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This work is an exposition on the application of optimization tools to problems in molecular design and
bioinformatics. The specific areas addressed by the author include the design of polymers, surfactants, refrig-
erants, and enzymes. The goal is to systematically design molecules for the given application with desired
performance characteristics. The performance measures of interest in polymer design are mechanical, electrical
and thermophysical properties. In case of surfactants properties such as the HLB, emulsivity, detergency, and
foaming stability influence the performance significantly. The performance measure in refrigerant selection and
cycle synthesis is the balance between operating costs related to energy input and the investment costs. The
performance measure in enzyme design is the probability of achieving a given nucleotide sequence target. The
role of optimization is to “systematically” search through the alternatives. The research results in each of the

applications mentioned above are presented.

Introduction
The competitive edge and market share of many
chemical industries manufacturing polymers, re-
frigerants, solvents, surfactants, enzymes, and
biomaterials are ultimately intertwined with the
identification of “new” and “better” products.
Though the vast number of alternatives presents
a designer with an opportunity to find a better
product, it also poses the challenge of systemat-
ically searching through the alternatives. With
the rapid growth in optimization theory, algo-
rithm development and high-performance com-
puting, exciting and unprecedented research op-
portunities are emerging in molecular design to
assist in this endeavor. Research results in poly-
mer design, surfactant design, refrigerant selec-
tion and enzyme design are discussed in this work.

Previous work include the computer—aided de-
sign of molecular products such as polymers
[9,7,5], solvents [5] and refrigerants [4,5] to name
a few. The employed search algorithms include
enumeration techniques, knowledge—based strate-
gies, genetic algorithms and mathematical pro-
gramming based methods. A comprehensive re-
view of prior work can be found in Camarda and
Maranas [3].

The objective is to find a molecule for a given
application which optimally satisfies the desired
performance targets.

Polymer Design

In polymer design the problem of identifying the
polymer repeat unit architecture so that a per-
formance objective that is a function of mechan-
ical, electrical and/or physicochemical properties
is addressed. Since the molecular design prob-
lem is posed within an optimization framework,
a quantitative representation of the molecule and
a quantitative structure-property relation is re-
quired. Group contribution methods (GCM) pro-
vide popular, versatile and relatively accurate
ways for estimating properties based on the num-
ber and type of molecular groups participating
in a molecule or repeat unit. (GCM) are based
on the additivity principle of the groups consti-
tuting the molecule under investigation and have
been extensively utilized in the estimation of a
wide spectrum of polymeric properties including
volumetric, calorimetric, thermophysical, optical,
electromagnetic and mechanical properties. An
extensive compilation of these estimation meth-
ods along with the corresponding parameters can
be found in van Krevelen [11]. The use of (GCM)
makes adequate the molecular representation us-
ing n=(ny,n2,...,ny) where n; are the number
of groups of type i present in the molecule. The
problem of identifying the best molecule based on
some measure of performance can be expressed as
the following mixed—integer nonlinear optimiza-
tion problem.



min MP (p;j(n))

subject to pf < pj(n) < p?

n; € {nf,nf’—}—l,...,n?}, i=1,...,N

The following two most widely used measures of
performance are considered in this study [7]:
(1) Minimization of the maximum scaled devi-
ation of properties from some target values (prop-
erty matching (PM)),

min MP = max ls |pj(m) — pf|

J p]
where p7 is the target for property j and
p} the corresponding scale.  (2) Minimiza-
tion/maximization of a single property j* (prop-
erty optimization (PO)),

min / max MP = p;-(n).

To maintain structural feasibility of the molecule
a number of linear constraints on n must be in-
cluded in the problem (OMD). These structural
feasibility constraints define the necessary condi-
tions under which a set of molecular groups can
be interconnected so that there is no shortage
or excess of free attachments. The estimation
of most properties pertinent to engineering de-
sign is given by the ratio of two linear expres-
sions in m;. Though the above formulation is
a mixed integer nonlinear program (MINLP) in
general, the underlying mathematical functional-
ities of the above property estimation model are
utilized to reformulate and solve the problem as
a mixed integer linear program (MILP).

