic upper
bound generation are as follows:

Step 1: Lagrange multiplier initialization.
Solve LP relaxation of MP.
Set Lagrange multipliers of capacity competition
constraints to the optimal LP relaxation values.

Step 2: Lower bound generation.
Relax capacity competition constraints.
Decompose LRMP into M stage 1 subproblems SPm

st)1

(m ) 1, ..., M).
For m ) 1-M, do

Solve SPm
st)1.

If (SPm
st)1 solves to optimality in the specified

computational time)
then

SP1m
/ r optimal value

else
Solve LP relaxation of SPm

st)1.
Identify BOM constraints to be relaxed using LP
Lagrange multiplier information.
Relax appropriate BOM constraints.
Decompose resulting problem into Nm stage 2
subproblems SPm,n

st)2 (n ) 1, ..., Nm).
For n ) 1-Nm, do

Solve SPm,n
st)2.

If (SPm,n
st)2 solves to optimality in the specified

computational time)
then

SP2m,n
/ r optimal value

else
Solve LP relaxation of SPm,n

st)2.
Identify capacity constraints to be relaxed
using LP Lagrange multiplier information.
Relax appropriate capacity constraints to get
problem SPm,n

st)3.
Solve SPm,n

st)3.
Set SP3m,n

/ r optimal value
SP2m,n

/ r SP3m,n
/

end loop over n.
SP1m

/ r ∑n)1
Nm SP2m,n

/

end loop over m.
LBD r ∑m)1

M SP1m
/

Step 3: Employ upper bounding procedure for generat-
ing upper bound (UBD).
Step 4: Update Lagrange multipliers.

If (subgradient updating ceases to provide improve-
ment)
then

end.
Step 5: Convergence check.

If (UBD - LBD e ε)
then

end.
else

go to step 2.

4. Example 1

The first example is a midterm planning problem
posed by McDonald and Karimi.35 It involves a total of

34 products (I1-I34) produced on two consecutive manu-
facturing sites involving single processors (Figure 6) and
shipped to a single customer. The first facility (S1) is
capacitated, and it manufactures 23 products which are
grouped into 11 product families. Some of these products
are used as intermediates for producing the remaining
11 products in the second uncapacitated production site
(S2). The planning horizon consists of 12 time periods
of 1 month duration with demands due for a single
customer at the end of each period. The details of the
supply chain and the cost parameter values can be found
in McDonald and Karimi.35 This problem was solved
using OSL accessed via GAMS.50 The minimum total
cost found is $13 454. The LP relaxation involves a value
of $13 203, and the relative gap between the best integer
solution and the tightest lower bound is 1.6% after 100
CPU s. Interestingly, CPLEX 4.0 is much less effective,
taking 1000 s to reduce the relative gap to 3.2%. As
mentioned earlier, the application of Benders decom-
position on this problem does not improve on the
performance of commercial MILP solvers. After the
binary setup variables (Yfjst) are chosen as the compli-
cating variables, upper and lower bounds of $18 054 and
$13 203, respectively, are obtained in 30 iterations of
the Benders decomposition procedure. The poor quality
of these bounds can be attributed, as in most applica-
tions of Benders decomposition, to the low quality of the
Benders cuts added to the master problem. Because an
exponential number of such cuts is needed to generate
the exact master, even after a large number of itera-
tions, the lower bound fails to move above the LP
relaxation value of $13 203. Variations on the standard
Benders decomposition, involving suboptimal solution
of the master problem and different choices of compli-
cating variables, fail to provide better bounds.

