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Abstract 

This paper discusses predictive models for quantifying the outcome of DNA recombination employed in directed evolution 
experiments for the generation of novel enzymes. Specifically, predictive models are outlined for (i) tracking the DNA fragment 
size distribution after random fragmentation and subsequent assembly into genes of full length and (ii) estimating the fraction of 
the assembled full length sequences matching a given nucleotide target. Based on these quantitative models, optimization 
formulations are constructed which are aimed at identifying the optimal recombinatory length and parent sequences for 
maximizing the assembly of a sought after sequence target. Computational results show that the recombination outcome is a 
'complex' function of the recombinatory length and recombined sequences and illustrate the magnitude of improvements that can 
be realized. © 2000 Elsevier Science Ltd. All rights reserved. 
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1. Introduction and background 

DNA recombination techniques provide the back- 
bone of directed evolution experiments for engineering 
improved proteins and enzymes. These experiments, 
pioneered by Stemmer (1994) and Arnold (1996), ex- 
ploit natural selection in a test tube to rapidly 'evolve' 
enzymes with a desired property or function. Typically, 
a cycle of directed evolution starts with the construc- 
tion of a small library of related DNA sequences that 
encode for enzymes exhibiting the desired property at 
varying levels. Next, DNA recombination is utilized to 
mix and concatenate the original library DNA se- 
quences. This combinatorially produces a new library, 
thus increasing the sequence space being considered. 
Then the expanded library is screened for improved 
enzymes, and the coding sequences for the most greatly 
enhanced enzymes are isolated to form a new sequence 
library. The experimental cycle of DNA recombination, 
screening and sequence isolation is repeated with the 
newly produced DNA sequence library until the en- 
zyme property of interest improves to the desired level. 
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The setup of directed evolution experiments is vital to 
the rapid and economical production of enhanced en- 
zymes since screening a large number of proteins for 
the desired property is expensive and time consuming. 

Many exciting enzyme enhancements have been pro- 
duced by utilizing DNA recombination in directed evo- 
lution experiments. An outline of the methodology 
behind these and other successes has been presented by 
Arnold and Moore (1997). However, despite these suc- 
cess stories, directed evolution experiments have largely 
been guided by empirical information and experience 
without a quantitative understanding of the recombina- 
tion step and subsequent optimization of the experi- 
mental setup. The recombination step greatly influences 
experimental efficiency since it determines the amount 
of genetic diversity added to the sequence library. 
Therefore, optimization of the recombination process 
can potentially lead to a reduction in the number of 
experimental cycles and significant savings in screening 
time and costs providing the key motivation for this 
paper. 

Currently, the recombination protocol of choice is 
DNA shuffling (Stemmer, 1994). A review of other 
DNA recombination protocols can be found in Volkov 
and Arnold (1999). In this paper, we focus on DNA 
shuffling; however, the same modeling principles apply 
to the other protocols. 

reserved. 
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A flowchart of DNA shuffling is shown in Fig. 1. 
First an initial set of parent DNA sequences is selected 
for recombination. The parent sequences undergo ran- 
dom fragmentation, typically by DNase I digestion. 
DNase I is an enzyme that catalyzes nucle- 
otide-nucleotide bond breaking in DNA with no selec- 
tivity to nucleotide identity or nucleotide position along 
the chain. Double-stranded fragments within a particu- 
lar size range (i.e. 50-200 base pairs) are isolated and 
reassembled by the polymerase chain reaction (PCR) 
without added primers. PCR is a cyclic three-step reac- 
tion, utilized for the amplification of small amounts of 
DNA that typically requires primers (small fragments 
of single stranded DNA of 15-30 nucleotides in length 
that are complementary to the ends of the amplified 
DNA) to proceed (A, C are complementary to T, G, 
respectively). Primers are unnecessary for the shuffling 
reaction because the fragments generated by DNase I 
self-prime each other. However, DNA shuffling re- 
quires a cycle of three steps just as PCR does, and this 
first involves denaturization of the double-stranded 
fragments into single-stranded ones. Next, pairs of sin- 
gle-stranded fragments anneal along regions overlap- 
ping by a sufficiently large number of complementary 
bases to form overhangs (see Fig. 2). 