One of the limitations of group contribution es-
timation is that the internal molecular structure
of the polymer repeat unit is only partially taken
into account. For example, both polypropylene
-CH,CH(CH3)CH,CH(CHj3)- and head to head
polypropylene -CH,CH(CH3)CH(CH;3)CHs-,
have the same molecular group representation.
These shortcomings are alleviated with the use
of property correlations involving topological in-
dices as structural descriptors. These indices

(OMD)

are numerical values which uniquely identify
the polymer repeat unit and contain informa-
tion about the atomic and electronic structure.
Specifically, Bicerano [1] used the zeroth- and
first-order molecular connectivity indices to cor-
relate a wide range of polymer properties, includ-
ing density, glass transition temperature, bulk
modulus, and heat capacity. The functional form
of the topological indices used are given in Ca-
marda and Maranas [3]. The following additive
property predictive form is utilized:

(Property Prediction) = (Basic Group
Contribution) 4+ (Connectivity Indices
Contribution)

Though in general the above problem is a non-
convex MINLP, it is reformulated and solved as a
convex MINLP utilizing the mathematical func-
tionality of the connectivity indices.

So far it has been assumed that the properties
are uniquely determined by the types of groups
present in the molecule and their interconnectiv-
ity. However, in reality there are discrepancies be-
tween predicted and observed values. These can
be reconciled by recognizing that the parameters
of the property model vary around their nominal
values. This can be expressed mathematically by
utilizing probability distributions to describe the
likelihood of different realizations for the model
parameters. The probabilistic description of per-
formance objectives and constraints is described
in Maranas [6]. This formulation involves proba-
bility terms whose evaluation for each realization
of the deterministic variables requires the inte-
gration of multivariate probability density distri-
butions. This is accomplished without resorting
to computationally intensive explicit or implicit
multivariate integration. This is done by trans-
forming the stochastic constraints into equivalent
deterministic ones. Furthermore, it is shown that
for probabilities of interest this formulation is a
convex MINLP which can be solved to global op-
timality using commercial packages. The objec-
tive of using this formulation is to construct a
trade-off curve between performance target and
the probability of meeting the target. This aids
the designer in choosing the optimal level of risk
in selecting the molecule. Next, the surfactant



design problem is briefly discussed.

Surfactant Design

The design of surfactant solutions is an impor-
tant problem in many industries since they are
extensively utilized in diverse applications such as
detergents, emulsifiers, and to ensure film coat-
ing and waterproofing. In the design of surfac-
tant solutions the performance measures of inter-
est are HLB, emulsivity, detergency, and foaming
stability. Though this problem is also addressed
within the general molecular design paradigm dis-
cussed previously, this problem presents addi-
tional unique challenges. The macroscopic prop-
erties of interest are related to structural descrip-
tors of surfactants through fundamental solution
properties such as critical micelle concentration
(CMC) and area of a surfactant molecule within
a micelle. Though this has the same flavor as
relating property of polymers to connectivity of
the molecule through topological indices there is
an important difference. In polymer design, con-
nectivity indices could be determined from the
connectivity by simple evaluation. In the case of
surfactants, determination of fundamental solu-
tion properties involves the minimization of free
energy.

Therefore the problem of identifying the molec-
ular structure of a surfactant with optimal values
for the desired macroscopic properties is posed as
a two-stage optimization problem [2]. The inner
stage identifies the CMC and other micellar prop-
erties by minimizing the free energy 11,4, while the
outer stage optimizes over the surfactant struc-
tural descriptors. A conceptual optimization for-
mulation of the problem is as follows:

max/ min f(macroscopic properties)

subject to

macroscopic
properties

( fundamental >

g(fundamental properties)

arg min  p,(structural)

properties descriptors

This formulation is solved using a truncated new-
ton method. Since this problem may possess mul-
tiple local minima, the problem is solved with mul-
tiple starting points. The structural descriptors

include the number of carbon atoms in the surfac-
tant tail n., the cross-sectional area of the head
ay, the charge separation for an ionic head group
d, and the dipole separation for dipolar surfac-
tants d. These descriptors provide a concise de-
scription of the surfactant molecular topology and
polarity. They are theoretically related to funda-
mental solution properties determining the shape,
size and concentration of the surfactant micelles.
The fundamental solution properties include the
equilibrium area per molecule in a micelle a, the
micellar shape, and the concentration at which
micelles form (known as the critical micellar con-
centration or CMC). These properties are related
through local regression models to macroscopic
surfactant properties characterizing the suitabil-
ity and effectiveness of the surfactant for a partic-
ular application (e.g., hydrophilic-lipophilic bal-
ance number (HLB)). Details of the functional re-
lation of free energy to surfactant molecular struc-
ture and solution properties is given in Camarda
et.al. [2]. This methodology is applied to iden-
tifying a nonionic surfactant with hydrophilic-
lipophilic balance (HLB) of 13.8. HLB is a widely
used measure of the emulsifying ability of a sur-
factant. High value for HLB implies high water
solubility, and suitability for detergent or emul-
sifier. A local regression model is constructed
which relates HLB to CMC as follows:

