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Directed evolution experiments rely on the cyclical application of mutagenesis, screening and
ampli"cation in a test tube. They have led to the creation of novel proteins for a wide range of
applications. However, directed evolution currently requires an uncertain, typically large,
number of labor intensive and expensive experimental cycles before proteins with improved
function are identi"ed. This paper introduces predictive models for quantifying the outcome of
the experiments aiding in the setup of directed evolution for maximizing the chances of
obtaining DNA sequences encoding enzymes with improved activities. Two methods of DNA
manipulation are analysed: error-prone PCR and DNA recombination. Error-prone PCR
is a DNA replication process that intentionally introduces copying errors by imposing
mutagenic reaction conditions. The proposed model calculates the probability of producing
a speci"c nucleotide sequence after a number of PCR cycles. DNA recombination methods
rely on the mixing and concatenation of genetic material from a number of parent sequences.
This paper focuses on modeling a speci"c DNA recombination protocol, DNA shu%ing. Three
aspects of the DNA shu%ing procedure are modeled: the fragment size distribution after
random fragmentation by DNase I, the assembly of DNA fragments, and the probability of
assembling speci"c sequences or combinations of mutations. Results obtained with the
proposed models compare favorably with experimental data.
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Introduction and Background

Unprecedented opportunities are now within
our reach for generating novel enzymes and
biocatalysts using sophisticated techniques that
mutate, recombine and amplify nucleic acid
sequences. Such nucleic acid manipulations are
exploited within the framework of directed
evolution experiments pioneered by Stemmer
(1994a, b) and Arnold (1996). In directed evolu-
tion the processes of natural evolution are accel-
erated in a test tube for selecting proteins with
*Author to whom correspondence should be addressed.
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the desired properties. A typical experimental
cycle of directed evolution begins with the selec-
tion of a library of parent DNA sequences encod-
ing for proteins that involve to some extent the
sought after property. The diversity of sequences
being explored is next increased through the
mutagenesis step by introducing random point
nucleotide mutations and/or by recombining
DNA fragments. The mutagenesis and frag-
mentation step renders all but very few of the
sequences inactive. These DNA sequences are
then ligated into an expression vector and trans-
formed into Escherichia coli cells. A screening
procedure is next employed to isolate the few out
of the many E. coli transformants containing the
( 2000 Academic Press
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sequences encoding for active enzymes or func-
tional proteins. These selected sequences are then
amplixed and the cycle of mutagenesis, screening
and ampli"cation is repeated multiple times until
proteins with the desired property or function are
found. Recently, remarkable successes of directed
evolution have been reported, ranging from in-
dustrial enzymes with substantially improved
activities and thermostabilities to vaccines and
pharmaceuticals (Schmidt-Dannert & Arnold,
1999). These successes mark the onset of enor-
mous possibilities for future uses of directed
evolution in basic research for understanding
protein function and in industry for creating new
biocatalysts.

Except for the work of Moore et al. (1997)
which examines the e!ect of library size and
screening capacity, directed evolution experi-
ments have largely been based on empirical in-
formation and lack quantitative description of
the DNA recombination process. Although they
have led to exciting successes, directed evolution
methods require a large number of expensive and
time-consuming mutagenesis and/or recombina-
tion experiments and often many proteins must
be screened before one with the desired property
is identi"ed. The enormous potential of these
methods will be better realized if the experi-
mental design were improved to be more e$cient
and less expensive. This challenge provides the
main motivation for this paper in which the ne-
cessary modeling framework to enable prediction
of size, nucleotide sequence, and activity informa-
FIG. 1. Three cycles of PCR produce 23"8 total strands afte
16, two are the original DNA double strand, six are the result o
and two are the result of three extension steps. Strands are show
tion in directed evolution experiments is de-
veloped.

A key step in the directed evolution experi-
mental cycle is the introduction of new genetic
diversity to the library. There are two basic ways
for introducing diversity: error-prone PCR and
DNA recombination. Error-prone PCR proto-
cols were used in early directed evolution experi-
ments (Arnold, 1996). Polymerase chain reaction
(PCR) is a DNA ampli"cation technique in which
an initial small amount of DNA is replicated in
consecutive cycles increasing its concentration
exponentially (see Fig. 1).

The error-prone PCR replication process
(Leung et al., 1989; Cadwell & Joyce, 1992;
Lin-Goerke et al., 1997) intentionally introduces
copying errors by imposing mutagenic reaction
conditions (e.g. through the addition of Mn2` or
Mg2`). The "rst step of PCR is the denaturiz-
ation of the DNA into single strands. The second
step is the annealing of a primer to the DNA
single strands. Primers consist of two DNA
oligonucleotides with lengths of 15}30 base
pairs complementary to the ends of the ampli"ed
region. The third step is primer extension by
a polymerase (typically ¹aq). Nucleotides com-
plementary to the single-strand template are ad-
ded by using the original sequence as a template,
extending the complementary strands until nor-
mal DNA double strands are recovered. Un-
avoidable mutations occur in this step when
non-complementary nucleotides are incorpor-
ated into the chain. Eckert & Kunkel (1991)
r the third cycle, or 16 single strands of nucleotides. Of these
f one extension step, six are the result of two extension steps,
n more lightly shaded as they undergo more extension steps.
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report mutation rates for ¹aq ranging from 10~7

up to 10~3 mutations per nucleotide poly-
merized. These mutation rates are nucleotide de-
pendent (Cadwell & Joyce, 1992; Sha"khani
et al., 1997). The control of these highly variable
(spanning four orders of magnitude) copying
errors is vital for mutagenesis since the &&right''
number of mutations will provide just enough
diversity for evolutionary advancement without
producing a build-up of deleterious errors. How-
ever, the ability of error-prone PCR alone to
successively improve a DNA sequence through
continuously improving single-point mutations is
somewhat limited since the build-up of deleteri-
ous mutations typically overwhelms the bene"-
cial ones. This has been recognized by researchers
and currently DNA recombination, capable of
"ltering out deleterious mutations while retain-
ing the improving ones, is employed in directed
evolution experiments.

Unlike error-prone PCR where no exchange
of genetic material occurs between parent se-
quences, DNA recombination methods rely on
the mixing and concatenation of genetic material
from a number of parent sequences. Recombina-
tion protocols include DNA shu%ing (sexual
PCR) (Stemmer, 1994a, b), staggered extension
process (StEP) (Zhao et al., 1998), random-prim-
ing recombination (RPR) (Shao et al., 1998), and
FIG. 2. DNA shu%ing occurs in three steps, the most impo
reassembly of parent sequences occurs. The product will hav
sequences.
incremental truncation (Ostermeier et al., 1999).
A thorough review of currently employed DNA
recombination protocols can be found in Volkov
& Arnold (1999). Directed evolution experiments
utilizing DNA recombination (shu%ing) as the
mutagenesis step are brie#y described as follows
(see also Fig. 2).