The term overlap refers to the region where two 
single-stranded fragments anneal and become double- 
stranded. The term overhang refers to the single- 
stranded regions flanking the overlap region that does 
not align during annealing. The overhangs created are 
either of type 5’ or 3’ (see Fig. 2). These two different 
overhang types are caused by the fact that DNA nucle- 
otides and thus strands have an inherent directionality, 
with the two ends labeled 5’ and 3’, respectively. Thus 
the overhangs also have directionality and are labeled 
according to the label of the overhanging end. The 

Parent ctemmizatioa annealing with overlap >V_.,. 

Randomfragments 
5OtoZOObp extension 

Fig. 1. The three steps of DNA shuffling. 

Fig. 2. Regions of overlap and overhang that form when two 
single-stranded fragments anneal. 

third step is the addition of free nucleotides via poly- 
merase extension. Polymerases are enzymes that cata- 
lyze the addition of free nucleotides. Polymerase can 
only fill 5’ overhangs because it has only 5’ + 3’ activity. 
The three steps are repeated, and each PCR cycle 
increases the average fragment length. After 20-40 
cycles, DNA sequences of the original length are 
produced. 

The experimental efficiency of DNA shuffling is lim- 
ited by key unanswered questions regarding the optimal 
mix and setup of initial sequence libraries and the effect 
of parameters such as recombinatory fragment length, 
annealing temperature and number of shuffling cycles 
on the assembly of full length product sequences. To 
answer these questions, quantitative models are pre- 
sented that describe the shuffling process. Based on this 
modeling base, optimization formulations are proposed 
to aim at maximizing the chances of meeting a recombi- 
nation objective. The remainder of the paper is orga- 
nized as follows. First, three models describing the 
DNA shuffling process are summarized. The first, 
(Random Fragmentation Model), describes the frag- 
ment size distribution after DNase I digestion. Given 
this fragment length distribution, the second model, 
(Fragment Assembly Model), predicts how the distribu- 
tion grows for subsequent shuffling cycles. The third, 
(Sequence Matching Model), estimates the fraction of 
fully-assembled genes whose nucleotide sequence 
matches a target one. The first two models are de- 
scribed in detail in Moore and Maranas (1999). Here, 
two optimization formulations based on the sequence 
matching model are derived for optimizing the DNA 
recombination step. The first one is an MILP formula- 
tion that simultaneously optimizes both the parent se- 
quence set and the recombinatory fragment length 
given a set of possible parent sequences. The second 
model is a bilinear formulation allowing for unequal 
parent sequence concentrations in the recombination 
step. An example that illustrates the improvements that 
can be realized with optimization is addressed through- 
out the sequence matching model and optimization 
sections. 

2. DNA shufiling models 

2.1. Random Fragmentation Model 

This model quantifies the distribution of fragment 
lengths after DNase I digestion of parent sequences 
with lengths of B nucleotides. The probability P,,, of 
breaking a nucleotide-nucleotide bond is assumed to be 
constant for all B-l of the bonds present. The frag- 
ment length distribution Q:, which describes the frac- 
tion of fragments of length. L found in the reaction 
mixture after fragmentation was calculated to be as 
follows (see Moore and Maranas (1999) for proof): 



G.L. Moore et al. / Computers and Chemical Engineering 24 (2000) 693-699 695 

• ~ 1.0% 

g 0.8% 
,..1 

"~ 06% 

,,~ 0 . 4 %  

..~ 
~ 0 . 2 %  

a2 0.0% 
5 0  100  150  2 0 0  

F r a g m e n t  L e n g t h ,  L 

Fig. 3. F r a g m e n t  length  d i s t r ibu t ion  after  f r agmen ta t i on  wi th  / ° c u t  = 

1%. 

~Pcutexp( -Pcut L) for 1 < L < B - 1 
QO = ( exp( - Pout B) for L = B 

Note that the distribution is monotonically decreas- 
ing (see Fig. 3), so that small fragments always outnum- 
ber large ones. This expression implies a mean fragment 
length of 1/Pcu t. Also, QO is only a function of Pcu t  

indicating that the gene length B only affects the spread 
of the final fragment length distribution. 

