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ABSTRACT

We present a systematic computational framework,
eCodonOpt, for designing parental DNA sequences for
directed evolution experiments through codon usage
optimization. Given a set of homologous parental
proteins to be recombined at the DNA level, the optimal
DNA sequences encoding these proteins are sought for
a given diversity objective. We find that the free energy
of annealing between the recombining DNA sequences
is a much better descriptor of the extent of crossover
formation than sequence identity. Three different
diversity targets are investigated for the DNA shuffling
protocol to showcase the utility of the eCodonOpt
framework: (i) maximizing the average number of
crossovers per recombined sequence; (ii) minimizing
bias in family DNA shuffling so that each of the parental
sequence pair contributes a similar number of cross-
overs to the library; and (iii) maximizing the relative
frequency of crossovers in specific structural regions.
Each one of these design challenges is formulated as a
constrained optimization problem that utilizes 0–1
binary variables as on/off switches to model the
selection of different codon choices for each residue
position. Computational results suggest that many-
fold improvements in the crossover frequency, loca-
tion and specificity are possible, providing valuable
insights for the engineering of directed evolution
protocols.

INTRODUCTION

The high-throughput screening of large combinatorial libraries
is increasingly emerging as a dominant strategy for protein
engineering challenges requiring specific functionalities
[e.g., thermostability (1–3), enantioselectivity (4,5), gene
therapy vectors (6,7), vaccines (8–10) and bioremediation
(11–13)]. These combinatorial protein libraries are obtained
by expressing, in appropriate prokaryotic hosts, the corre-
sponding combinatorial DNA libraries. Thus, even though the
screening step is performed at the protein level, the diversity
generation step (i.e., combinatorialization) occurs at the DNA
level. A number of methods have been proposed based on

random mutagenesis [i.e., error-prone polymerase chain reac-
tion (PCR) (14–16)] and various DNA recombination strate-
gies (17) to generate combinatorial DNA libraries from a small
set (i.e., from 2 to about 20) of homologous parental DNA
sequences having to some, but not sufficient, extent the desired
functionality. The key challenge herein is to ensure that DNA
sequence space is sampled in an efficient and unbiased
manner. While mutagenesis-based methods essentially probe
DNA sequence diversity adjacent to the parental sequences,
DNA recombination allows, in principle, the sampling of DNA
sequences contained within the convex polytope defined by the
vertices representing the parental sequences (Fig. 1). In practice,
however, DNA recombination requires the annealing of
complementary single-stranded fragments originating from
different parental sequences (i.e., heteroduplex formation),
which tends to occur primarily within stretches of near perfect
sequence identity. This, in turn, gives rise to biased combinatorial
DNA libraries or, even worse, libraries with no additional
diversity over the parental one.

Here, we explore in silico the possibility of boosting, or even
specifically directing, the formation of DNA recombination
events by exploiting the inherent redundancy in the codon
representation while recognizing that host preferences for
specific patterns of codon usage may reduce the number of
viable codon choices. For example, isoleucine has the
following three synonymous codon representations: ATA,
ATC and ATT. Therefore, it is possible to optimize the under-
lying parental DNA sequence codon representation for
increasing and/or shaping diversity while at the same time
preserving the parental amino acid encodings in the generated
combinatorial protein libraries. This strategy is well suited in
cases where parental sequences are synthetically generated
(e.g., through oligomer ligation). The utility of this approach
has been recognized and exploited in an empirical way in the
context of industrially developed directed evolution protocols
such as oligo shuffling (18) and GeneReassembly (19). In this
work, a systematic computational framework is proposed for
exploring the limits of performance that can be achieved
through codon optimization. Specifically, mathematical
optimization problems are formulated and solved for identifying
the optimal codon representation of a parental protein set in
light of different diversity objectives. DNA shuffling (20,21) is
used as the benchmark recombination method to showcase the
proposed framework. However, the formulations presented
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here can be extended in a straightforward manner to other
annealing-based recombination protocols such as StEP (22),
RACHITT (23) and SCRATCHY (24).