First an initial set of parent sequences sharing
a number of desired traits are selected for recom-
bination. Next, the selected sequences undergo
random fragmentation typically using DNase I.
Double-stranded fragments within a certain size
range (e.g., 100}200 bp) are retained. The re-
tained fragments are then reassembled by ther-
mocycling with a DNA polymerase (PCR without
added primers). As in regular PCR, this involves
"rst the denaturization of the double-stranded
fragments into single-stranded ones. Denaturing
is followed by annealing where single-stranded
fragments anneal to other fragments overlapping
by a su$ciently large number of complementary
bases to form 3@ or 5@ overhangs. The third step is
polymerase extension (see Fig. 2). Note that the 3@
overhangs are not changed because DNA poly-
merase only possesses 5@P3@ activity. These
three steps are repeated and the average fragment
length increases after each cycle. After a number
of cycles, DNA sequences of the original length
are obtained. Finally, regular PCR with primers
rtant of which is a PCR reaction without primers in which
e a combination of genetic features from all of the parent



486 G. L. MOORE AND C. D. MARANAS
is utilized to amplify the reassembled strands.
The key advantage of DNA shu%ing over error-
prone PCR is that it can recombine a large num-
ber of mutations within a few selection cycles
quickly yielding functional blocks with combina-
tions of bene"cial mutations.

In recent years, directed evolution principles
have been successfully applied to enhance a num-
ber of protein properties. These include enhance-
ments in enzyme thermostability (Arnold &
Moore, 1997; Kuchner & Arnold, 1997; Zhao
& Arnold, 1997b; Giver et al., 1998; Matsumura
& Ellington, 1999; Lin et al., 1999) and psych-
rophilicity (Taguchi et al., 1998); alterations in
substrate speci"city (Zhang et al., 1997;
Kumamaru et al., 1998; Hansson et al., 1999) and
foreign media activity (Chen & Arnold, 1993;
Moore & Arnold, 1996); improved stereoselectiv-
ity (Reetz et al., 1997; Bornscheuer et al., 1998);
development of pharmaceuticals and vaccines
(Patten et al., 1997); bioremediation of poly-
chlorinated biphenyls (Wackett, 1998); detoxi"-
cation of an arsenate pathway (Crameri et al.,
1997); augmentation of the stability of folded
antibody fragments (Proba et al., 1998; Marti-
neau et al., 1998); and increased sensitivity to
AZT for HIV research (Christians et al., 1999).

At the same time that new directed evolution
success stories are published and the potential for
discovering truly novel biocatalysts is gaining
acceptance, it is becoming apparent that the pro-
cess is limited by key unanswered questions re-
garding the optimal mix, scheduling and setup of
error-prone PCR and DNA recombination steps;
the optimal selection of parent sequences for re-
combination; and the e!ect of parameters such as
recombinatory fragment length, annealing tem-
perature and number of shu%ing cycles on the
assembly of full length product sequences. To
answer these questions, a set of quantitative
models are introduced. The remainder of the pa-
per is organized as follows. In the next section, a
model of error-prone PCR is presented, and the
predictions are compared to experimental data.
Then, three models describing the DNA shu%ing
process are discussed. The "rst (random frag-
mentation model) describes the fragment size
distribution after treatment with DNase I. The
second (fragment assembly model) predicts the
fragment size distribution after each anneal-
ing/extension step. The third (sequence matching
model) estimates the fraction of fully assembled
genes whose nucleotide sequence matches a tar-
get one. For all models, examples are provided
along with comparisons with experimental data.

Modeling Error-prone PCR

While lately error-prone PCR has been largely
replaced by DNA recombination as the mutagen-
esis step, modeling single-point mutations is still
important since they will occur within any re-
combination protocol. Quantitative studies of
PCR have so far addressed PCR e$ciency (Weiss
& Haeseler, 1995), reaction kinetics (Hsu et al.,
1997), e!ect of annealing temperatures (Rychlik
et al., 1990), and primer lengths (Wu et al., 1991;
Sakuma & Nishigaki, 1994). Eckert & Kunkel
(1991) proposed the following simple equation:

f"
Np
2

for predicting the overall error rate f after N PCR
cycles given that the per cycle error rate is p. This
relation does not account for the fact that copy-
ing errors depend on the nucleotide being rep-
licated. For example, A miscopies to C, G or
T with di!erent probabilities (Sha"khani et al.,
1997; Cadwell & Joyce, 1992; Lin-Goerke et al.,
1997). This omission thus may yield inaccurate
estimates.

In the proposed model, mutations that occur
during the extension step when nucleotides are
added via polymerase are treated as being nu-
cleotide dependent. A per cycle mutation matrix
M is de"ned that models these di!erent mutation
rates with elements M

ij
representing the prob-

ability of nucleotide i mutating to nucleotide j :

M"A
M

AA
M

AT
M

AC
M

AG
M

TA
M

TT
M

TC
M

TG
M

CA
M

CT
M

CC
M

CG
M

GA
M

GT
M

GC
M

GG
B .

These values depend on the experimental condi-
tions. The per cycle mutation rate matrix M can
then be used to identify the mutation rate matrix
Cn after n extension steps. This matrix measures
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the mutation rates of a sequence obtained after
n extension events starting from the original se-
quence. Because the occurrence of mutations in
one extension step is independent of mutations
that occurred in previous extension steps a recur-
sive relation for Cn is derived as follows:

Cn
ij
"G

d
ij
, n"0,

M
ij
, n"1,

+

k/A,C,T,G

M
kj
Cn~1

ik
, n*2,

where d
ij

equals one if i"j and zero otherwise.
However, after N PCR cycles not all sequences

in the reaction mixture result after exactly N ex-
tensions of the original sequence. This is due to
the fact that after a sequence is formed, it remains
in the mixture to serve as a template in sub-
sequent extension steps. For example, after three
PCR cycles (see Fig. 1), 16 single strands of DNA
are produced, of which two are the original
DNA double strand (n"0), six are the result of
one extension step (n"1), six are the result of
two extension steps (n"2), and two are the result
of three extension steps (n"3).

This result is generalized for N PCR cycles (see
Fig. 3). In Appendix A, it is proven by induction
that after N PCR cycles the number of sequences
which are the product of exactly n extensions of
the original DNA strand is equal to

Z
N,n

"2A
N

n B .