The value of this analysis is that it provides a quanti- 
tative way to adjust the fragment size distribution by 
changing the time and intensity of random fragmenta- 
tion. The next subsection describes how the original 
fragment length distribution QO changes after each 
annealing/extension step. 

2.2. Fragment Assembly Model 

This model tracks the fragment length distribution 
through a given number of annealing/extension steps. 
The fragment length distribution after N cycles is de- 
noted by Q~. The model tracks six pathways that result 
in the formation of fragments of length L. The only 
parameters in the model are the minimum allowable 
nucleotide overlap grain for successful annealing, the 
probability of failed annealing NA and the exponent 
in the annealing probability expression 

V ~ 
AL--V,  L -  L--1 

v ~ 
v = V m i  n 

which quantifies the probability that a fragment of 
length L will anneal with an overlap V. Based on this 
analysis, it is possible to track the average fragment 
length through any number of shuffling cycles and thus 
estimate how many shuffling cycles will be needed 
before full length genes are assembled. These models 
are discussed in detail and compared to experimental 
data in Moore and Maranas (1999). However, this 
paper concentrates on the sequence matching model, 
which examines the likelihood of assembling a desired 
shuffling product. 

2.3. Sequence Matching Model 

This model estimates the fraction of the full length 
assembled genes that match a desired target sequence 
(e.g. GTCGGTTC) when the set of parent sequences of 
length B to be recombined is given. This fraction can 
also be interpreted as the probability of having a ran- 
domly chosen full length sequence, assembled through 
DNA shuffling, match the given nucleotide sequence 
target. The objective of this model is to quantitatively 
predict shuffling results so that mathematical programs 
can be developed that optimize experimental parame- 
ters for a specific sequence goal. To this end, let Pi be 
the probability of a reassembled sequence matching the 
target sequence from position i to position B. The goal 
of this model is therefore to calculate P~ since this 
represents assembly of the entire target sequence. The 
assembly is assumed to begin at position i--1, and 
additional fragments are assumed to anneal in the 
direction of increasing position with each addition inde- 
pendent of previous ones. The sequence matching 
model considers a cascade of four events that must 
occur for a matching sequence to be produced. 

First a fragment of length L is chosen with probabil- 
ity QO from the range of fragment lengths retained for 
shuffling (L~, Lz). Since a number of fragment lengths 
can be retained for shuffling, a summation over the 
range (L~, L2) is necessary to include all possible L. 
Second, the fragment of length L anneals with an 
overlap V, which can take values from Vmin to L -  1 
nucleotides. The multiple possible overlaps necessitate a 
summation over V within the summation over L. The 
probability that a fragment of length L will anneal with 
an overlap V is denoted by AL_ v,L as defined earlier. 

Wetnur and Davidson (1967) suggest that the expo- 
nent ~ = - 1/2 which leads to the favoring of smaller 
overlap values throughout assembly. The probability 
that governs first fragment addition is adjusted to ac- 
count for fragment annealing/extension that occurs be- 
fore position i = 1, since the B nucleotides considered 
are assumed to be only a portion of a much larger 
sequence (e.g. gene cluster). Based on a Markov Chain 
analysis, the following expression for A L_ v,L at i = 1 is 
obtained. The details of the derivation are described in 
the Appendix of Moore and Maranas (2000). 

L - - I  

y, v ~ 
v = V m i  n 

A L_  V,L(i = 1) - -  L--  1 

Z (L- 
v = V m i  n 

Following the annealing step, the third event that 
must occur is the matching of the annealed fragment 
nucleotides with the target sequence. The parameter Ai,j 
is defined as the number of parent sequences that match 
the target nucleotide sequence from position i to posi- 
tion j. The annealing of a fragment of length L with an 
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overlap of V nucleotides contributes L -  V new nucle- 
otides starting from position i and ending with position 
i +  L -  V - 1 .  The number of parent sequences that 
match the target between these two positions is A;.~+/_ 
V - 1 ,  and the probability of choosing a matching 
parent sequence is therefore Aia+ z - v - I / K .  Finally, the 
fourth event is the subsequent addition of the remain- 
der of the sequence, which is assembled with probabil- 
ity P;+ z - v .  This subsequent addition is assumed to be 
independent from previous fragment additions, so sim- 
ple multiplication with the other three terms is needed. 
This establishes a four-term expression for P; that must 
be evaluated recursively. This result is shown below. 

