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Abstract 

This paper utilizes the framework of midterm, multisite supply chain planning under demand uncertainty 

(Gupta and Maranas, 2000) to safeguard against inventory depletion at the production sites and excessive 

shortage at the customer. A chance constraint programming approach in conjunction with a two-stage 

stochastic programming methodology is utilized for capturing the trade-off between customer demand 

satisfaction (CDS) and production costs. In the proposed model, the production decisions are made before 

demand realization while the supply chain decisions are delayed. The challenge associated with obtaining 

the second stage recourse function is resolved by first obtaining a closed-form solution of the inner 

optimization problem using linear programming duality followed by expectation evaluation by analytical 

integration. In addition, analytical expressions for the mean and standard deviation of the inventory are 

derived and used for setting the appropriate CDS level in the supply chain. A three-site example supply 

chain is studied within the proposed framework for providing quantitative guidelines for setting customer 

satisfaction levels and uncovering effective inventory management options. Results indicate that 

significant improvement in guaranteed service levels can be obtained for a small increase in the total cost. 
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Introduction 

Product demand variability can be identified as one of the key sources of uncertainty in any supply chain. 

Failure to account for significant product demand fluctuations in the medium term (1-2 years) by 

deterministic planning models may either lead to excessively high production costs (translating to high 

inventory charges) or unsatisfied customer demand and loss of market share. Recognition of this fact has 

motivated significant work aimed at studying process planning and scheduling under demand uncertainty. 

Specifically, most of the research on this problem has largely focussed on short term scheduling of batch 

plants (Shah and Pantelides, 1992; Ierapetritou and Pistikopoulos, 1996; Petkov and Maranas, 1998) and 

long term capacity planning of chemical processes (Clay and Grossmann, 1994; Liu and Sahinidis, 1996). 

Some of the important features that have not been considered in great detail include (semi)continuous 

processes, multisite supply chains and midterm planning time frames. In view of this, incorporation of 

demand uncertainty in midterm planning of multisite supply chains having (semi)continuous processing 

attributes is discussed in Gupta and Maranas (2000) through a two-stage stochastic programming 

framework. In this paper, the trade-off involved between inventory depletion and production costs in the 

face of uncertainty is captured in a probabilistic framework through chance-constraints. A customized 

solution technique, aimed at reducing the computational expense typically associated with stochastic 

optimization problems, is developed. The basic idea of the proposed methodology consists of translating 

the stochastic attributes of the problem into an equivalent deterministic form which can be handled 

efficiently. 

 

The rest of the paper is organized as follows. In the next section, the two-stage stochastic model, which is 

based on the deterministic midterm planning model of McDonald and Karimi (1997), is presented. Next, 

the key elements of the proposed solution methodology are discussed briefly. The details of the analysis 

can be found in Gupta and Maranas (2000). The main part of the paper proposes a chance-constraint 

based approach for capturing the trade-off between customer shortage and production costs. The other 

critical issue of excessive inventory depletion is then addressed within the proposed framework by 

obtaining analytical expressions for the mean and standard deviation of the inventory. These are utilized 

for setting the appropriate service level in the supply chain. Computational results for an example supply 

chain are presented followed by concluding comments. 

Two-Stage Model 

The slot-type economic lot sizing model of McDonald and Karimi (1997) is adopted as the benchmark 

formulation for this work. The variables of this model can be partitioned into two categories (Gupta and 

Maranas, 2000) based on whether the corresponding tasks need to be carried out before or after demand 

realization. The production variables model activities such as raw material consumption, capacity 

utilization and final product production. Due to the significant lead times associated with these tasks, they 

are modeled as “here-and-now” decisions which need to be taken prior to demand realization. Post 
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production activities such as inventory management and supply of finished product to customer, on the 

other hand, can be performed much faster. Consequently, these constitute the supply-chain variables 

which can be fine-tuned in a “wait-and-see” setting after realization of the actual demand. This 

classification of variables naturally extends to the constraints of the problem (Gupta and Maranas, 2000) 

and results in the following two-stage formulation. 
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In the above formulation, the various indices are as follows: i(products), f (product families), j (processing 

equipment) and s (production sites). The various cost parameters are FCfs  (setup cost), νijs (variable 

production cost), pis (raw material cost), tiss′ (intersite transportation cost), tis (customer-site transportation 

cost), his (inventory holding cost), ζis (safety stock violation penalty) and µi (lost revenue cost). MRLfjs is 

the minimum runlength, Hfjs is the total available processing time while Rijs is the rate of production and 

βi′is is the material balance coefficient. Other parameters are I0
is (initial inventory), IL

is (safety stock level) 

and θi (uncertain demand). 

