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This paper presents a stochastic optimization model (OptFolio) of pharmaceutical research and
development (R&D) portfolio management using a real options approach for making optimal
project selection decisions. A method is developed to model new product development as a series
of continuation/abandonment options, deciding at each stage in pharmaceutical R&D whether
to proceed further or stop development. Multistage stochastic programming is utilized to model
the flexibility afforded by the abandonment option. The resulting mixed-integer linear program-
ming formulation is applied to a case study involving the selection of the optimal product portfolio
from a set of 20 candidate drugs at different stages in the developmental pipeline over a planning
horizon of 6 years. This proposed framework provides a road map for future decisions by tracking
the decision of abandonment over time and calculating the minimum market value above which
development is continued under changing resource constraints and estimated market and
technical uncertainty. Results indicate that the riskier the project is, the larger the minimum
market value required for continuing testing in future stages. Consequently, the value of the
abandonment option increases with rising market uncertainty or decreased probability of clinical
trial success. In addition, a framework for incorporating additional managerial choices to the
OptFolio model is discussed.

1. Introduction and Background

The new product pipelines of pharmaceutical compa-
nies have largely fueled the current growth in the
pharmaceutical sector. These product pipelines are in
a constant state of flux as new drug leads are identified
and products reach the market or are discontinued
during development because of safety/efficacy concerns.
As a result, the optimal management of the new product
pipeline has emerged at the forefront of all strategic
planning initiatives of a pharmaceutical company.

Every drug in a pharmaceutical pipeline undergoes
a well-defined developmental process comprised of a
number of distinct, sequential stages (see Figure 1).
Following the drug discovery process in which the drug
lead is identified, optimized, and tested in animals, the
drug candidate is taken through three phases of clinical
testing. Phase I studies are aimed at determining the
toxicity levels and are usually carried out in a small
population of subjects. Following the successful comple-
tion of phase I trials, phase II trials are undertaken in
which the efficacy of the drug is determined. Finally,
large-scale phase III trials are conducted to establish
the potential effectiveness of the drug. This is achieved
by comparing the therapeutic potential of the drug with
an existing treatment. Once sufficient evidence regard-
ing the safety and efficacy of the drug is collected, a new

drug application (NDA) is filed with the Food and Drug
Administration (FDA). Approval of the NDA culminates
in the commercialization and large-scale production of
the drug. Figure 1 summarizes the life cycle of a drug
from preclinical development through FDA filing and
product launch.1 A drug may spend 6-10 years in the
developmental process and cost, on average, $300 mil-
lion to bring to market.2

The financial value of pharmaceutical drug develop-
mental projects is difficult to assess because they are
subject to considerable uncertainty. Pharmaceutical
research and development (R&D) projects face both
technological and market/demand uncertainties during
the drug developmental process. Technological uncer-
tainties stem from the inability of researchers to guar-
antee a priori safe and effective products that can pass
clinical trial hurdles and gain FDA approval. Unfore-
seen side effects or lack of efficacy in a developing drug
may prematurely terminate development in any one of
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Figure 1. Pharmaceutical pipeline from clinical trials through
launch.
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the three clinical phases. For every approved drug,
roughly 10 000 molecules have started development and
have been abandoned along the way.2 The chances of
failure are significant even at the FDA approval stage
in light of ever-changing and tightening regulatory
restrictions. Market uncertainties concern the volatility
of the future value of a product as forecasted during
R&D, which may involve market reduction, entrance of
branded competitor drugs, or an economic downturn.
Incomplete information regarding the cost of producing
the drug, the eventual pricing structure, and the
captured market share translates into significant un-
certainty in the drug’s market value. Therefore, market
side uncertainty implies that a drug’s technical success
is no guarantee of commercial revenues. In fact, very
few commercial drugs reach the status of a “block-
buster”, which has peak sales that are roughly 20 times
higher than the peak sales of an average drug.3

During the course of pharmaceutical R&D planning,
managerial flexibility is available to shape the uncer-
tainty of the drug developmental process. If an initial
investment in pharmaceutical research is successful, the
company has the option of proceeding with each of the
three stages of clinical testing followed by an application
to gain FDA approval. At any point in the developmen-
tal process, the company reserves the right to abandon
the project because of changing market conditions or
internal budgetary limitations. Thus, the risk profile of
a project can be altered considerably by controlling
downside risk (e.g., abandoning the project in response
to adverse market conditions) and increasing upside
potential (e.g., continuing development under favorable
market conditions).