The DNA shuffling protocol has been described in detail
previously (20,21). Briefly, it consists of two steps: (i) random
fragmentation of a small set of parental nucleotide sequences
and (ii) reassembly of the fragments through PCR without
primers producing a library of full-length nucleotide sequences
(Fig. 2). During the fragment annealing step, duplexes are
formed through in-frame fragment annealing. Homoduplexes
are formed when the annealed fragments originate from the
same parental sequence, whereas heteroduplexes are formed
when the two fragments are derived from different parental
sequences (Fig. 3). Upon extension, heteroduplexes give rise to
crossovers, the junction points between segments from
different parental sequences (Fig. 2). Crossovers provide the
quantitative means for assessing diversity through recombination
in DNA shuffling. Because DNA shuffling utilizes annealing and
extension steps during reassembly, crossover positions in turn are
biased towards regions where pairs of parental sequences share a
high degree of sequence identity. This has been observed
experimentally (21) and has been quantitatively modeled (25).

In this paper, a systematic method, eCodonOpt, is introduced
for redirecting crossover positioning by engineering the
sequence identity/free energy profile of a sequence set through
codon usage optimization. Specifically, model formulations
are described for (i) maximizing the average number of cross-
overs per recombined sequence, (ii) minimizing bias in family
DNA shuffling (26) so that each of the parental sequence pair
contributes a similar number of crossovers to the library and

(iii) maximizing the relative frequency of crossovers in specific
three dimensional (3D) structures such as loop or scaffold
regions. In all cases the eShuffle software (25) is used to
predict the number, position and type of crossovers.

eCodonOpt MODELING FRAMEWORK

The basic problem addressed in this work can be stated as
follows: given a set of parental proteins, design the optimal
nucleotide sequences encoding those proteins for a given
diversity objective. A constraint-based modeling framework is
introduced that only permits nucleotide sequences encoding
the underlying parental proteins as solutions. It utilizes 0–1
binary variables as on/off switches to model the presence of a
specific codon choice in a given residue position. Below, the
index notation, variables, parameters and constraints utilized in
the basic eCodonOpt model are listed.

Indices

i ∈ {1,2,…,B} = set of nucleotide sequence positions

k ∈ {1,2,…,Ktot} = set of parental sequences

n,n1,n2 ∈ {A, T, C, G} = set of nucleotides in positions i,
i + 1,i + 2 in parental sequence k

Variable set

1, if nucleotide n is present at position i in
xink = { parental sequence k

0, otherwise

Parameters

1, if nucleotide n is permitted at position i in
aink = { parental sequence k

0, otherwise

1, if nucleotide pair (n,n1) is permitted at positions
binn1k = { (i,i+1) in parental sequence k

0, otherwise

1, if nucleotide pair (n,n2) is permitted at positions
cinn2k

= { (i,i+1) in parental sequence k
0, otherwise

Specifically, the proposed model utilizes the binary vari-
able xink to represent the underlying nucleotide representation

Figure 1. Depiction of the sequence space explored by mutagenesis and
recombination. Large blue dots represent parental sequences, while smaller red
(mutagenesis) and green (recombination) dots represent combinatorial DNA
library members.

Figure 2. Diagram of DNA shuffling. First, the parental sequences are randomly fragmented by the enzyme DNase I. The fragments are then reassembled by
repeated primerless PCR cycles. Each cycle consists of (i) denaturization, when double strands of DNA are separated into single strands, (ii) annealing, when DNA
fragments reanneal forming duplexes and (iii) extension, when the addition of new nucleotides is catalyzed by a polymerase enzyme. Crossovers are generated
during the extension step when duplexes composed of fragments from different parents have new nucleotides added. After many cycles, full-length sequences are
reassembled.
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n = (A, T, C, G) at every sequence position i of the parental
protein k. Parameter aink is equal to 1 only if there exists at least
one codon representation that allows the use of nucleotide n at
position i of parental sequence k. Parameter binn1k

is equal to 1
only if nucleotides (n,n1) are both permitted at the first two codon
positions whereas parameter cinn2k is equal to 1 if nucleotides
(n,n2) are allowed at the first and third codon positions. These
parameter values are determined by scanning the parental
proteins against the codon translation table. See Tables S1–S3
in the Supplementary Material for a complete list of parameter
values for all 20 amino acids.