, 
AB, B 

K '  
L2 

2 
, L = L  1 

l < i < B  

ei 

i > B  

i = B  

L-- 1 fmii+L V ) 1 p Qo z 
V =  V m i  n 

When only a single fragment length is considered for 
shuffling, the expression for Pj simplifies to the 
following: 

I I ~  i >  B 

Pi  : ' i = B 

k. j = l  j,L~ K P~+j, 1 < i < B  

Here j represents the set of possible extensions a 
fragment of length L can produce and runs from 1 to 
L -  Vmi~. 

The relative proportions of different sequences after 
DNA shuffling are difficult to predict because the re- 
assembled fragments may include none, one or multiple 
mutations originating from the parent sequences. This 
is because mutations do not recombine independently, 
unless the spacing between mutations is greater than 
maximum extension length L -  Vm~. In the case of 

independent recombination, mutations are produced in 
product sequences at a rate proportional to the fraction 
of parent sequences containing that mutation. How- 
ever, for most practical DNA shuffling, the recombina- 
tory fragment length is greater than the mutation 
spacing. Two terms are used to describe what may 
occur, crossover and linkage. A crossover of genetic 
material occurs when fragments from two different 
parent sequences anneal and extend. This results in a 
larger fragment that contains genetic features from 
both parents. Crossovers occur more frequently when 
shorter recombinatory fragments are utilized. Linkage 
occurs when a single fragment contains two or more 
closely grouped mutations. This can make crossovers in 
areas of closely spaced mutations infrequent since the 
mutations tend to remain linked. The sequence match- 
ing model takes into account both crossovers and link- 
age, as shown in the following example. 

The following example illustrates the use of the single 
fragment length sequence matching model. The goal is 
to shuffle six parent sequences each with a variety of 
mutations and to produce a sequence containing all 12 
of the mutations. The sequences are B =  151 nucle- 
otides long and are shown in Fig. 4. Parameter values 
for this example are assumed to be Vm~ = 5 and c~ = - 
1/2. For the case of independent recombination, the 
probability of producing the target sequence is 
(2 - 8)(3 - 2)(6 - :) = 0.0012%, a very low success rate. In 
this example, the most closely spaced mutations are ten 
nucleotides apart, so utilizing fragments with L < 15 
nucleotides produces independent recombination. Since 
blocks of mutations are found from positions 0 to 20 
and from 130 to 150 along with many closely spaced 
mutation pairs, larger fragment lengths are intuitively 
favored to improve the recombination frequency since 
this will cause the closely spaced mutations to remain 
linked, as desired. However, if fragments are used that 
are too large, the crossovers necessary for reassembling 
the product will occur too infrequently. The commonly 
used fragment length of 50 nucleotides produces a 
recombination probability P,. = 0.0090%, an improve- 
ment of close to ten-fold over independent recombina- 

P a r e n t  s e q u e n c e s :  

: : : . . . . . . 

12) X X X . . . . . .  
! ! ! i ! i i i i 

(3) g ,~..~ .......... 
: : : : : : 

(4 )  i ~ ? ?  i ~ ? ? "  
(5) : ~ i ~,,~ ~ ~,,2,,~. 
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Fig. 4. The six parent sequences and the target sequence utilized in 
the example. 
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Fig. 5. A plot of recombination probability P1 versus recombinatory 
fragment l eng th / ,  when all six parent sequences are utilized. 
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tion. A plot of recombination probability P~ versus 
fragment length L is shown in Fig. 5. The observed 
optimal fragment length L =  37, gives P1 =0.0105%, 
which is a 17% improvement over the L = 50 choice. As 
shown in Fig. 5, the recombination probability is a 
strong function of fragment length exhibiting a sharp 
maximum. These results clearly demonstrate the impor- 
tance of being able to predict this 'best' fragment 
length. 

While for short sequences exhaustive calculation for 
all possible fragment sizes is feasible this becomes im- 
practical for larger sequences. Mathematical programs 
for calculating this optimum without resorting to ex- 
haustive calculation are presented in the next section. 