In the context of managerial flexibility, determining
the priority of potential investments is vital in phar-
maceutical drug developmental planning. Traditionally,
capital budgeting issues are resolved by discounted
cash-flow techniques using the classic net present value
(NPV) rule for choosing the best investment opportu-
nity.4 One obvious shortcoming of the NPV approach is
that it assumes that all future cash flows are static,
neglecting the real-world choices to stop investing in the
project or change course because of market circum-
stances. The NPV analysis can be extended to account
for uncertainty and managerial flexibility through the
decision tree analysis (DTA) framework, which maps out
all alternative future actions contingent on all possible
future states of nature.5 Subsequently, NPV estimates,
in the face of uncertainty, can be obtained by working
backward through the decision tree and applying the
standard discounted cash flow (DCF) methodology. The
key challenge in applying the DCF and DTA techniques
lies in the determination of the appropriate discount
rate used for translating future cash flows into their
present value equivalents. In principle, the appropriate
discount rate is determined by the rate of return offered
in the financial market by securities that have the same
risk profile as the project under consideration. Because
the risk profile of a project can be altered considerably
with managerial flexibility by controlling downside risk
and increasing upside potential, use of a constant
discount rate could clearly misevaluate the project. The
only way the DCF and DTA techniques can deal with
this risk effect is through ad hoc adjustment of the
discount rate. In fact, Myers and Howe1 have illustrated
that the weight-adjusted cost of capital of pharmaceuti-

cal programs changes dramatically over the course of
the project.

In view of this limitation of the DCF and DTA
methods, a more appropriate technique for capital
budgeting is real options valuation (ROV) or contingent
claims analysis.6 This methodology is based on the
option pricing principles developed by Black and Sc-
holes7 in finance literature. To understand the impact
of project volatility, an analogue of the Black-Scholes
options pricing formula has been proposed to capture
the value of managerial flexibility.8 Myers9 and Dixit
and Pindyck4 recognized that traditional DCF methods
inadequately value R&D projects because the total
worth of R&D investments includes the option value of
future opportunities to alter course as more information
becomes available. Consequently, they classified R&D
investment opportunities as real options best captured
within the options analysis framework. Faulkner10 and
Trigeorgis11 have provided excellent surveys on the use
of the options approach to project valuation. Morris et
al.12 discussed an R&D example in which the NPV is
the same for all projects, but there are varying levels of
risk and uncertainty. Within a real options framework,
they showed that a riskier project can be more valuable
because it has a larger upside while still maintaining a
fixed, staged level of potential loss. Recently, a number
of applications of real options pricing to the valuation
of individual pharmaceutical projects have been dis-
cussed.13,14

Within the framework of a pharmaceutical company’s
pipeline, valuing one drug at a time is not sufficient.
Instead, R&D managers must consider the entire port-
folio in the face of market and technological uncertainty
and resource constraints. Recognizing this, we address
the pharmaceutical pipeline management problem by
viewing it as a multistage stochastic portfolio optimiza-
tion problem embedded within the ROV framework:

Given a set of candidate drugs in various stages of
development, estimates of the probability of clinical
success, duration, and investment required for the
remaining stages and forecasts for the future market
values determine the optimal drug developmental port-
folio that maximizes ROV.

A stochastic programming approach giving rise to a
mixed-integer linear programming (MILP) formulation
is introduced for selecting the optimal product portfolio
from a set of candidate drugs at different stages in the
developmental pipeline and subject to varying levels of
market and technical uncertainty over the desired
planning horizon. This stochastic framework provides
a road map for future decisions by tracking the decision
of abandonment over time and calculating the minimum
market value above which development is continued
under changing resource constraints and estimated
market and technical probabilities.