InHLB =2.76+0.04InCMC

The truncated-Newton algorithm was started
from a number of initial starting points, and
in each case, the algorithm converged to the
same optimal solution involving a head cross-
sectional area of 0.54977 nm and 5.997 carbons
in a straight-chain tail. The CMC for this sur-
factant was found to be 0.034 mM. A search over
tabulated surfactant properties reveals that a sur-
factant with a dimethyl phosphene oxide head
group and a six carbon tail is compatible with
those structural descriptors.

Refrigerant Selection and Cycle Synthesis
The focus now shifts from designing a molecule
(refrigerant) to selecting a molecule from a pre-
postulated set of potential candidates. This still
poses a challenge when placed within the con-
text of synthesizing refrigeration cycles. The



combinatorial problem of appropriately assign-
ing refrigerants to different locations in the re-
frigeration cycles requires the use of optimization
tools. The problem addressed is stated as follows
[10]: Given a set of process cooling loads, heat
sinks at different temperatures and a set of avail-
able pure refrigerants, find the refrigeration cycle
topology, operating conditions and refrigerants,
selected from the list, that optimize a weighted
sum of the investment and operating costs for the
refrigeration system.
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Figure 1: Vertical Cascade for pure refrigerant
system

%

The proposed model involves a superstructure
representation for both the synthesis and the re-
frigerant selection problems. The model allows
for the identification of the number of stages,
their operating temperature ranges, the type of
refrigerant participating in a stage, the tempera-
ture where a switch between two refrigerants oc-
curs, the use of economizers, presaturators or heat
exchangers between intermediate stages. The ob-
jective to be optimized considers both investment
and operating costs.

These alternatives are compactly represented
as anetwork. The operating temperature range of
each potential refrigerant is discretized and these
discretized levels are the nodes of the network.
The alternatives corresponding to (i) operation
of vapor compression cycle between temperature
levels of a particular refrigerant (ii) heat intake
from a cooling load (iii) switch between refriger-
ants are represented by the arcs of the network.
The process configuration is obtained once the
optimal energy flows in the network are identified.

The optimization problem is solved as an MILP.
An example of the optimal configuration gener-
ated by this procedure for pumping 100kW of
heat from 190K to 310K using a ethane-propane
refrigeration system is shown in Figure 1. Exam-
ples demonstrating the advantage of simultaneous
refrigerant selection and cycle synthesis over a
sequential approach are given in Vaidyaraman
and Maranas [10].

Enzyme Design

DNA recombination techniques provide the back-
bone of directed evolution experiments for engi-
neering improved proteins and enzymes. The
setup of directed evolution experiments is vital
to the rapid and economical production of en-
hanced enzymes since screening a large number
of proteins for the desired property is expensive
and time consuming. The goal is to develop
predictive models for quantifying the outcome of
DNA recombination employed in directed evo-
lution experiments for the generation of novel
enzymes. Specifically, predictive models are out-
lined for (i) tracking the DNA fragment size
distribution after random fragmentation and
subsequent assembly into genes of full length and
(ii) estimating the fraction of the assembled full
length sequences matching a given nucleotide
target. Based on these quantitative models, op-
timization formulations are constructed which
are aimed at identifying the optimal recombina-
tory length and parent sequences for maximizing

the assembly of a sought after sequence target [8].
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Figure 3: The three steps of DNA shuffling.

A flowchart of DNA shuffling is shown in Fig-
ure 3. First an initial set of parent DNA se-
quences is selected for recombination. The parent
sequences undergo random fragmentation, typi-
cally by DNase I digestion. The fragment length
distribution Q%, which describes the fraction of
fragments of length L found in the reaction mix-



ture after fragmentation is calculated to be as fol-
lows

QO P.yrexp(—P.L) for1<L<B-1
L exp(—P.y:B) for L=RB

Next, the double-stranded fragments within a
particular size range (i.e., 50-200 base pairs)
are isolated and reassembled by the Polymerase
Chain Reaction (PCR) without added primers.
This step is quantified using a fragment assem-
bly model that tracks the fragment length dis-
tribution through a given number of anneal-
ing/extension steps. This is used to estimate how
many shuffling cycles will be needed before full
length genes are assembled.