3. Optimization framework 
The goal of this section is to formulate mathematical 

programs for optimizing the selection of recombinatory 
fragment length and parent sequence set. The parent 
DNA sequences as well as the target sequence are 
assumed to be known, so the framework of the se- 
quence matching model is utilized. The objective of the 
desired mathematical program is the maximization of 
P~, which defines the probability of matching the target 
sequence. 

First, the binary variable Yk is introduced to repre- 
sent the inclusion of parent k in the shuffling mixture. 
For a parent sequence that is selected for shuffling, 
y~ = 1, otherwise y~ = 0. The number of parent se- 
quences available for shuffling is denoted by Ktot. 

Two parameters in the sequence matching model 
depend on the selection of the parent set. The first, As,j, 
is now expressed as 

Ktot 
A/,j = ~ ykAik.j 

k = l  

The parameter Akj equals one if the specific parent 
sequence k matches the target sequence from positions 
i to j, and equals zero otherwise. The inclusion of the 
binary variable Yk in the summation ensures that if a 
parent sequence is not selected for recombination (Yk = 
0), it does not contribute to the matching probability 
value. Second, the parameter K that represents the 
number of parent sequences being recombined is ex- 
pressed in a similar manner: 

g to t  

K =  )-", Yk 
k = l  

The next step is to introduce these two expressions 
into the single fragment length sequence matching 
model for 1 < i < B. 

697 

/ r Ktot 1 
L --  Vmin / E A k  

Pi = E AJL k= Yk i,i,+j-1 
j = l  " / Ktot Ps+j 

L k = l  

Rearranging to eliminate the denominator yields the 
following: 

E Y kei = E A J, L i,i +j -  lYkPi +j 
k = l  j = l  k 1 

This expression contains the nonlinear products ykP~ 
and ykPs+j. Since this product consists of a binary 
variable and a continuous variable, it can be expressed 
equivalently with two set of linear inequalities (Glover, 
1975). Four additional constraints are introduced, and 
the continuous variable Ws.k replaces the product ykPs. 

0 ~ Wi,k < Yk 

P, - - / ( ' t o t (  1 - -  Yk) <-- Wi,k < Pi 

Kto t L -- Vmi n / t  Ktot 

E Wi,k = E Aj, L~ ~= Aki+j--lWi+j,k ) 
k = l  j = l  k 1 

For y~ = 0, the above constraints yield ws, k = 0 while for 
Yk = 1, WS.k = Ps is recovered. 

Next, a binary variable xL is introduced to represent 
whether or not a given fragment length is selected for 
recombination. Since only the single optimal fragment 
length is desired, only one of the binary variables will 
be equal to one, resulting in the following constraint. 

Zmax 

Y, Xt---- 1 
L = Lmi n 

where Lmi n and Lma x define the range of fragment 
lengths being considered. Note that in the single frag- 
ment length sequence matching model, the variable L 
only appears in the summation index. The binary vari- 
able XL is then introduced in the LHS and RHS of the 
above inequality such that linearity is preserved: 

gtot(X L -- 1) 
g to  t t --  Vmi n / / g t ° t  k x 

~ E Wi, k - E Aj,L~ E__IAS, i+j-IWs+j.k / k = l  j = l  k 

__< Ktot(1 -- XL) 

Note that for x L = 1, the expression reduces to the 
equality presented in the sequence matching model. For 
XL = 0, the expression is constrained by the range [ -  
Ktot, +/(tot], effectively inactivating the constraint for 
that value of L, since the expression contained between 
the inequalities is bounded within [ - / ( to  t, + Ktot]. 

Given the above expression, the problem of maximiz- 
ing P1 with respect to both XL and Yk can be posed as 
the following MILP: 

max P~, subject to; 
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Fig. 6. A plot of recombination probability P~ versus recombinatory 
fragment length L for different parent sequence sets. 

,,ot (Kt, t ) 
Ktot(XL-1) -~ Z Wi,k -- Z AJ, L i,i+:-lwi+j,k 

k = l  j = l  k 1 

<Ktot(1--xL), l < i < B  

Ktot Ktot 

2 WB,k 2 Ak = Yk B,B, i = B; Pi = 1, i > B 
k = l  k = l  

0 <_ w~, k < y~ 

P i -  Ktot(1 -Yk) <-- Wi, k ~ Pi 

Lmax 

Z XL= 1 
L = Lmi  n 

This MILP allows selection of parent sequences that 
are present in equal concentrations in the recombina- 
tion mixture. Next an optimization formulation is con- 
structed for selecting the optimal relative 
concentrations for each of the parent sequences given 
the recombinatory fragment length. 