 

The objective function of the above formulation is composed of two terms. The first term, subject to the 

outer optimization problem constraints, accounts for the costs incurred in the production stage. Production 

stage variables include Ais (availability), Pijs (production amount), RLijs (runlength), Cis (raw material 

consumption), Wis’s (intersite shipment) and Yfjs (setup). The second term Q is obtained by applying the 
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expectation operator to the optimal value of an embedded optimization problem. The constraints of this 

inner recourse problem are the supply chain constraints and the inner stage variables, Sis (supply), Iis 

(inventory), Iis
∆ (safety stock deficit) and Iis

- (customer shortage), are the supply chain variables. The 

interaction between the outer (production) and inner (supply chain) problems takes place through the 

inventory balance constraint which forces the inventory to be equal to the difference between the amount 

available for supply (Ais) and the actual supply to the customer (Sis). The basic idea of the proposed 

methodology consists of obtaining a closed-form analytical expression for Q (the recourse function) in 

terms of the first stage production variables (specifically Ais). This is achieved by first explicitly solving 

the inner recourse problem followed by analytical expectation evaluation (Gupta and Maranas, 2000). 

 

Optimal Supply Policies 

The inner supply chain planning problem is solved analytically using linear programming (LP) duality 

(Gupta and Maranas, 2000). In particular, the key principle utilized is the strong LP duality theorem. To 

aid the developments, some additional notation is introduced. The production sites are classified as either 

internally sufficient (IS) or internally deficient (ID) as 

{ } { }0ID  and  0IS ≤−∈=≥−∈= L
isis

L
isis IASsIASs  

Thus, at the ID sites, safety stock violation cannot be avoided as the amount available for supply is not 

adequate to meet the safety stock requirement. Two additional cost parameters, the over-safety stock 

supply cost (γis) and the under-safety stock supply cost (ωis), are introduced. These are given by 

isisisisisisis htht ζωγ +−=−=  and  

These represent per unit costs of shipping a product from above (γis) or below (ωis) the safety stock level. 

Ranking of the IS and/or ID sites on the basis of these cost parameters forms the key principle of the 

proposed methodology. By exploiting the network representation of the inner supply chain planning 

problem, three distinct demand regimes are uncovered in the optimal solution. These are referred to as 

regimes of low, intermediate and high demand realizations. A summary of the supply policies for these 

demand regimes is provided below. 

Low Demand Regime 

In this demand regime, the safety stock violation penalty is restricted to the ID sites by directing all 

customer product supply from the IS sites. Ranking of the IS sites in increasing order of over-safety stock 

supply cost (γis) represents the optimal sequence in which the sites service the customer. Therefore, for an 
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Note that given the optimal supply policies, the optimal values for the remaining supply chain variables 

can be calculated (for any demand regime) as: 
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No safety stock violations occur at any of the IS sites and no sales are lost in this demand regime. The 

transition to the intermediate demand regime occurs at a demand realization given 
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Intermediate Demand Regime 

In the intermediate demand regime, the entire customer demand is met only at the expense of incurring 

safety stock violation penalties at some or all of the production sites. Consequently, all sites are ranked in 

increasing order of under-safety stock supply cost (ωis) irrespective of their type (i.e., IS or ID). This 

establishes the order in which demand is allocated to the production sites in the intermediate demand 
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As in the low demand regime, no shortfall occurs at the customer. Transition to the high demand regime 

occurs at the demand realization given by ∑=Θ →
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High Demand Regime 

In this demand regime, due to high levels of customer demand, the entire amount available for supply is 

shipped to the customer following the “customer priority” paradigm (Gupta and Maranas, 2000). 

Therefore, for ∑≥
s

isi Aθ the optimal supply policies are given by 

sAS isis ∀=  

Inventories at all the sites are completely depleted resulting in maximum safety stock violation charges. 

The high demand regime is unique in the sense that it is the only regime in which unsatisfied demand 

occurs at the customer and the inventory at all the sites is zero.  

After solving the inner problem explicitly, the recourse function Q is calculated by integrating the optimal 

objective value over all possible demand realizations. This undertaking translates into the calculation of 

three conditional probability integrals, one for each of the three demand regimes. Consequently, by 

invoking the normality assumption for the product demands followed by analytical integration, the 

following form for the recourse function is obtained (for details see Gupta and Maranas, 2000). 