Codon constraints

Because only one nucleotide choice n can be present at each
position i of sequence k, xink is allowed a non-zero value for
only one of the (A, T, C, G) choices for n for every (i,k) pair
(see constraint 1). In addition, if a particular triplet (i,n,k) is not
permitted (aink = 0) then variable xink is forced to zero
(constraint 2).

xink = 1, ∀ i,k 1

xink = 0, ∀ i,n,k : aink = 0 2

Constraints 1 and 2 suffice for residues with a single degenerate
position (e.g., alanine). Additional constraints are needed for
residues with multiple codon redundancies such as serine,
arginine and leucine.

Constraint for serine encoding positions

Specifically for serine with degenerate first and second codon
positions, if a consecutive pair (n,n1) is disallowed (binn1k = 0)
then xink and xi+1,n1,k

cannot both be equal to 1.

xink + xi+1,n1k
≤ 1, ∀ i,n,n1,k : binn1k

= 0 3

Constraint for arginine, leucine and serine encoding
positions

Similarly, for degeneracies in the first and third position for
arginine, leucine and serine residues, the following constraint
is needed.

xink + xi+2,n2k
≤ 1, ∀ i,n,n2,k : cinn2k

= 0 4

Host requirements

Substantial evidence exists that specific organisms prefer
certain synonymous codons (i.e., for the same amino acid) over
others. It has been shown that the frequency of codon usage is
directly proportional to the corresponding tRNA population
[e.g., Escherichia coli (27), Drosophila melanogaster (28) and

Caenorhabditis elegans (29)]. Rare codons are generally undesir-
able because they decrease protein expression levels due to
translational stalling (30). The proposed constraint framework
is flexible enough to disallow the presence of rare codons by
appropriately redefining parameters aink, binn1k and cinn2k. For
example, disallowing the rare isoleucine codon ATA simply
requires setting ai+2,Ak = 0 for all isoleucine positions in the
DNA sequence, thus eliminating the use of A in the third position.
However, is worthwhile noting that the removal of all rare
codons can cause protein folding problems (31). Therefore,
instead of completely eliminating rare codons it is possible to
construct constraints that maintain codon usage ratios within
some upper and lower bounds defined around the average
organism-specific codon usage preferences.

A systematic approach for designing an organism-specific
codon representation requires the use of a scoring metric to
quantify the level of preferred codons present. Here we formulate
constraints requiring that the host-specific score for each of the
parental sequences is greater than a specified lower bound. The
use of two such metrics is investigated: (i) the Codon Adaptation
Index (CAI) (32) and (ii) Major Codon Usage (MCU) (27,33).
In calculating the CAI, each codon (n,n1,n2) is assigned a
weight ωnn1n2

that ranges from 0 (low frequency) to 1 (high
frequency) based on how often it is utilized in the host
organism. For instance, ATC is the most frequently used
isoleucine codon, so ωATC = 1, while the remaining isoleucine
codons are assigned weights <1 (ωATT = 0.185, ωATA = 0.008).
A complete table of weights can be found in Sharp and Li (32) for
E.coli. The CAIk for a particular parental sequence k is found by
taking the geometric mean of all the individual codon weights.