Next, the same problem instance is solved using the
proposed HLR procedure. All computations are carried
out using CPLEX 4.0 interfaced through GAMS. The
reported CPU times are in seconds on an IBM RS6000-
397. Stage 1 of the hierarchical relaxation results in 11
disjoint first-stage subproblems, one for each product
family of site S1 and subsequent final product manu-
factured in site S2 (see Figure 6). A CPU limit of 10 s is
set for the solution of each subproblem. All stage 1
subproblems are solved to optimality in the specified

Figure 6. Serial product structure of example 1.
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resource limit. This obviates the need for stage 2 or 3
problem relaxation. The first iteration of the solution
algorithm yields a lower bound of $13 381. The optimal
production plan (Yfjst, FRLfjst) obtained for the first-stage
subproblems is feasible for the original problem; thus,
only a single pass of the upper bounding procedure is
needed to generate the upper bound of $13 566. A total
of 9 CPU s is needed to solve all 11 first-stage subprob-
lems and the upper bounding problem. These bounds
represent a relative gap of 1.4%, which is comparable
to the 1.6% gap established in 100 CPU s by McDonald
and Karimi.35 Subsequent subgradient optimization
iterations produce appreciable improvement in the
bounds. These improvements cease after 17 iterations,
yielding a lower bound of $13 405 and a best upper
bound of $13 449 (relative gap is 0.3%) utilizing a total
CPU time of 109 s. Note that this upper bound happens
to be slightly better than the one found by McDonald
and Karimi.35

Next, a variation of the previous example is consid-
ered to evaluate whether the performance of the HLR
procedure depends on the product family aggregation
assumption. Specifically, the aggregation of products
into families in site S1 is removed. This increases the
number of possible setups and corresponding binary
variables. The minimum run length and fixed cost for
each individual product are calculated by dividing the
values of these parameters (as given in McDonald and
Karimi35 for product families) by the number of products
forming that family. For example, the first family is
comprised of I1, I2, and I3 with a minimum run length
of 22 h and a fixed charge of $4.4. The new minimum
run lengths and fixed charges for products I1, I2, and I3
are thus 22/3 h and $4.4/3, respectively. This results in
an increase in the number of stage 1 problems from 11
(with product family assumption) to 23 (without product
family assumption).

This problem is first solved directly using CPLEX 4.0.
The total cost of the plan obtained after 1000 CPU s is
$14 059. The relaxed MIP has a value of $13 168. The
gap between the integer solution and the best lower
bound ($13 188) obtained after 1000 CPU s is 6.6%.
Similar results are obtained with OSL. Clearly, the
computational performance of the MILP solvers dete-
riorates significantly after removing the product family
assumption. The first iteration of the HLR procedure
yields a lower bound of $13 389 and an upper bound of
$13 718 in 8 CPU s. The relative gap between these
bounds after a single iteration is 2.4%, which is superior
to the one obtained using MILP solvers directly and
expending significant computational resources. After
eight iterations of the HLR procedure and 40 s of CPU
time, the relative gap is reduced to 0.5%. The best lower
and upper bounds obtained are $13 389 and $13 458,
respectively. Note that further subgradient optimization
iterations do not provide any additional improvements
on the relative gap. These results indicate that the HLR
procedure is relatively insensitive to the total number
of products (for the same supply chain) unlike the direct
application of MILP solvers. This observation is consis-
tent with the theoretical analysis of Bitran and Mat-
suo,49 who have shown that (for capacity competition
constraint relaxation) the relative gap becomes smaller
as the total number of products increases. The next
larger example expands on the first example requiring
second- and third-stage relaxations.

5. Example 2

The second example evaluates the effectiveness of the
HLR procedure after augmenting the supply chain with
a third site and an extra processor per site. It involves
a total of 40 products (I1-I40), as shown in Figure 7.
There are three production sites (S1, S2, and S3) of which
two are capacitated (S1 and S2) while the third (S3) has
unlimited capacity. There are two processors (J1 and J2)
at each production site. The production structure of
example 1 was serial because only one intermediate
product was used to produce the final product at site
S2. However, the supply chain of example 2 involves an
assembly production structure because more than one
intermediate product is required for the production of
products I35-I40.