( ) ( )[ ]∑ ∑ +Φ+=
si si

isisisiisisis KfKKbKaQ
, ,

σ  

where ais, bis are constants which are functions of the second stage cost parameters, σi is the standard 

deviation of the demand, f( ) and Φ( ) are the normal density and cumulative distribution functions 

respectively and  
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with θ i
m as the mean demand. 

Customer Demand Satisfaction 

Missed sales in the high demand regime are unacceptable from a customer relationship perspective given 

the constant shifting of customer loyalties in today’s highly competitive business environment. Therefore, 

to safeguard against this scenario in a probabilistic framework, the following chance constraint is 

introduced. 
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where α is the target customer demand satisfaction (CDS) level. This constraint ensures that the 

probability of operating the supply chain in the high demand regime is less than (1-α). By changing the 

value of α, optimal trade-off curves can be constructed between total cost and frequency of missed 

customer demand. The deterministic equivalent form for the chance constraint is obtained as 

( )ασθ 1−Φ+≥∑ i
m
i

s
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where Φ-1( ) is the inverse normal cumulative distribution function. The stochastic attributes of the 

original problem are thus transformed into (exact) equivalent deterministic form resulting in a convex 

nonlinear mixed integer programming problem (Gupta and Maranas, 2000). 

Inventory Control 

In addition to lost sales, the high demand regime is also characterized by depletion of inventory in the 

entire supply chain for a particular product. This could pose significant operational challenges. Even 

though the chance constraint introduced to limit customer shortage favorably affects the inventory 

profiles in the supply chain by increasing the amount available for supply, the problem of inventory 

depletion at a production site is not completely resolved. Excessively low inventory levels at individual 

sites might still occur as the chance constraint only relates the aggregate amount available in the supply 

chain to the CDS level. Consequently, a more robust operation of the supply chain from an inventory 

management perspective can be achieved by studying the variation of the probability distribution and the 

corresponding mean and standard deviation of the inventory level with changing CDS targets. For this 

undertaking, analytical expressions relating the expected level and standard deviation of the inventory to 

the amount available for supply at each production site are developed. By applying the expectation 

operator to the inventory balance constraint, the average inventory can be related to the expected supply 

as 

[ ] [ ]isisis SEAIE
ii θθ −=  
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and rs
L and rs

I are the ranks of site s in the low and intermediate demand regimes respectively. An 

interesting observation can be made based on the expression for the mean inventory. Convexity of the 

( ) ( )KfKK +Φ  terms implies that the mean inventory is the sum of convex (first two) and concave (last 

two) terms. In the light of this observation, oscillations in the expected inventory level due to the change 

in relative magnitudes of these two components, might be expected. This trend is actually observed in the 

supply chain example studied later in the paper. 

 

In addition to the expected inventory, the standard deviation of the inventory distribution can also be 

calculated within the analytical framework. By squaring the inventory balance constraint followed by 

conditional expectation evaluation, the following expression for the inventory standard deviation is 

obtained. 
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The above result is based on the following conditional expectation results. 
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where z follows a standard normal distribution N(0,1). By studying the variation in the mean and standard 

deviation of inventory levels at the various production sites with changing CDS levels, the choice of the 

appropriate service level can be further refined to account for inventory depletion. 
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Example 

The proposed methodology is highlighted through a three-site example supply chain illustrated in Figure 

1. A total of 10 products, grouped into 5 product families, are manufactured at these facilities, which are 

characterized by different processing and cost attributes. Each site has single processing equipment 

dedicated for each product family and the products within the family compete for the limited capacity of 

this equipment. Setup charges are incurred for each production campaign and product demand exists at a 

single customer. The data for the example is given in Tables 1 through 3. 

 

First, the deterministic midterm planning problem is solved. This yields an optimal solution of 4,165. 

Subsequently, the deterministic equivalent problem under uncertainty is solved without enforcing the 

chance constraints. Solution of this convex MINLP using DICOPT accessed via GAMS, results in an 

optimal expected cost of 4,726 obtained in 43 CPU seconds. The model consists of 301 constraints, 286 

continuous variables and 75 discrete variables and is solved to optimality in 9 iterations. The difference 

between the deterministic and stochastic solutions quantifies the impact of uncertainty in the supply 

chain. The values obtained are verified, at considerably higher computational expense, by solving the 

same problem instance with Monte Carlo (MC) sampling. Comparison of computational requirements 

(2038 CPU seconds for MC with 500 sampled scenarios as compared to 43 CPU seconds) highlights the 

efficiency of the proposed methodology.  