5
Two steps are necessary to express this relation in a linear
form: (i) the logarithm is taken on both sides, transforming the
geometric mean into an arithmetic one, and (ii) the three-term
product is recast at the expense of introducing additional
variables. Details of the exact linearization are found in
Appendix A. Maintaining CAIk above a desired lower bound
CAImin is attained with the following simple constraint:

CAIk ≥ CAImin, ∀ k 6

An alternative method for scoring a codon representation for
a specific host is the calculation of the MCU metric, which
quantifies the fraction of codons utilized in a given representation
that are ‘major’ for that organism. Major codons are defined as
those codons that appear with greater frequency in genes with
high levels of codon bias (33). Whether a codon is a major
codon or not is captured by the parameter µnn1n2

, which is equal
to 1 if codon (n,n1,n2) is a major codon, and 0 otherwise
(e.g., for isoleucine, µATC = 1 and µATT = µATA = 0). A tabulation
of major codons for E.coli is found in Ikemura (27). The
following expression is used to calculate the MCUk metric for
each parental sequence:

7

Figure 3. One homoduplex and two heteroduplex examples. Gray shading
denotes mismatches in the heteroduplexes. Calculation of the annealing free
energy change is for a DNA concentration of 10 ng/µl, 50 mM K+ and 2.2 mM
Mg2+ at 55°C.
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The three-term product is recast into an equivalent linear form
in the same way as constraint 5, and a lower limit on MCU is
assigned as follows:

MCUk ≥ MCUmin, ∀ k 8

By requiring CAIk (with constraints 5 and 6) or MCUk
(constraints 7 and 8) to be greater than a desired lower bound,
codon optimization can be performed while maintaining
organism-specific usage ratios.

Limiting the number of codon manipulations

Alternatively, one may want to limit the number of codon
representation changes (i.e., silent nucleotide mutations) made
to the wild-type DNA sequences. Specifically, the total
number of silent nucleotide point mutations in the designed
sequences could be set to be less than an upper limit P. This
requires the definition of the following additional parameters:

1, if n = n′ (nucleotide identity)
δnn′ = {

0, otherwise

wink = codon representation corresponding to the wild-type
(original) nucleotide sequences

P = maximum number of point mutations permitted from
wild-type nucleotide sequences

Constraint 5 establishes an upper bound to the total number of
allowable silent point mutations.

(1 – δnn′) ≤ P 9

This constraint-based modeling framework allows searching
the space of possible codon representations (codified in variable
xink and subject to constraints 1–4) for the one that optimizes a
user-defined diversity objective. In the next section three such
diversity objectives are discussed.

DIVERSITY OBJECTIVES

With the codon constraints in place, a number of different
diversity objectives are explored: objective I, maximizing the
number of crossovers; objective II, minimizing bias in family
DNA shuffling; and objective III, maximizing the relative
frequency of crossovers in specific structural regions. For
objective I, the effect of E.coli preferred codon sets on the
number of crossovers is studied by including constraints 5 and
6 or 7 and 8 in the optimization model. Optimized sequences

for each of the objectives are provided in the Supplementary
Material.

Objective I: maximizing the total number of crossovers

Crossover statistics for different parental sequence codon
representations can be estimated by the eShuffle program (25).
However, because the clock time of an eShuffle run can range
from minutes to hours, utilizing eShuffle in the context of
optimization loops is impractical for all but the simplest cases.
Instead, two simple surrogate objectives for crossover generation
are postulated and subsequently tested: (i) maximization of the
pairwise sequence identity between the parental DNA
sequences and (ii) minimization of the total free energy change
upon complete annealing of the two DNA sequences. Both of
these surrogates for crossover generation capture the fact that
crossover formation in DNA shuffling occurs predominantly
within regions of near perfect sequence identity. A flowchart
illustrating the sequence of calculations followed for this and
other diversity objectives is shown in Figure 4.

Surrogate (i): maximizing pairwise sequence identity. This
intuitive surrogate for crossover generation implies that the
degree of sequence identity between a pair of DNA sequences
correlates with the number of crossovers generated. The calcu-
lation of the sequence identity is performed by counting the
total number of matching nucleotides, M , between two
aligned parental sequences k and .

= ∀ 10

Note that the non-linearity introduced by the product of binary
variables (xink x ) is eliminated (see Appendix B for details).
Therefore, the first surrogate for maximizing crossover generation
upon codon optimization involves maximizing M subject to
constraints 1–4 and 10. Constraint sets 5 and 6 or 7 and 8 are
added if a host-specific codon representation is desired, while
constraint 9 is added if a limit on the total number of silent
nucleotide mutations is needed. This problem belongs to the
class of mixed-integer linear programming (MILP) problems
and is solved using CPLEX 7.0 (34) accessed through the
GAMS modeling environment (35). Note, without any additional
restrictions such as 5–9, this problem decomposes over codons
and can be solved in linear complexity. This decoupling,
however, does not hold for surrogate (ii).