The total number of single-stranded sequences
present in the reacting mixture after N PCR
FIG. 3. After N PCR cycles, the reaction mixture contains a
These strands (Z

N,n
) originate from either (i) old templates that

cycle (Z
N~1,n

); or (ii) new strands extended from templates tha
cycles is equal to

2 ) 2N

since every PCR cycle doubles their number.
Therefore, the fraction of the sequences present in
the reaction mixture after N PCR steps that are
the result of n extension events is equal to

1
2NA

N

n B .

This relation is used in conjunction with matrix
Cn to construct matrix PN with elements PN

ij
rep-

resenting the probability of nucleotide i mutating
to nucleotide j after N PCR cycles:

PN
ij
"

1
2N

N
+
n/0
A
N

n BCn
ij
.

By exploiting the assumption that mutations at
di!erent locations along the sequence are inde-
pendent of each other, the probability <N

S0,S
of

assembling a sequence S through successive
single point mutations on an original sequence
S0 after N PCR cycles is given by

%N
S
0,S

"

1
2N

N
+
n/0
A
N

n B
B
<
j/1

[Pn]
s
0
j , sj

,

where B is the length of the two sequences and
s0
j

and s
j

are the nucleotides at position j for
sequences S0 and S, respectively. This relation
provides the quantitative means to a priori esti-
mate the fraction of the sequences obtained after
number of strands that have been through n extension steps.
have been through n extension steps prior to the N-th PCR

t had already been through n!1 extension steps (Z
n~1,n~1

).



TABLE 1
An example of mutation matrix calculation given reported mutation bias for zero

Mn2` concentration

PCR mutation matrix after 13 cycles (Sha"khani et al., 1997)

P13"C
99.522% 0.227% 0.046% 0.205%

0.227% 99.522% 0.205% 0.046%

0.046% 0.137% 99.817% 0.000%

0.137% 0.046% 0.000% 99.817%D
(A)

(¹)

(C)

(G)

Calculated mutation matrix

M"C
99.926% 0.035% 0.007% 0.032%

0.035% 99.926% 0.032% 0.007%

0.007% 0.021% 99.972% 0.000%

0.021% 0.007% 0.000% 99.972%D
(A)

(¹)

(C)

(G)

Average per-cycle mutation rate calculated"0.016%
Reported per-cycle mutation rate (Ling et al., 1991)"0.02%

FIG. 4. The GC content of a DNA strand can signi"cantly
alter the number of mutations produced by error-prone
PCR. Data shown here is for a 12-cycle PCR with no Mn2`
added. Moore & Maranas (**), f"Np/2 (Eckert & Kun-
kel, 1991) (*}*}).
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N PCR steps that conform to some target se-
quence S given the mutation matrix M. There-
fore, by adjusting the reaction conditions to con-
trol the mutation rate, an experimenter can con-
trol the probability of achieving a desired target
sequence.

Next, the proposed model is veri"ed by calcu-
lating the per cycle mutation rate matrix M given
the mutation rate matrix P13 reported by Sha"k-
hani et al. (1997) after 13 PCR cycles (see Table 1).
The average per-cycle mutation rate, assuming
an equal concentration of each type of nucleotide
throughout the sequence, is calculated to be
0.016%. Note that the data presented by Sha"k-
hani et al. (1997) correspond to experimental
conditions similar to the ones reported by Ling
et al. (1991). In the latter PCR study, an average
per-cycle mutation rate of 0.02% is reported,
which is very close to the value 0.016% that the
proposed model predicts. Fig. 4 illustrates the
e!ect of the sequence GC content on the total
number of mutations expected after 12 PCR
cycles. Data from error-prone PCR with no
Mn2` added (Sha"khani et al., 1997) is used to
derive the per-cycle mutation matrix. As shown
in Fig. 4, a GC rich strand can reduce the number
of mutations produced by almost one-half.

In the proposed model, the PCR e$ciency is
assumed to be 100% meaning that the amount of
DNA present doubles from one cycle to the next.
In practice, this is not always true since a lack of
excess primer or nucleotides may result in incom-
plete ampli"cation. This assumption a!ects both
the calculation of the amount of DNA present
after N cycles and Z

N,n
. For a PCR e$ciency e an

ampli"cation of (1#e)N instead of 2N is achieved.
The calculation of Z

N,n
also needs to be changed.

Furthermore, it is assumed that no mutational
&&hot spots'', or positions in the sequence with
an increased mutation rate, are produced. The
lack of &&hot spots'' is reported by Cadwell &
Joyce (1992) and also by Sha"khani et al. (1997).
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Finally, nucleotide insertions and/or deletions
are not modeled because such events are reported
to comprise less than 5% of all mutations
(Sha"khani et al., 1997). Nevertheless, by aug-
menting the mutation matrix M to include dele-
tions and insertions in addition to nucleotide
mutations such events can be accommodated at
the expense of increased dimensionality.

Modeling DNA Recombination

The modeling of three di!erent aspects of the
DNA recombination process is addressed:

1. Random fragmentation model. In this model
the size distribution of the DNA fragments
after treatment of the parent sequences with
DNase I is examined. This provides the
necessary quantitative information regard-
ing fragment size distribution necessary for
modeling the subsequent DNA shu%ing
step.

2. Fragment assembly model. Given the initial
fragment size distribution, the objective
here is to model the fragment size distribu-
tion after each annealing/extension step.
This allows tracking of how e!ectively the
recombination protocol assembles full
length genes without regard to sequence or
function of the assembled sequences.

3. Sequence matching model. After all shu%ing
cycles have been completed, the fraction
of fully-assembled genes whose nucleotide
sequence matches a given target (e.g.,
AGGTCC) is quanti"ed.

RANDOM FRAGMENTATION MODEL

After a gene of length B is treated with DNase
I (random fragmentation), a random distribution
of nucleotide fragments is obtained. Random
fragmentation implies that each one of the B!1
nucleotide-nucleotide bonds has an equal prob-
ability P

cut
of being broken. The resulting frag-

ment size probability distribution denoted by
Q0

L
is desired to describe the fraction of fragments

of di!erent lengths ¸ present in the reaction mix-
ture.

First the special case ¸"B is addressed. The
only possible way for a fragment of length B to
result is if none of the B!1 bonds are cut. The
probability of a single bond remaining intact is
(1!P

cut
). The random nature of fragmentation

implies that bond-breaking events are indepen-
dent therefore

Q0
B
"(1!P

cut
)B~1 .