 

Customer Demand Satisfaction 

Given this “base” production setting for the supply chain, the “base” CDS level is calculated for each 

product (Figure 2). This represents the probability that the demand realized for a particular product lies 

either in the low or the intermediate demand regime. Equivalently, it is the probability that no customer 

orders are lost. As the figure indicates, CDS levels ranging from 70% to 80% are achieved with the base 

production plan. Next, the chance constraint is introduced into the problem and the problem is solved for 

varying CDS target levels. The optimal total costs thus incurred are shown in Figure 3. As illustrated in 

the figure, the total cost increases relatively linearly with the CDS level. This initial linear relation, 

however, changes to an exponential one at CDS levels ranging from 90-97%. This implies that at the 

expense of modest cost increase, the customer demand satisfaction can be improved to about 90-97%. 

Also, the continuously increasing slope of the curve implies that the cost incurred per unit change in CDS 

level increases with the CDS level. This is expected in the light of the classic law of diminishing returns. 

 

To gain further insight into the operation of the supply chain with respect to varying levels of CDS, the 

total cost incurred is analyzed in terms of its deterministic (first stage production costs) and stochastic 

(second stage supply costs) components. The resulting trade-off curve obtained is shown in Figure 4. As 

the CDS target level is increased, the expected supply chain costs decrease as the largest component of 

this cost, the lost revenue, is reduced. The production costs, on the other hand, increase primarily because 
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of the additional setups required for increasing the amount available for supply. For a unit increase in the 

production costs, the reduction in the supply chain costs is approximately 60%. This is in agreement with 

the observation that the total cost increases with increasing CDS level (Figure 3). The difference between 

the additional production costs and the resulting supply chain savings can be viewed as the cost incurred 

for making the supply chain more robust and reliable from a customer service viewpoint. As shown in 

Figure 4, the expected supply chain savings level off in the range of 95-97% CDS level, which is 

approximately the level at which the total cost starts increasing exponentially (Figure 3).  

 

Inventory Control 

Having addressed customer shortage management through the chance constraint, the issue of inventory 

control in the supply chain is considered. The variations of the probability distributions, corresponding 

expected values and standard deviations of the inventory of product 1, with changing CDS levels are 

shown in Figure 5 through Figure 7. At site 1, the probability of having the inventory at the safety stock 

level of 10 units is relatively high even for low CDS levels (Figure 5(a)). This probability increases with 

increasing CDS level as more product is made available for supply. The expected inventory 

correspondingly increases with the CDS level while the standard deviation decreases as shown in Figure 

5(b). Thus, with respect to inventory management considerations at site 1, a high CDS level would be 

preferred as this would translate into high levels of inventory with lower variability. The inventory 

distribution at site 2 is considerably more depleted than in site 1 (Figure 6(a)) as the probability of having 

low inventory is relatively high even at high CDS levels. For instance, there is approximately 50% 

probability of completely depleting inventory at a CDS level as high as 99%. However, the expected 

inventory profile at site 2 in Figure 6(b) indicates average inventory levels in the range of 6-7 units 

between CDS levels of 70-80%. These values are misleading when viewed in light of the actual 

probability distribution of the inventory. They can be attributed to extremely high inventory levels (30-40 

units) existing at very low probability levels (0.05-0.1) at site 2. This is also reflected in the high standard 

deviation (8-9 units) of the inventory level in this CDS level range. Almost complete inventory depletion 

is predicted at site 2 in CDS levels ranging from 80-90%. This trend is followed by significant cyclical 

variations in expected inventory with increasing CDS level coupled with correlated variations in the 

corresponding standard deviation. These oscillations can be attributed to the changing relative magnitudes 

of the convex and concave terms in the expression for the expected inventory. At site 3, complete 

inventory depletion can be predicted with 100% probability for CDS levels ranging from 70% to 80% as 

shown in Figure 7(a). This observation is also supported by the expected inventory profile in Figure 7(b). 

Average inventory of 8-9 units with a corresponding standard deviation of 8-9 units is expected to occur 

between 80-90% CDS level. The high standard deviation is also indicated by the probability distribution 

in this range of CDS values as most of the inventory levels that can occur are approximately equally 

likely. Cyclical changes similar to site 2 are also observed at site 3 at higher CDS levels.  
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Using these inventory profiles for the three sites, the choice of the “optimal” CDS level at which the 

supply chain should operate can be determined. The CDS level range of 90-97% as determined by the 

service level considerations can be further refined to effectively account for inventory control issues. 