Surrogate (ii): minimizing the free energy change of
annealing. The second surrogate objective implies that crossover
generation correlates with the total free energy change upon
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Figure 4. Flowchart showing the sequence of calculations followed in the eCodonOpt optimization procedure.
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complete annealing of the recombining pair of DNA
sequences. The free energy change is approximated using
empirical nearest-neighbor parameters (36) which decompose
the free energy calculation into the sum of the contributions of
overlapping 2-nt units (Fig. 5). Matching pairs contribute negative
free energy terms lowering the total free energy change of
annealing, whereas mismatches contribute positive terms
increasing the free energy change. Parameter set stores
the free energy change associated with the annealing of nucleotide
pair (n,n1) with . The total free energy change ,
upon complete annealing of two parental sequences , is
calculated by summing the contributions of all nucleotide pairs
at positions (i,i+1) along the entire sequence length.

11

Note that the four-term product in the expression is subsequently
expressed in an equivalent linear form. The exact linearization
is found in Appendix C. Therefore, the second surrogate for
crossover generation in DNA shuffling involves minimizing

subject to constraints 1–4 and 11, and optionally 5 and 6,
7 and 8 or 9.

These two surrogate choices are tested based on the DNA
shuffling of two glycinamide ribonucleotide (GAR) trans-
formylases. Specifically, the DNA shuffling of the E.coli and
human versions of GAR transformylase is studied. The wild-
type parental sequences share a very low nucleotide sequence
identity of 47% even though the two enzymes share the same
function and presumably the same structure. In the absence of
any codon optimization, DNA shuffling crossovers are extremely
rare for this system as shown previously in Moore et al. (25);
therefore, there is clearly a need to increase the number of
crossovers generated.

First, surrogate objective (i), maximizing the sequence identity
of the two GAR transformylases, M12, is examined. The
maximum sequence identity upon codon optimization is identified
for an increasing number of allowed silent nucleotide mutations.
These codon-engineered parental sequences are next fed to
eShuffle to predict the total number of crossovers expected to
be formed upon DNA shuffling. Crossover numbers are plotted in
Figure 6 from 0 (wild-type) to 320 permitted silent mutations.
Interestingly, after 90–100 point mutations are accumulated,
the total number of crossovers rapidly increases, reaching a
maximum value of about 1.5 crossovers per sequence. Beyond
this point, sequence identity ceases to correlate with crossover
generation leading to the plateau effect beyond 140 silent
mutations as shown in Figure 6. The second surrogate objective,
involving the minimization of the free energy change of
annealing, ∆G12, provides much better correlation with the
extent of crossover formation; almost twice as many cross-
overs are formed compared with the previous surrogate (Fig. 6).
The key difference is that, unlike sequence identity, the free

energy change continues to correlate strongly with crossover
formation even for very high numbers of silent mutations
preventing the onset of the plateau. Interestingly, the extent of
crossover formation is only mildly affected by excluding all
E.coli rare codons from consideration [i.e., ATA, AGA, AGG,
TGT, CTA, CCC, CGA and CGG (37)]. Even when a lower
bound is placed on the CAI metric (Fig. 7A) or MCU criterion
(Fig. 7B) for the parental sequences, comparable numbers of
crossovers are still generated. Even the most stringent
requirement (CAI = MCU = 1) results in a <50% drop in the
predicted number of crossovers from the theoretical maximum.
These results demonstrate that codon optimization can be
effectively performed for organism-specific codon sets leading
to higher levels of protein expression in addition to a more
diverse combinatorial library.