While the generation of a fragment of length
B requires that all B!1 bonds must remain
intact, a fragment of length ¸ can be formed after
having di!erent numbers of bonds being broken.
The total number of broken bonds cannot exceed
B!¸ because in that case at least one of the
¸!1 bonds in a fragment of length ¸ must
break. Therefore, the calculation of Q0

L
requires

enumerating all possible ways of generating
a fragment of length ¸ after breaking
s"1,2,B!¸ bonds. Mathematically, this im-
plies that Q0

L
is equal to the sum of the products

of the conditional probabilities P
L Ds

of generating
a fragment of length ¸ given that s bonds are
broken times the probability P

s
of breaking s

bonds:

Q0
L
"

B~L
+
s/1

P
s
P

L Ds
, ¸"1,2, B!1.

There exist (B~1
s

) alternatives for breaking s out of
B!1 bonds. Because bond cutting and bond
preservation are independent events, each one of
these alternatives has a probability

(P
cut

)s(1!P
cut

)B~1~s

of occurring. By combining these two results we
obtain

P
s
"A

B!1

s BPs
cut

(1!P
cut

)B~1~s.

Random fragmentation implies that the order
in which fragments are produced does not a!ect
their respective probabilities of occurrence. For
example, two cuts that produce fragments of
lengths a, b, and c occur with the same probabil-
ity as two cuts that produce fragments of lengths
c, a, and b. This greatly simpli"es the analysis by
allowing the placement of the fragment of length
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¸ at the beginning without any loss of generality.
Speci"cally, given that after breaking s bonds a
fragment of length ¸ is formed, the formation of
the fragment of length ¸ can be assumed to occur
"rst without any loss of generality. This means
that there exists

A
B!1!¸

s!1 B
alternatives to form the remaining s!1 cuts.
Each one of these alternatives signi"es a way of
generating a fragment of length ¸. Because there
exist

A
B!1

s B
ways of creating s cuts, the conditional probabil-
ity P

L Ds
is equal to

P
L Ds

"A
B!1!¸

s!1 BNA
B!1

s B .

By combining the expressions for P
s
and P

L Ds
the

following result for Q0
L

is obtained:

Q0
L
"

B~L
+
s/1

A
B!1!¸

s!1 BPs
cut

(1!P
cut

)B~1~s .

After rearranging terms,

Q0
L
"P

cut
(1!P

cut
)L~1

]C
B~L
+
s/1

A
B!1!¸

s!1 BPs~1
cut

(1!P
cut

)B~L~sD
TABL

Comparison of discrete model vs. expone
probability c

P
cut

Q0
100

, discrete model

10~4 0.00990%
10~3 0.0906%
10~2 0.370%
10~1 0.000295%
and invoking the binomial distribution proper-
ties this expression simpli"es further to Q0

L
"

P
cut

(1!P
cut

)L~1. Therefore, the fragment size
probability distribution after random fragmenta-
tion is

Q0
L
"G

P
cut

(1!P
cut

)L~1 for 1)¸)B!1,

(1!P
cut

)B~1 for ¸"B.

It is interesting to note that the resulting expres-
sions for ¸)B!1 are independent of the length
B of the original gene. Furthermore, it can be
shown (see Appendix B) that for small values of
P
cut

, Q0
L

approaches the exponential distribution
P
cut

exp(!P
cut

¸) (see also Table 2) with a mean of
1/P

cut
. A graph of the expected fragment size

distribution after treatment with DNase I is
shown in Fig. 5. Typically, only a range of frag-
ments between ¸

1
and ¸

2
are retained (e.g.,

¸
1
"50, ¸

2
"150) in subsequent DNA shu%ing

experiments. In this case, Q0
L

must be renor-
malized by dividing by +L2

L/L1
Q0

L
. Note also that

Q0
L

is a monotonically decreasing function of
¸ implying that irrespective of the size of B and
the fragmentation intensity, quanti"ed by P

cut
,

&&small'' fragments are always more ubiquitous
than &&large'' ones.

Comparisons of the proposed model predic-
tions with the bands obtained after agarose gel
electrophoresis requires converting the fragment
size distribution to corresponding signal inten-
sities. The intensity of an agarose gel band, com-
posed of fragments of length ¸, is proportional to
the amount of intercalated ethidium bromide.
This is approximately proportional to fragment
length since ethidium bromide stains DNA se-
quences evenly. Therefore, the relative intensity
of a band I0

L
is proportional to the particular size
E 2
ntial approximation for fragment size
alculation

Q0
100

, exponential approximation

0.00990%
0.0905%
0.368%
0.000454%



FIG. 5. Fragment size distribution after a 1000 bp gene is
fragmented with DNase I with P

cut
"0.01 resulting in

a mean fragment length of 100 bp. The dotted lines indicate
that only a portion of these fragments are retained for
shu%ing.

FIG. 6. Calculated agarose gel intensities for P
cut
"

0.01, 0.02 and 0.04 for a 1 kb gene. P
cut
"0.01 (**);

P
cut
"0.02 (- - - -); P

cut
"0.04 (} } }).

FIG. 7. Calculated agarose gel intensities for P
cut
"

0.002, 0.004, 0.01, 0.004 and 0.2 (top to bottom). The gel runs
from a maximum of ¸"2000 at the left down to ¸"1 at
the right.
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fragment distribution Q0
L

times the number of
nucleotides ¸ in the fragment. Thus, the follow-
ing expression describes the relative intensity dis-
tribution:

I0
L
"G

¸P
cut

(1!P
cut

)L~1 for 1)¸)B!1,

B(1!P
cut

)B~1 for ¸"B.

Unlike Q0
L

which is monotonically decreasing,
I0
L

exhibits a sharp maximum in intensity for
¸"1/P

cut
. It is interesting that the location of the

peak depends only on the bond-breaking prob-
ability P

cut
.