A sequence matching model is developed to aid
in the goal of optimizing experimental parameters
to maximize the probability of obtaining a desired
sequence. This model quantitatively predicts
the probability of having a randomly chosen full
length sequence, assembled through DNA shuf-
fling, match the given nucleotide sequence target.
This model recursively calculates the probability
P; of a reassembled sequence matching the target
sequence from position 7 to position B (length of
parent sequence). The probability P, represents
assembly of the entire target sequence. The recur-
sive expression for evaluating P; is shown below.

1, i>B
S i=B
P1:< L L-1

X (7&’“;{"_1) Piyr-v, 1<i<B
In the above expression, K is the number of par-
ent sequences, (L1,L2) are the range of fragment
lengths retained for shuffling, Q¢ is the proba-
bility that a fragment is of length L, Ap_vy  is
the probability that a fragment of length L will
anneal with an overlap V, and A; ;4 v _1 is the
number of parent sequences that match the target
between the positions ¢ and 1 + L — V — 1.

The above predictive sequence matching model
enables the formulation of mathematical pro-
grams for optimizing the recombinatory fragment
length and parent sequence set. The objective of

the desired mathematical program is the maxi-
mization of the probability of matching the target
sequence (P;). Two variations of this model are
considered. In the first variation, the parent se-
quences which are chosen occur in equal relative
concentration. This problem is combinatorial in
nature due to the need to choose the optimum set
of parent sequences. The binary decision vari-
ables are y; denoting if parent k is chosen and
zy, indicating if the recombinatory length is L.
This results in a MILP formulation. The second
variation allows all the parent sequences to be
present but optimizes the relative concentration
C) of each parent sequence. This is solved as a
bilinear NLP once for each L in the range be-
ing considered to find the optimal recombinatory
fragment length.

The importance of using the MILP and bilin-
ear formulations are illustrated through an ex-
ample. The goal is to shuffle six parent sequences
each with a variety of mutations and to produce
a sequence containing all twelve of the mutations.
The sequences are B = 151 nucleotides long and
are shown in Figure 4.
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Figure 4: The six parent sequences and the
target sequence utilized in the example.

First, when all parents are selected for recom-
bination (achieved by fixing all y;, = 1), the
optimal recombination probability P; of 0.0105%
for a fragment length L of 37 nucleotides is con-
firmed. However, when the complete MILP is
solved for both z; and yi, the subset of parent
sequences 1, 3 and 6 is revealed to be the opti-
mum recombinatory choice with a recombination
probability of 0.0294%, an almost three-fold im-
provement. Note that the new optimal length is



L = 70 nucleotides, almost twice the length of
the previous optimum implying that the selec-
tion of the optimal fragment length L strongly
depends on the selection of the parent set. A
plot of P, versus L for different parent sequence
recombination sets is shown in Figure 5. These
results suggest a surprising complexity in the
shape and form of the P; versus L plots for
different parent choices. Specifically, the mul-
timodal characteristics of these curves reveal
narrow fragment length regions for which fa-
vorable recombination results are obtained.
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Figure 5: A plot of recombination probability Py
versus recombinatory fragment length L for
different parent sequence sets.

Next, the bilinear formulation is solved, pro-
ducing the result shown in Figure 5. The optimal
recombination probability is equal to 0.0297% at
L = 71. The optimal parent sequence concen-
trations for this fragment length are C; = 0.362,
Cs5 = 0.339, Cs = 0.299, with all other C} = 0,
which are fairly close to the equal relative con-
centration solution. These results indicate that
utilizing these formulations can produce a sub-
stantial increase in recombination probability.
Summary
This paper discussed the application of optimiza-
tion techniques to the area of molecular design
and bioinformatics. Key issues in the area of
polymer design, surfactant design, refrigerant
selection, and enzyme design were identified. In
each case it was shown how the use of optimiza-
tion techniques helped in “homing in” on the
desired alternatives in a systematic way as op-
posed to time and labor intensive trial and error
approach.
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