Figure 5. Calculation of annealing free energy change using overlapping
nearest-nucleotide pairs.
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Figure 6. The total number of crossovers increases as more point mutations are
permitted. Free energy change outperforms sequence identity as a surrogate.
When rare E.coli codons are excluded, only a slight decrease is seen in the total
number of crossovers.

Figure 7. (A) As expected, the number of crossovers decreases as the lower
bound on the Codon Adaptation Index (CAImin) increases from 0.2 to 1. (B) The
number of crossovers decreases as the minimum Major Codon Usage (MCUmin)
increases from 0.5 to 1.
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The strength of correlation of the two surrogate functions
with the total number of crossovers generated is shown more
clearly in Figure 8. It is noteworthy that increasing sequence
identity beyond a certain level does not increase crossover
generation (Fig. 8A). In fact, a reversal in the sign of correlation
occurs near the end of the plot. On the other hand, free energy
change correlates monotonically and almost linearly (Fig. 8B)
with the extent of crossover formation. out-performs
sequence identity as a surrogate for crossover formation
because it appropriately weighs the thermodynamic contribution
of different matches and mismatches. In addition, by considering
the contribution of overlapping nucleotide pairs, it places a
higher emphasis on blocks of sequence identity over isolated
nucleotide matches. Sequence identity is not as successful as a
surrogate because the matching nucleotides do not necessarily
group into crossover-generating blocks of sequence identity.
The qualitative trends in the result hold for a wide range of
example problems studied so far, implying that free energy of
annealing is universally superior to sequence identity as a
predictor of crossover formation. This result has a substantial
implication on the way DNA shuffling studies are conducted
and parental DNA sequences are engineered.

Objective II: minimizing bias in family DNA shuffling

Family DNA shuffling (26) extends DNA shuffling to more
than two parental sequences allowing the simultaneous mixing
of genetic information from many homologous DNA
sequences. However, a strong possibility exists for a biased
library in which only a small subset of the shuffled family
generates crossovers while the remainder of the parental set
does not participate in the recombination process. This results
in a biased combinatorial library where the majority of cross-
overs originate from only a few pairs and the majority of
parental sequences do not contribute to the genetic diversity of
the combinatorial library.

Earlier, it was shown that the free energy change of
annealing, , is a good predictor for the number of cross-
overs generated by a pair of parental sequences. By building on
this constraint-based framework the goal here is to ensure that
each parental sequence pair contributes an approximately
equal number of crossovers to the library while the total
number of generated crossovers stays as high as possible. This

is ensured mathematically by minimizing the average free
energy change over all parental sequence pairs while
constraining all of the pairwise free energy changes within a
window centered about the mean. The mean free energy
change, ∆Gmean, is given by:

12

The parameter α is used to set the size of the window in which
each of the pairwise free energy changes can fall. For example,
setting α = 10% ensures that all are within 10% from
∆Gmean. Two linear constraints are utilized to set the upper and
lower bounds on separately.

13

14

Minimizing Gmean subject to constraints 1–4 and 11–14
increases overall crossover frequency while simultaneously
reducing bias towards particular parental sequence pairs.

The family DNA shuffling of a family of four cephalo-
sporinases (26) is used here to demonstrate the proposed
framework. For the wild-type sequences, eShuffle predicts that
70% of the crossovers are generated by a single parental pair,
Citrobacter freundii and Enterobacter cloacae (Fig. 9, 1 and 2,
respectively). Solving the optimization problem posed above
with α = 10% for the four cephalosporinases greatly compacts
the range of pairwise free energy changes by a factor of 4.5
(Fig. 10). This leads to a crossover distribution that is much
more even (Fig. 9). Crossovers between C.freundii and
E.cloacae, previously in excess of 70%, are reduced to a
contribution of only 17%, while other types of crossovers are
boosted. In addition to removing bias from the library, the
optimization procedure greatly increases the total number of
crossovers per sequence, from 0.87 up to 12.1. The ability to
customize the number and type of crossovers for a sequence
family can significantly affect the design of family DNA
shuffling experiments. Codon optimization can substantially
augment the set of feasible parental recombination candidates
since homology can be custom-engineered.