Next, a brief literature review of pharmaceutical
planning is presented in section 2, while section 3
introduces the theory behind financial options using the
Black-Scholes equation, followed by a discussion on
how this approach is extended to real options evalua-
tion. The problem of valuing individual candidate drugs
is then expanded to formulate an optimal drug portfolio
in view of managerial flexibility. A stochastic program-
ming-based algorithm (OptFolio) is developed in section
4 to value the uncertainty of candidate drugs and handle
portfolio selection. A stochastic programming-based
algorithm (OptFolio) is developed in Section 4 to value
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the uncertainty of candidate drugs and handle portfolio
selection. In addition, a framework for incorporating
additional managerial choices in the model to enhance
the flexibility of the decision structure is discussed. In
Section 5, the case study of selecting optimal drug
portfolios is explored and real options valuation is
applied to the problem. Finally, section 6 provides
concluding remarks on the results of the OptFolio
portfolio valuation and selection technique and high-
lights opportunities to expand the work.

2. Product Planning Literature

Capacity management and planning under uncer-
tainty have been studied extensively in the process
systems literature. Ierapetritou and Pistikopoulos,15

Subrahmanyam et al.,16 and Clay and Grossmann17

explored the allocation of resources in the face of
variable product demand. Gupta and Maranas18 ad-
dressed multiperiod, multisite supply chain integration
under demand uncertainty. Only recently, however, has
stochastic optimization been applied to the problem of
pharmaceutical planning and capacity management.19,20

In the pharmaceutical industry, a firm needs to consider
its entire product portfolio in the context of market and
technological uncertainty, budgetary constraints, and
the desire to balance the portfolio across many drug-
type classifications. Traditionally, portfolio selection
decisions were based on R&D costs and the estimated
value of these products for several forecasted scenarios.
To date, many R&D managers are displeased with
existing portfolio selection models.21 In a benchmarking
study of R&D decision making “best practices”, Mathe-
son et al.22 report that a majority of R&D executives
mention the need for better portfolio selection methods
as their most critical requirement for improving R&D
performance.

Existing work on new product development in the
process systems engineering community has focused on
the technical outcome of R&D stages instead of includ-
ing a more holistic view of market risk. Schmidt and
Grossmann23 discussed an elegant optimization model
for scheduling tasks in new product development,
analogous to the screening process used to discover new
products in the agricultural, chemical, and pharmaceu-
tical industries. They developed a MILP to find the
nonsequential testing schedule that maximizes the
expected NPV of the new products. While the model
incorporated some of the technical uncertainty in the
R&D process, it did not provide a valuation method for
selecting what products should begin this testing pro-
cess. In subsequent papers,24,25 they addressed the
resource-constrained scheduling of testing tasks and
integrated an approach to account for product selection
and capacity investments. Papageorgiou et al.26 devel-
oped a MILP model of a pharmaceutical company’s
supply chain given deterministic demand. They exam-
ined capacity management of a product portfolio through
the consideration of R&D costs, demand forecasts,
manufacturing costs, and resource allocation. In a
follow-up paper,27 they formulated an optimization
model for capacity planning and capital investment
strategy subject to the uncertainty of clinical trials for
a given product portfolio. In both of these cases, a
traditional NPV analysis was used as the financial
metric and the focus was on capacity planning decisions
that occur at the onset of production as opposed to
project valuation and selection. While the stochastic

model contained several possibilities for future demand,
it did not take into account the existence of financial
markets for estimating a project’s risk.

The key idea that distinguishes the proposed ROV
approach from existing work is the explicit tracking of
the uncertainty in the market value of the drug through
market-traded securities. The basis of ROV is that a
company can use a portfolio consisting of cash and
market-traded securities whose volatility is correlated
with the market value of the R&D project in question
to make internal planning decisions. Using the arbi-
trage-free principle and the concept of a replicating
portfolio of securities, this technique allows for strategic
decision making by utilizing hedging opportunities
present in the financial markets. Intuitively, the value
of a real option to continue/abandon new product
development is higher for more volatile projects if the
uncertainty can be resolved before decisions are made
and costs are incurred. Although the risks of research
projects are typically project-specific, a trend toward the
securitization and development of nontraditional mar-
kets, such as telecommunications bandwidth trading,
suggests that this is a viable strategy as “what is private
risk today may well be securitized in the future”.28 For
example, suppose a pharmaceutical company is develop-
ing a cancer drug. Schwartz and Moon29 argued that
the market value of this drug can be approximately
tracked with a portfolio of small biotechnology firms
specializing in developing cancer treatments, because
frequently these firms have only one product in revenue.
Ultimately, the viability of a tracking portfolio for
pharmaceutical products in development is decided in
conjunction with empirical data as more markets are
completed and the distance between private risks and
market-priced risks decreases over time.28