The continuous variable Ck is defined as the relative 
concentration (mole fraction) of parent sequence k. The 
use of relative concentrations implies that the sum of all 
Ck will be equal to one. Parameters A;j and K are now 
expressed as 

Ktot Ktot 

Ae,:= ~ CkA~j K =  ~ C k = l  
k = l  k = l  

The newly defined parameters can be directly substi- 
tuted into the single fragment length sequence matching 
model. This produces the following bilinear NLP for- 
mulation which is solved once for each L in the range 
being considered to find the optimal recombinatory 
fragment length. Despite the presence of nonconvexities 
no local optima are observed in the studied examples. 

max PI, subject to: 

Ktot 

Z C k = l  
k = l  

ei ~-- 

1, i > B  
Ktot 
Z CkA~,., i =  B 

k = l  
L -- Vmi n / / / ( t o  t "~ 

Z Aj, L~ ~ CkAki+j-1) el+j, l ~ i < B  
j = l  k X 

The six-parent example discussed earlier can now be 
solved for both the MILP and the bilinear formula- 
tions. First, when all parents are selected for recombi- 
nation (achieved by fixing all yk = 1), the optimal 
recombination probability Px of 0.0105% for a frag- 
ment length L of 37 nucleotides is confirmed. However, 
when the complete MILP is solved for both xL and Yk, 
the subset 5 of parent sequences 1, 3 and 6 is revealed 
to be the optimum recombinatory choice with a recom- 
bination probability of 0.0294%, an almost three-fold 
improvement. Note that the new optimal length is 
L = 70 nucleotides, almost twice the length of the previ- 
ous optimum implying that the selection of the optimal 
fragment length strongly depends on the selection of 
the parent set. A plot of Px versus L for different parent 
sequence recombination sets is shown in Fig. 6. These 
results suggest a surprising complexity in the shape and 
form of the P1 versus L plots for different parent 
choices. Specifically, the multimodal characteristics of 
these curves reveal narrow fragment length regions for 
which favorable recombination results are obtained. 

Next, the bilinear formulation is solved, producing 
the result shown in Fig. 6. The optimal recombination 
probability is equal to 0.0297% at L = 71. The optimal 
parent sequence concentrations for this fragment length 
are C1 = 0.362, C3 = 0.339, C6 = 0.299, with all other 
Ck = 0, which are fairly close to the equal relative 
concentration solution. These results indicate that uti- 
lizing these formulations can produce a substantial 
increase in recombination probability. 

4 .  S u m m a r y  

In this paper, three predictive models for quantifying 
DNA recombination were presented. The Random 
Fragmentation Model and the Fragment Assembly 
Model provided a method for tracking the fragment 
length distribution in the reaction mixture during frag- 
mentation and DNA shuffling, respectively. The se- 
quence matching model was established to calculate the 
probability of producing a prespecified target sequence. 
Optimization formulations based on the framework of 
the sequence matching model were then developed to 
optimize experimental setup parameters for a specific 
sequence objective. The experimental parameters exam- 
ined were recombinatory fragment length, parent DNA 
sequence set and parent DNA sequence concentration. 
Computational results indicated that by systematically 
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optimizing parent sequence selec-tion and recombina- 
tory fragment length significant improvement on typical 
experimental can be realized. Specifically, in the exam- 
ple presented, the use of an optimal fragment length for 
parent sequences at optimal concentrations produced 
an improvement in recombination probability of ap- 
proximately three times over the commonly used frag- 
ment length of 50 nucleotides. 

Nevertheless, DNA recombination processes such as 
DNA shuffling that require single-strand annealing can 
be limited in some cases since they require a high degree 
of sequence similarity in the parent sequence set for 
successful annealing. The modeling and optimization 
framework presented is currently being extended to 
combine DNA shuffling with the new technique of 
incremental truncation libraries (Ostermeier, Nixon & 
Benkovic, 1999) to create a new recombination tech- 
nique that does not depend solely on parent sequence 
similarity. 
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