Figure 8. (A) Plot of the percent sequence identity of optimized (max M12) sequences versus the total number of crossovers as a function of the number of silent
mutations permitted. (B) Plot of the negative of the free energy change for optimized (min ∆G12) sequences versus the number of crossovers as the number of silent
mutations permitted is increased.
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Objective III: directing crossovers to specific structural
regions

Here we examine how crossovers can be directed to specific
structural regions through codon optimization. These regions
can be secondary structure units such as helices or sheets,
specific domains of multi-domain proteins or sites that bind
either substrates or co-factors. Currently there is substantial
effort in the literature aimed at identifying regions where
crossovers are more likely to be tolerated giving rise to func-
tional hybrids. Some approaches are hypothesis driven such as
multipool swapping (38) and minimum schema disruption
(39), whereas others attempt to identify these regions by
employing structural energy calculations (40). Given these
desirable crossover regions a parameter Li is defined that flags
them along the sequence:

1, if position i is a desirable crossover position
Li = {

0, otherwise

Preferentially directing crossovers to one region is achieved by
minimizing ∆Gannealing in the preferred regions while maxi-
mizing ∆Gannealing in the remaining regions. Expressions for the

change in free energy for desirable and undesirable crossover
regions are given below.

The proposed approach is demonstrated by preferentially
allocating crossovers to the loop and scaffold regions of the
phosphoribosylanthranilate isomerase (PRAI) domain of a
bifunctional enzyme (41). PRAI is an α/β barrel protein with a
scaffold region spanning the inner β-barrel and the eight outer
α-helices (Fig. 11, purple and gold). Loops are defined as the
connecting regions between the β-barrel and the α-helices and
are shown in white in Figure 11. Parameter Li indicates
whether a sequence position is within a loop or not, and its
values are superimposed on the PRAI 3D structure. Two
design objectives are pursued: (i) directing crossovers to loop
regions by minimizing (∆Gloop – ∆Gscaffold) and (ii) directing
crossovers to the scaffold by minimizing (∆Gscaffold – ∆Gloop).
Both of these two optimization problems are solved for the
DNA shuffling of E.coli and Salmonella enterica typhi
versions of the PRAI domain. For the wild-type sequences,
eShuffle predicts that crossovers are predominantly located in
the scaffold region (Fig. 12). Upon loop-optimization, crossovers
in loop regions are increased almost 20-fold, outpacing those in
the scaffold region by 40%. Alternatively, scaffold optimization
increases the number of crossovers found in the scaffold
region by 10-fold. The crossover locations after optimiza-
tion are superimposed against the 3D structure in Figure 13.
Codon optimization dramatically reshapes the crossover distri-
bution (Fig. 13) by biasing it towards targeted regions. Inter-
estingly, a by-product of the optimization is that, for both the
loop and scaffold-optimized cases, overall crossover gener-
ation is greatly increased. The results obtained for this example

Figure 9. Crossover statistics before and after optimization for all possible pairs of parental sequences: (1) C.freundii, (2) E.cloacae, (3) Y.enterocolitica and (4)
K.pneumoniae.

Figure 10. Free energy of annealing before and after optimization for all six
pairs of parental sequences.
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demonstrate that codon optimization provides an effective
strategy for directing crossovers to desirable protein regions.

IMPLEMENTATION

Optimization problems were solved using CPLEX 7.0 (34)
accessed through the GAMS modeling environment (35) on an
IBM RS6000-270 workstation. CPU times were in the order of
seconds for objectives I(i), I(ii) and III, and hours for objective
II. eShuffle runs were performed assuming a standard DNA

shuffling setup: annealing temperature 55°C, fragment length
25 nt, DNA concentration 10 ng/µl, 50 mM K+ and 2.2 mM
Mg2+. Nucleotide and amino acid sequences utilized in the
examples were downloaded from GenBank via the Entrez
system (42). Accession numbers for wild-type proteins were:
E.coli and human GAR transformylases, P08179 and P22102;
C.freundii, E.cloacae, Yersinia enterocolitica and Klebsiella
pneumoniae cephalosporinases, CAA35959, CAC08446,
CAA44850 and AAK70221; and E.coli and S.enterica typhi
PRAI domains, AAA57299 and CAD08407. The 3D structure
of the PRAI domain (1PII, residues 256–452) was downloaded
from the Protein Data Bank (43). Protein Explorer (http://
proteinexplorer.org) was used to render 3D structures.