This midterm planning problem is first solved directly
with CPLEX 4.0. The LP relaxation has an objective
function value of $19 409. After 1000 CPU s of compu-
tational time, the integer solution obtained is $23 883.
The gap between this solution and the best lower bound
($19 448) is 23%. The HLR procedure generates a
hierarchy of subproblems, as shown in Figure 8. The
first-stage relaxation involves six subproblems with
disjoint subsets of products obtained after the relaxation
of the capacity competition constraints. For example,
subproblem SP1

st)1 involves product families F1 and F2
at site S1, I24 and I25 at site S2, and I35 at site S3. The

Figure 7. Assembly product structure of example 2.

Figure 8. Tractable subproblem decomposition for example 2.
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presence of an assembly production structure results in
linking more than one families of products per site
through the BOM constraints. Out of the six stage 1
subproblems, two (SP5

st)1 and SP6
st)1) solve to optimal-

ity in the specified resource limit of 25 CPU s. The
remaining subproblems require further relaxation. On
the basis of the values of the LP relaxation Lagrange
multiplier, the second-stage subproblems are generated.
This results in the decomposition of each of these
subproblems into three stage 2 subproblems, one for
each product family at site S1 and a third for the
products produced at sites S2 and S3. This partitioning
decouples the two capacitated sites S1 and S2. All
second-stage subproblems, except for one (i.e., SP2,3

st)2),
solved within the alloted CPU time of 25 s. This
subproblem required relaxation of some of the capacity
constraints, yielding subproblem SP2,3

st)3. After eight
iterations of the HLR procedure, lower and upper
bounds of $19 490 and $21 310, respectively, are ob-
tained. The gap between these bounds is 9.3%, and they
are obtained in 376 CPU s.

6. Summary and Conclusions

In this paper, an efficient solution procedure based
on Lagrangean relaxation was proposed for midterm
planning problems in the process industry. The model
formulation of McDonald and Karimi35 was used as a
benchmark problem for evaluating the effectiveness of
the developed technique. The solution strategy consisted
of bracketing the optimal solution of the original prob-
lem by decomposing it into smaller, more tractable
subproblems. The lower bound was obtained by exploit-
ing the dual structure of the model through hierarchical
Lagrangean relaxation of complicating constraints.
These complicating constraints were identified by a
systematic procedure utilizing LP relaxation dual vari-
able information. Horizontal and vertical partitioning
of the supply chain was achieved by the proposed three-
stage HLR procedure, resulting in a sequence of smaller,
more tractable lower bound generating subproblems.
The upper bound for the problem was generated by
constructing a feasible solution through a heuristic
procedure. This involved imparting part of the lower
bounding solution information to the original problem.
These lower and upper bound generation techniques
were incorporated within a subgradient optimization
procedure.

Computational results demonstrated that the pro-
posed solution methodology was effective in bracketing
the optimal value of the problem requiring relatively
small computational time. Medium- to large-scale in-
stances of the midterm planning problem, involving 30-
40 products, were solved efficiently by the decomposition
technique. The first example was taken from the work
of McDonald and Karimi.35 At least an order of magni-
tude improvement in the computational requirements
was obtained over the direct application of MILP
solvers. The effect of relaxing the product family as-
sumption was then studied under the proposed solution
framework. The relative advantage of the proposed
technique over direct solution using branch and bound
was found to be enhanced under such circumstances in
accordance with previously reported results in litera-
ture. Therefore, the hierarchical decomposition tech-
nique is expected to yield better results for large-scale
real-life problems involving a large number of products

and setup variables. The applicability of the proposed
solution technique under a more complex, assembly-type
product structure was investigated in example 2. The
new product structure was found to considerably reduce
the solvability of the original problem using commercial
solvers. This change was reflected in the proposed
solution procedure in the form of larger stage 1 sub-
problems. Restoration of computational tractability,
hence, required stages 2 and 3 of the HLR procedure.

It is important to note that while the HLR procedure
typically provides good lower and upper bounds it has
no mathematical guarantee of converging to the globally
optimum solution. To this end, incorporation of the HLR
procedure within a cutting plane or branch and bound
framework is under investigation. Furthermore, the
quantitative treatment of demand uncertainty is also
being explored.
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