Based on the results indicated in Figures 5 through 7, an appealing CDS level to operate the supply chain 

at is 97%. The expected inventories at sites 1, 2 and 3 at this CDS level are approximately 9 units, 6 units 

and 13 units respectively. The corresponding supply chain and production costs are 2,041 and 3,011 

respectively (5,052 total cost). Therefore, an improvement of 17% in the CDS level is achieved over the 

base setting at the expense of 7% additional cost. 

Hedging Inventory Risk 

An interesting observation that can be made by comparing the inventory profiles at site 2 (Figure 6(b)) 

and site 3 (Figure 7(b)) is that the inventory variations are complementary at the two sites. Low expected 

inventory at one site corresponds to high levels at the other. This trend is also incorporated in the cyclical 

fluctuations in the high CDS range where the oscillations at the two sites are “out-of-phase’’. Similar 

trends are also seen for the standard deviation of the inventory. This observation can be potentially 

utilized for modifying the risk profile of the inventory in the supply chain. By considering the option of 

integrating the manufacturing capacity of product 1 at sites 2 and 3, the inventory risk as characterized by 

the standard deviation can be effectively “squeezed’’ out from the system. The corresponding hedged 

position is shown in Figure 8. Smoother inventory profiles in conjunction with relatively constant 

standard deviation can make the operation of the supply chain more robust. 

Summary 

In this paper, a two-stage modeling framework coupled with a chance constraint programming approach 

was utilized for incorporating demand uncertainty and issues of customer demand satisfaction and 

inventory management. In addition, inventory depletion in multisite supply chains was addressed within 

the proposed analytical framework. The customized solution procedure for the two-stage problem (Gupta 

and Maranas, 2000) was extended to account for the probabilistic constraints introduced to enforce 

desired customer demand satisfaction levels. Analytical expressions for the mean and standard deviation 

of the inventory levels at the various production sites were used for making the supply chain more robust 

from an inventory management perspective. The fact that significant improvements in terms of 

guaranteed service levels to the customer could be achieved at relatively small additional cost was 

indicated through an example supply chain planning problem. The possibility of uncovering potential 

strategic options for managing inventory risk in the supply chain was also highlighted. 
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Table 1. Family dependent production parameters for the example supply chain 

 

 

Site(s) Product Family (f) Fixed Cost (FCfs) Minimum Runlength (MRLfs) Available Time (Hfs) 

1 {1,2,3,4,5} {4.5,4.8,5.5,6.2,4.5} {75,75,75,75,75} {150,250,200,185,190} 

2 {1,2,3,4,5} {6.5,3.5,6.5,4.5,6.5} {75,75,75,75,75} {250,200,150,200,190} 

3 {1,2,3,4,5} {6.5,5.2,5.1,4.7,6.5} {50,50,50,50,50} {225,270,250,150,265} 
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Table 2. Cost parameters for the example problem 

 

 

Parameter s=1 s=2 s=3 

Production Cost (νis) 2.5 2.3 2.6 

Transportation Cost (tis) 1.1 1.2 1.3 

Inventory Cost (his) 1.8 1.7 1.6 

Underpenalty Cost (ζis) 2.7 2.3 2.2 

Production Rate (Ris) 0.5 0.6 0.5 

Initial Inventory (I0
is) 0 0 0 

Safety Stock Level (IL
is) 10 15 25 
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Table 3. Demand distributions and revenues for the products 

 

 

Product 

 (i) 

Demand 

(θi) 

Revenue 

(µi) 

1 N(70,15) 10.0 

2 N(50,10) 9.0 

3 N(85,10) 9.5 

4 N(100,30) 10.5 

5 N(100,20) 9.0 

6 N(90,20) 11.0 

7 N(55,15) 10.8 

8 N(80,20) 10.0 

9 N(95,30) 12.0 

10 N(110,25) 8.5 
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Figure 1. Three-site example supply chain 
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Figure 2. Base customer demand satisfaction levels in the supply chain 
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Figure 3. Variation of total cost with customer demand satisfaction level (α ) 
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Figure 4. Trade-off curve between expected supply chain costs and production costs 
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 (a) 
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(b) 

 

Figure 5. Variation of (a) probability distribution and (b) mean and standard deviation of inventory of 

product 1 at site 1 with CDS level
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(b) 

 

Figure 6. Variation of (a) probability distribution and (b) mean and standard deviation of inventory of 

product 1 at site 2 with CDS level 
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 (b) 

 

Figure 7. Variation of (a) probability distribution and (b) mean and standard deviation of inventory of 

product 1 at site 3 with CDS level 
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Figure 8. Hedging inventory risk at sites 2 and 3 by capacity integration 
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