SUMMARY

In this paper, a systematic computational framework, eCodonOpt
(http://fenske.che.psu.edu/faculty/cmaranas), for designing
parental DNA sequences for directed evolution experiments
through codon usage optimization was introduced. With the
proposed MILP formulation, we designed parental sequence
sets that met a variety of diversity objectives while observing
host-specific codon preferences based on the CAI and MCU
metrics. Initially, the number of crossovers generated by DNA
shuffling was boosted substantially by optimizing the
annealing free energy profile of two GAR transformylases.
Then, crossover bias towards specific parental pairs was
reduced for an engineered family of cephalosporinases while
simultaneously increasing the total number of crossovers
formed by family DNA shuffling. Finally, crossovers were
preferentially allocated to specific structural regions in a PRAI
domain allowing a customized crossover distribution. Much
flexibility is present in the constraint-based framework,
permitting the investigation of many other choices for diversity
objectives.

We believe that codon engineering is capable of expanding
and shaping the sequence space spanned by directed evolution
experiments. As our knowledge of how recombination events
preserve or disrupt protein structure improves, optimal design
of the parental DNA sequence set will allow a more focused

Figure 13. Crossover position statistics before and after codon optimization. Loop regions are represented by green bars in the strip chart. Orange residues in the
3D structures represent positions with crossover probability >0.1%.

Figure 11. Top and side view of the E.coli PRAI protein domain. Scaffold
regions are colored purple (α-helices) and gold (β-barrel), while connecting
loop regions are colored gray.

Figure 12. Codon optimization results for loop and scaffold regions in the
PRAI domain.
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probing of sequence space in only those regions that are likely
to yield functional hybrids. This, in turn, will lead to a more
efficient utilization of experimental resources, saving time and
effort by reducing the number of evolutionary cycles that must
be performed for a successful protein design effort.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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APPENDICES

Appendix A: equivalent linear representation of the CAI

In the expression for CAIk, two sources of non-linearity are
present: (i) the geometric mean and (ii) the product of three
binary variables (xink · xi+1,n1k · xi+2,n2k

). The geometric mean is
transformed to an arithmetic one by taking the logarithm of
both sides.

The product of binary variables is replaced by the continuous
variable zinn1n2k

, which is defined as follows:

1, if at positions (i,i + 1,i + 2) codon (n,n1,n2) is
zinn1n2k

= { present in parental sequence k
0, otherwise

xink is linked to this new binary variable by the following three
constraints:

zinn1n2k
= xink, i,n,k

zinn1n2k
= xi+1,n1k

, i,n1,k

zinn1n2k = xi+2,n2k, i,n2,k

A new expression for log(CAIk) results.

Although zinn1n2k
is defined as a continuous variable, it will only

take 0–1 values as long as it is forced to be non-negative. This
occurs because of the structure of the constraint set, which is
that of an assignment problem (44).

Appendix B: equivalent linear representation of
surrogate (i)

In surrogate objective (i), the product of two binary variables is
present . This product is replaced by the continuous
variable , which is defined as follows:

1, if at position i nucleotide n is present in
= { parental sequence k and nucleotide is

present in parental sequence
0, otherwise

xink is linked to this new binary variable by the following two
constraints:

A new expression for results.

Appendix C: equivalent linear representation of
surrogate (ii)

The binary variable product
is replaced in a similar manner by a new continuous variable
defined below.

1, if at positions (i,i +1) nucleotide pair (n,n1) is
= { present in parental sequence k and nucleotide

pair ( , 1) is present in parental sequence
0, otherwise

Four new constraints and a new expression for result.
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inn1 ññ1kk̃
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