A plot of relative gel intensities I0
L

after the
random fragmentation of a 1 kb gene for
P
cut
"0.01, 0.02 and 0.04 is shown in Fig. 6. As

P
cut

increases the peak migrates to smaller frag-
ment lengths and the relative intensity distribu-
tion broadens. Density plots of the relative inten-
sity shown in Fig. 7 simulate the appearance of
an agarose gel after DNase I fragmentation of
a 2 kb gene. Distributions for P

cut
"0.002, 0.004,

0.01, 0.04 and 0.1 are shown (top to bottom),
which produce intensity peaks at ¸"500, 250,
100, 25 and 10 bp, respectively. The horizontal
length scale shown is logarithmic due to the typi-
cal rate of DNA migration through a gel. These
plots conform to the qualitative features exhib-
ited by agarose gels.
These predictions are next compared with
agarose gel data quantifying the fragment size
distribution at di!erent points in time. Table
3 summarizes the location of the intensity peak at
di!erent digestion times observed on an agarose
gel for a system examined by Volkov & Arnold



TABLE 3
Random fragmentation reaction progress (Volkov & Arnold, 1999)

Digestion time (min) Fluorescence maximum, 1/P
cut

P
cut

0.5 600 bp 0.17%
1 300 bp 0.33%
2 120 bp 0.83%
3 70 bp 1.4%
5 40 bp 2.5%

FIG. 8. First-order kinetics of DNase I digestion.
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(1999). The proposed model predicts that the
peak intensity must occur at 1/P

cut
(bp). This

implies that based on the experimentally ob-
served peak intensities a model-based estimate of
P
cut

can be derived (see Table 3).
P
cut

can alternatively be expressed as the extent
of digestion

P
cut
"

C0
b
!C

b
C0

b

,

where C
b

equals the concentration of unbroken
nucleotide-nucleotide bonds and C0

b
equals the

initial concentration of bonds. C0
b

can be repre-
sented as C

gene
B, where C

gene
is the concentration

of the gene in solution. Because DNase I is in
excess, a "rst-order rate expression can be used to
"t the rate of digestion:

C
b
"C0

b
exp(!kt).

This leads to the following expression for P
cut

:

P
cut
"1!exp(!kt).

After substituting the model predictions for
P
cut

a straight line is obtained after plotting
!ln(1!P

cut
) vs. t as shown in Fig. 8. The slope

of this straight line is equal to the rate constant of
0.320 hr~1 verifying the model predictions.

FRAGMENT ASSEMBLY MODEL

The goal of this model is to quantitatively
describe how the fragment size distribution cha-
nges after a shu%ing step. The value of this analy-
sis is two-fold: "rst, it identi"es how may shu%ing
cycles are necessary for reassembling the full-
length gene. Second, by modeling fragment size
distribution, which is experimentally accessible, it
provides a unique way of matching experimental
with modeling results quantifying important
parameters in the model. Such experimental
studies are currently under investigation. In
DNA shu%ing, fragments are assembled by a
PCR-like reaction without added primers. De-
natured fragments prime each other during the
annealing step creating regions of overlap, where
annealing has taken place, and overhangs, where
the fragments do not align. The overhangs then
serve as templates for ¹aq-catalysed extension.

In the proposed model it is assumed that terti-
ary collisions are not important and that anneal-
ing only occurs between pairs of fragments. In
compliance with ¹aq polymerase function, frag-
ment assembly only occurs in the direction from
5@ to 3@. Sequences of length no greater than that
of the original gene are assembled since the frag-
ments are assumed to anneal only along areas of
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high sequence identity. This requires that the
gene does not have a high amount of repetition.
The fraction of fragments that fail to anneal
during each annealing step is represented by
parameter NA which is assumed to depend on
reaction conditions such as concentration and
temperature. Fragment annealing is assumed to
be governed by second-order kinetics so that the
probability of a fragment of length X and a frag-
ment of length> annealing is proportional to the
product of their relative concentrations. The pro-
portionality constant, denoted by A(X, >, <), is
assumed to be a function of only overlap (<) and
annealed fragment lengths (X, >). A minimum
overlap of <

min
nucleotides is assumed to be ne-

cessary for annealing. <
min

depends on the degree
of identity shared by the parent sequences and
reaction conditions and it is usually between
5 and 15 nucleotides (Stemmer, 1994a). Frag-
ments with an overlap smaller than <

min
are

assumed to denature before extension takes
place.
FIG. 9. Possible overlap alternatives between two annealed
Given the original fragment size distribution
Q0

L
obtained after random fragmentation, the

next step is to quantify how this distribution will
be reshaped after a shu%ing step. The fragment
probability size distribution after N shu%ing
cycles is denoted by QN

L
. During the shu%ing step

pairs of DNA fragments randomly anneal and
subsequently extend giving rise to successively
larger DNA fragments from one shu%ing cycle to
the next. The fragment growth depends on the
allowable overlap choices between fragments and
their respective chances of annealing and extend-
ing. The allowable range of overlap for successful
annealing between two fragments of lengths X
and >, respectively, is illustrated in Fig. 9. The
maximum possible overlap is equal to the length
of the smaller of the two fragments, or min(X,>).
Every overlap value from <

min
up to

min(X,>)!1 occurs twice, once for each of the
two fragment overhang orientations (5@ and 3@).
The maximum overlap min(X,>), however, oc-
curs for DX!> D#1 internal annealing choices.
sequences.
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This means that the multiplicity (degeneracy)
d
V

for di!erent overlap values < is as follows:

d
V
"

G
2 for <

min
)<)min(X, >)!1,

DX!> D#1 for <"min(X, >) .

The probability of observing a particular anneal-
ing choice shown in Fig. 9 depends on the extent
of overlap. The following annealing probability
model is postulated where high or low overlap
values are favored depending on the sign of the
exponent a:

A(X, >, <)"d
V
<aN

.*/(X,Y)
+

V/Vmin

d
V
<a.

For a"!0.5 this annealing probability be-
comes inversely proportional to the square root
of the overlap length as Wetmur & Davidson
(1967) suggest, thus favoring shorter overlap
values. They assumed DNA annealing to be
a two-step process, an initial rate determining
nucleation step and a fast `zipperinga step. In
their analysis, nucleation is taken to be an ele-
mentary second-order reaction, thus supporting
the second-order assumption above. The inverse
square-root dependence is caused by an excluded
volume e!ect which can be veri"ed by approxi-
mating the DNA by an ideal random coil.

After establishing an annealing probability
model the next step is to identify all mechanisms
that generate a fragment of a particular length
after a single annealing/extension cycle is com-
pleted. Six di!erent pathways for producing
a fragment of length ¸ are considered which
exhaustively enumerate all possibilities (Fig. 10).
An fragment of length ¸ can be produced by (i)
the extension of smaller fragments to length
¸ ("rst two pathways); (ii) a fragment of length
¸ that fails to extend after annealing (next three
pathways); or (iii) a fragment of length ¸ that fails
to anneal (last pathway). The "rst "ve pathways
listed above require two fragments to collide and
anneal. These collision pathways depend on three
probability terms. First, the fragments must an-
neal, and this occurs with probability (1!NA)
where NA denotes the probability of having a
failed annealing. Second, the collision probability
between two fragments of lengths X and > is
proportional to the product of their relative con-
centrations (or size probability distributions):

QN~1
X

QN~1
Y

.

Because many fragment combinations can com-
bine to form a fragment of a particular length ¸,
a summation over all X and > values that give
fragments of length ¸ after extension is necessary.
Third, the annealing probability A(X,>, <) mul-
tiplying the product of the fragment size prob-
ability distributions is assumed to be a function
of the fragment lengths X, > and the nucleotide
overlap <. These three factors govern the colli-
sion and annealing of two fragments. Each one of
the "ve possible collision pathways are next
examined in detail.

The "rst pathway (outer extension) describes
the 5@P3@ successful annealing and extension of
two fragments whose lengths X, > are smaller
then ¸ and their overlap <"X#>!¸ is such
that two single-stranded fragments of length
¸ are recovered after denaturing. The length of
the "rst fragment X may vary between ¸

1
and

¸ while the second fragment > is bounded be-
tween ¸!X#<

min
and ¸. The three probability

terms listed above result in the following expres-
sion for the size distribution of fragments of
length ¸ obtained through the outer extension
pathway after the N-th shu%ing cycle:

QN
L
(outer extension)

"(1!NA)
L
+

X/L1

QN~1
X

L
+

Y/L~X`Vmin

QN~1
Y

A(X,>,X#>!¸)

The second pathway (inner extension) con-
siders the case when a smaller fragment anneals
completely within a fragment larger than ¸.
Given an appropriate placement the smaller frag-
ment can then be extended to produce a fragment
of length ¸. Similarly, the corresponding size
probability distribution term accounting for the



FIG. 10. The six pathways for producing a fragment of length ¸ by extension, failed extension and failed annealing.
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inner extension pathway is

QN
L
(inner extension)

"(1!NA)
B
+

X/L`1

QN~1
X

L~1
+

Y/L1

QN~1
Y

A(X,>,>).

The third, fourth and "fth pathways describe
cases when fragments of length ¸ are retained
after annealing but unsuccessful extension. This
occurs when a 3@ overhang is created, causing the
¹aq-catalysed extension to fail. The three failed
extension pathways refer to the case where the
second fragment is smaller than ¸ (¸~ failed
extension); larger than ¸ (¸` failed extension); or
equal to ¸ (¸ failed extension). The following
probability terms quantify the contribution of the
third, fourth and "fth pathways to QN

L
:

QN
L
(¸~ failed extension)

"(1!NA)QN~1
L

L
+

Y/L1

QN~1
Y

]A
Y~1
+

V/Vmin

A(¸,>,<)#(¸!>)A(¸,>,> )B ,



FIG. 11. Fragment size distributions after N"5, 10 and
15 shu%ing cycles of a (¸

1
"50, ¸

2
"100) random frag-

ment pool of a 1000 bp gene (NA"50%, a"!0.5,
<
min

"15). N"5 (**); N"10 (} } } }); N"15 (*}*}).

FIG. 12. Fragment size distributions after N"25, 30, 35,
40 and 45 shu%ing cycles of a (¸

1
"10, ¸

2
"50) random

fragment pool of a 1000 bp gene (NA"70%, a"!0.5,
<
min

"5). N"25 (**); N"30 (...); N"35 (} } } });
N"40 (***); N"45 (*}*).
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QN
L
(¸` failed extension)

"(1!NA)QN~1
L

B
+

Y/L`1

QN~1
Y

L
+

V/Vmin

A(¸,>,<) ,

QN
L
(¸ failed extension)

"(1!NA)QN~1
L

QN~1
L

L~1
+

V/Vmin

A(¸,¸,<) .

Finally, fragments of length ¸ may remain in the
reaction mixture after failing to anneal. Failed
annealing occurs with a probability of NA, so
the following expression represents the portion of
fragments of length ¸ that remain unchanged
after failed annealing:

QN
L
(failed annealing)"(NA)QN~1

L
.

The sum of the contributions of the six pathways
generates a recursive model for QN

L
that tracks the

fragment size distribution from one shu%ing
cycle to the next. An internal consistency check
veri"es that +

L
QN

L
"1 is preserved. The only

adjustable parameters in this model are the min-
imum-allowable overlap <

min
, the probability of

failed annealing NA, and the exponent a in the
annealing probability expression. Resolving the
recursion requires going back shu%ing steps,
eventually encountering as an input the original
fragment size distribution Q0

L
obtained after ran-

dom fragmentation.
Figure 11 illustrates the fragment size distribu-

tion predicted by the model after 5, 10 and 15
shu%ing cycles. The original 1 kb gene is "rst
randomly fragmented and only fragments with
sizes between 50 and 150 bp are retained for
shu%ing. After only 5 shu%ing steps the signa-
ture of the original fragment pool is still evident
in the form of a sharp peak. After 10 cycles this
sharp peak is nearly eliminated and a single
broad maximum can be found in the fragment
size distribution. Finally, after 15 cycles this max-
imum has migrated to reach the end of the length
range and a large portion of the fragments have
assembled into full length genes.

Comparisons with experimental data are en-
couraging. Stemmer (1994b) initially studied the
assembly of a 1 kb gene. The experiment began
with random fragmentation to an approximate
mean fragment length of 100 bp veri"ed on an
agarose gel implying a value for P

cut
of 1%. Then

fragments sized from 10 to 50 bp were assembled,
and aliquots taken after N"25, 30, 35, 40 and 45
shu%ing steps were analysed on a gel to monitor
the progress of the reaction. After 25 cycles, an
intensity peak could be seen at approximately
¸"250. After 30 cycles, a peak could be seen
near ¸"450. As the assembly progressed fur-
ther, the #uorescence broadened, and full-length
genes were reassembled. The proposed model
matches these experimental observations as
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illustrated in Fig. 12. Parameter values of
P
cut
"1%, ¸

1
"10 and ¸

2
"50 are selected to

match the ones employed in Stemmer's work. An
a value of!0.5 was chosen (Wetmur & David-
son, 1967). Furthermore, the last two parameters
were set at NA"70% and <

min
"5.

SEQUENCE MATCHING MODEL

In the fragment assembly model the process of
recovering full-length sequences was analysed
without regard to the nucleotide sequence of the
assembled genes. In the target sequence matching
model the goal is to relate the nucleotide se-
quence of the fully assembled genes, obtained
after recombination, to the nucleotide sequence
and concentration of the parent sequences and
experimental conditions. Speci"cally, given the
precise nucleotide sequence of the parent se-
quences available for recombination, the objec-
tive is to "nd the fraction of the fully assembled
sequences whose nucleotide sequence matches
a prespeci"ed target (e.g. ATTGG). This target
can be (i) sequence identity, (ii) percent sequence
homology or (iii) a desired number of crossovers.
The work presented here focuses on matching the
nucleotide sequence identity of a prespeci"ed tar-
get. Moore et al. (1997) study a simpli"ed model
assuming that the lengths of the fragments to be
reassembled are less than the distances between
mutations. Later, Sun (1998) considers larger
fragment lengths and addresses the case of single
(Sun, 1998) and multiple (Sun, 1999) mutations.
Also, Bogarad & Deem (1999) model molecular
evolution with Monte Carlo simulations. By
building on these contributions, this modeling
e!ort addresses the general case of multiple
mutations per DNA strand and arbitrary selec-
tions for the fragment lengths.

In our analysis, the nucleotide sequence of only
complete DNA products of full length is ana-
lysed. The fraction of the sequences achieving full
length can be estimated based on the results
presented in the previous section. Also, the par-
ent sequences are assumed to have a high degree
of homology so that fragment annealing is pos-
sible along the entire gene length. As in the frag-
ment assembly model, a minimum overlap of
<
min

nucleotides is assumed to be necessary for
annealing and subsequent assembly, and assem-
bly is assumed to proceed only from 5@ to 3@.
Furthermore, it is assumed that the assembly
process from a position i until the end B of the
sequence is independent of assembly that has
occurred before position i. In other words, the
annealing of a fragment is independent of all
prior fragment annealing that occurred in pre-
vious shu%ing cycles. Therefore, if P

i
is the prob-

ability of reproducing the portion of a target
sequence between positions i and its end B then
P
i
is independent of all P

j
where j(i.

The correct assembly of a target sequence is
achieved if and only if a cascade of four indepen-
dent events occurs, as shown in Fig. 13. Each one
of these events contributes a probability term to
P
i
. The "rst step is to choose a fragment of length

¸ to add to the sequence. Assuming random
fragmentation, a fragment of length ¸ is chosen
with probability Q0

L
discussed earlier. The second

step in the assembly process is the annealing of
the fragment of length ¸ to the rest of the pre-
viously assembled sequence. The overlap must
be at least <

min
nucleotides. Thus, the non-over-

lapping portion of the fragment adds at most
¸!<

min
new nucleotides to the sequence. There-

fore, there are ¸!<
min

possible ways for a
fragment to align itself during annealing with
overlaps< ranging from<

min
to ¸!1. The prob-

ability of adding ¸!< new nucleotides with a
fragment of length ¸ is denoted as A

L~V,L
and is

de"ned identically with the annealing probability
A(X,>,<) described in the previous section:

A
L~V,L

"<aN
L~1
+

V/Vmin

<a.

After summing up over all possible overlap
values this contributes a factor of +L~1

V/Vmin
A

L~V,L
to P

i
.

The third step is to calculate the probability
that the extended sequences will contribute nu-
cleotides that match the ones in the target se-
quence. Starting from a nucleotide at position
i and assuming that a fragment of length ¸ has
annealed with an overlap of < nucleotides, the
probability of matching the target nucleotide
sequence from i to position i#(¸!<)!1 is
equal to the fraction of the parent sequences that
exactly match the target sequence from position



FIG. 13. Four necessary steps of the annealing process as described in Sequence Matching Model.
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i to position i#(¸!<)!1. Let parameter
D
a,b

denote the number of parent sequences that
match the target sequence from positions a to b.
Matching between positions i and i#(¸!<)
!1 then occurs with probability D

i,i`L~V~1
/K

where K is the number of parents available for
recombination. The fourth and "nal step is to
calculate the probability of reproducing the
remainder of the target sequence after adding
¸!< new nucleotides. Because the annealing of
additional fragments is independent of prior ad-
ditions, simple multiplication by P

i`L~V
su$ces.

This establishes a function for P
i
that must be

evaluated recursively. These four steps result in
the expression for P

i
shown below, where B is the

sequence length in nucleotides, ¸
1

and ¸
2

are the
smallest and largest recombinatory fragments,
<
min

is the minimum annealing overlap, and K is
the number of parent sequences:

P
i
"

G
1, i'B,
D
i,i

K
, i"B,

L2

+
L/L1

Q0
LC

L~1
+

V/Vmin

A
L~V,L

(Di,i`L~V~1

K
)P

i`L~V
], i(B.

The above recursive formula calculates the prob-
ability P

i
of obtaining as assembled sequence that

is identical with some target sequence S after
nucleotide position i. Therefore, P

1
is equal to the

probability of assembling a sequence identical
to the target. This target may be either a speci"c
pattern or an entire gene.

In this analysis, the target sequence is assumed to
be the entire assembled sequence. If only a portion
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of the assembled sequence is to be analyzed, the
probability of annealing for the "rst fragment at
i"1 must be adjusted to include previous frag-
ment additions (i(1). In Moore & Maranas
(2000), a renewal probability analysis is per-
formed to account for this.

The predictions of the sequence matching
model are consistent with experimental data.
Stemmer (1994a) recombined two markers 75 bp
apart from random fragments of size between 100
and 200 bp and reported that only 11% of the
reassembled fragments contained both muta-
tions. Note that independent assembly of the two
mutations would have predicted a 25% value.
Assuming a required minimum overlap for an-
nealing of <

min
"15 and a"!1/2, this model

estimates this probability for the average frag-
ment size of ¸"150 to be 12.4%, which is very
close to the experimentally observed one.

Next the possibility of increasing the probabil-
ity of containing both mutations in the recom-
bined sequences by appropriately choosing the
fragment length is examined. The estimated
probability of assembling a two-mutation se-
quence is plotted as a function of fragment length
in Fig. 14. As shown in Fig. 14, this probability is
a strong function of fragment length exhibiting
a sharp maximum at around ¸"110 bp of
21.4%. These results clearly demonstrate the im-
portance of being able to predict this `righta
fragment length.

Further comparisons with experimental results
(Zhao & Arnold, 1997a) are shown in Tables
FIG. 14. Probability of recombining two markers 75 bp
apart as a function of the fragment length ¸.
4 and 5. Zhao & Arnold (1997a) shu%e two 1.3
kb sequences, one with no mutations (wild-type)
and the other with multiple-point mutations. In
Table 4, the results of modeling an 83 bp portion
of this sequence are compared with the experi-
mental results. The experimental method is used
to parameterize the model, so that P

cut
"0.83%

(2 min DNase I digestion from Table 3),
(¸

1
,¸

2
)"(30, 50) (fragments less than 50 bp),

<
min

"15, a"!0.5 (standard annealing condi-
tions). The modeling results match the trends
found experimentally. The variations are most
likely due to the small number of sequenced
products reported. In addition, the modeling re-
sults con"rm the experimentally observed tend-
ency of the mutations at positions 35 and 47 to be
&&linked''. The results shown in Table 5 more
clearly demonstrate this tendency by examining
only the recombination of the closely spaced
mutations.

Summary and Conclusions

In this paper, quantitative models for predic-
ting the outcome of DNase I fragmentation, er-
ror-prone PCR and DNA shu%ing experiments
were introduced. Speci"cally, the random frag-
mentation model and the fragment assembly
model provided the quantitative means of track-
ing the size probability distribution of fragments
in the reacting mixture during DNase I frag-
mentation and DNA shu%ing respectively. On
the other hand, the PCR model and the sequence
matching model establish a formalism for estima-
ting the probability of matching a prespeci"ed
nucleotide target. These models can be used in
combination with optimization algorithms based
on mixed-integer linear technologies to &&home
in'' on the optimum fragment length and parent
set without resorting to exhaustive enumeration
of all alternatives (Moore & Maranas, 2000).

The predictions of these models were tested
against experimental data available in the open
literature. Unfortunately, such published data on
directed evolution experiments do not contain
su$cient detail on the size and nucleotide order
of the recombined sequences to allow for a com-
plete model validation and optimization. Cur-
rently, research is being conducted to overcome
this limitation by designing directed evolution



TABLE 4
DNA shu/ing calculations for ¸

1
"30, ¸

2
"50, P

cut
"0.83%, and<

min
"15

Parent sequences (2)

1 35 47 83
]*****]**]****]
************

Shu%ed sequence Calculated probability Reported frequencey
(Zhao & Arnold, 1997a)

]*****]*]******] 8.2% 20%
]*****]*]****** 8.2% 10%
]*****]*******] 4.3% 0%
]*****]>>>>>> 4.3% 0%
]*******]*****] 4.3% 0%
]******]****** 4.3% 0%
]************] 8.2% 0%
]************ 8.2% 0%
******]*]*****] 8.2% 20%
*****]*]***** 8.2% 0%
*****]******] 4.3% 0%
*****]******* 4.3% 10%
******]*****] 4.3% 0%
******]***** 4.3% 0%
***********] 8.2% 20%
************ 8.2% 20%

TABLE 5
DNA shu/ing calculations for ¸

1
"30, ¸

2
"50, P

cut
"0.83%, and

<
min

"15

Parent sequences (2)
1 13
]>>>>>>>>>>******]
****************

Shu%ed sequence Calculated probability Reported frequencey
(Zhao & Arnold, 1997a)

]**********] 32.8% 50%
]********** 17.2% 10%
***********] 17.2% 0%
*********** 32.8% 40%
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experiments on a test gene to speci"cally provide
data for our modeling e!ort. These experiments
will provide information on fragment sizes to
validate and parameterize the proposed models.
In addition, work is underway to apply the
modeling framework presented to other recombi-
nation protocols, particularly the new technique
of incremental truncation (Ostermeier et al., 1999).
The combination of theoretical, experimental
and analytical approaches will lead to the im-
proved application of directed evolution methods
yielding higher success rates and lower costs.
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APPENDIX A

Calculation of Z
N,n

Let Z
N,n

represent the number of strands that
have been through n extension steps after N PCR
cycles. Information about the value of Z

N,n
can be

discerned for some values of N and n. Initially, as
stated above, two single strands of DNA are
present, so Z

0,0
"2. These two strands are the

only two that are not the product of an extension
step; therefore, Z

N,0
"2 for all N. Also, after

N cycles no DNA strands will be the result of
more extension steps than N (Z

N,n
"0 for n'N).

After the N-th PCR cycle, a strand that is pro-
duced after n extension steps is either one that
was just produced in the N-th PCR cycle or one
that was already in the reaction mixture before
the N-th PCR cycle began. In the "rst case, this
implies that a sequence that has undergone
(n!1) extension steps after (N!1) PCR cycles
served as the template to produce the sequence in
question. In the second case, the sequence in
question has already undergone n extensions by
the N!1 PCR cycle. See Fig. 3 for an illustra-
tion of these two cases. This implies that
Z

N,n
"Z

N~1,n
#Z

N~1,n~1
. Based on this rela-

tion a proof by induction of Z
N,n

"2(N
n
) is con-

structed. First, this result is shown to be valid for
n"0, 1 and 2.

For n"0,

Z
N,0

"2"2A
N

0 B .
For n"1,

Z
N,1

"Z
N~1,1

#Z
N~1,0

"Z
N~1,1

#2

"(Z
N~2,1

#Z
N~2,0

)#2

"(Z
N~2,1

#2)#2"Z
N~2,1

#2(2)

"Z
N~3,1

#2(3)

"Z
N~k,1

#2k, ∀0)k)N.

To resolve the recursion, set k"N:

Z
N,1

"Z
0,1

#2N"0#2N"2N"2A
N

1 B .

For n"2,

Z
N,2

"Z
N~1,2

#Z
N~1,1

"(Z
N~2,2

#Z
N~2,1

)#Z
N~1,1

"Z
1,1

#Z
2,1

#2#Z
N~1,1

"

N~1
+
k/1

Z
k,1

"

N~1
+
k/1

2k

"2C
N(N!1)

2 D"2A
N

2 B.

After the postulated result is shown to be valid
for n"0, 1, and 2, it is assumed that Z

N,n
"2(N

n
).

To complete the proof by induction, this assump-
tion is utilized to prove that Z

N,n`1
"2( N

n`1
) :

Z
N,n`1

"Z
N~1,n`1

#Z
N~1,n

"(Z
N~2,n`1

#Z
N~2,n

)#Z
N~1,n

"(Z
N~3,n`1

#Z
N~3,n

)#Z
N~2,n

#Z
N~1,n
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"Z
n,n

#Z
n`1,n

#2#Z
N~1,n

"

N~1
+
k/n

Z
k,n

"

N~1
+
k/n

2 A
k

nB.
Let s"k!n, then

Z
N,n`1

"2
(N~n)~1

+
s/0

A
n#s

n B .

This expression can equivalently be rewritten as
(Kreyszig, 1993)

Z
N,n`1

"2
(N~n)~1

+
s/0

A
n#s

n B"2 A
(N!n)#n

n#1 B
"2A

N

n#1B .
APPENDIX B

Approximation of Q0
L

with the Exponential
Distribution

Q0
L
"P

cut
(1!P

cut
)L~1

"

P
cut

1!P
cut
CA1!

1
1/P

cut
B
~1@Pcut

D
~PcutL

.

For small values of P
cut

we can write

P
cut

1!P
cut

+1, and A1!
1

1/P
cut
B
~1@Pcut

+exp(1).

Therefore, Q0
L
+P

cut
exp (!P

cut
¸) for small values

of P
cut

.
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