3. Financial Options Valuation

An option is the right, but not the obligation, to buy/
sell an asset (e.g., security) at a future date at a
predetermined price. There are two basic types of
options: call (right to buy) and put (right to sell). The
price in the option contract is known as the exercise price
or the strike price; the date in the contract is known as
the expiration date or exercise date. American options
can be exercised at any time up to the expiration date,
while European options can be exercised only on the
expiration date.30 The payoffs for the call and put
options are given by

where ST is the price of the underlying security on the
expiration date T, K is the strike price, and C/P are the
call/put premiums paid to obtain the corresponding
options. If ST - K g 0 for a call option, then it is
exercised by paying the strike price K and receiving the
underlying security in return. If ST - K < 0, then the
call option is allowed to expire because the holder is
under no obligation to buy the security.

The sequential nature of investments in pharmaceu-
tical R&D is analogous to options evaluation. Typically,
a drug is commercialized after 8-10 years of screenings,
toxicology studies, and clinical testing phases so these
R&D investments are not undertaken for immediate
returns but rather for the future opportunities of

net payoff (call) ) max(ST - K, 0) - C (1)

net payoff (put) ) max(K - ST, 0) - P (2)
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commercialization. The initial investment decision to
begin phase I clinical trials is undertaken with an
expectation of future cash flows. However, future in-
vestments are only made if preceding R&D is deemed
promising. Ultimately, the drug is commercialized if it
is technologically successful (gains FDA approval), has
promising market potential, and fits the overall strategy
of the company. Each sequential R&D investment is
analogous to a call option involving a future decision to
invest in further development or commercialize when
the R&D outcome is successful. At any point in the
development, the drug can be abandoned so that only
the sunken investment is lost. On the basis of this
comparison, Herath and Park31 argued that an R&D
investment can be viewed as the cost of a real option
that is exercised only if the R&D stage is successful.
The investment cost of the current stage of R&D
development is the call option premium C, the invest-
ment cost of the subsequent stages of R&D followed by
product launch is the exercise price K, and the present
value of the future cash flows from product launch is
the asset value ST.

3.1. Arbitrage-Free Principle and the Binomial
Pricing Model. The option pricing problem involves
determination of the option premium given the uncer-
tainty in the value of the underlying security, the strike
price, and the time to expiration. To facilitate the
evaluation of the option premium, Black and Scholes7

proposed the key idea of arbitrage-free markets or the
law of one price. This principle states that all securities
having the same risk/return profiles should be identi-
cally priced so that there are no arbitrage opportunities.
An arbitrage opportunity corresponds to an opportunity
of making a risk-free profit. Black and Scholes7 analyzed
the option pricing problem in a continuous-time frame-
work by assuming that the underlying stock price
follows a geometric Brownian motion. The geometric
Brownian motion assumption corresponds to assuming
a log-normal distribution for the stock price with the
additional feature that the standard deviation of the
logarithm of the stock price is proportional to the square
root of the time horizon.30 Thus, the level of uncertainty,
as captured by the standard deviation, increases with
the length of the future time horizon considered. A
simpler, discrete time analysis, which in the limit of
very small time steps yields the continuous-time results
obtained by Black-Scholes, was proposed by Cox et al.8
This approach, known as the binomial pricing approach,
is adopted in this work and is briefly discussed next.
The key assumption on which this methodology is based
is that the stock price follows a multiplicative binomial
process as shown in Figure 2. Thus, as Figure 2a
demonstrates, if the current stock price is S, then the
stock price at the end of the period will be either uS (u
g 1) with probability p or dS (d e 1) with probability 1
- p. The existence of a risk-free security is also assumed
with the corresponding risk-free rate of return given by
rf. In a real market setting, the risk-free asset would
correspond to the Treasury Bills issued by the U.S.

government. Assuming that the current value of the call
option on the security is C, its value after one period
would be given by either Cu or Cd.

Subsequently, consider a portfolio that is formed by
(i) buying N shares of the underlying security at the
current price of $S per share and (ii) borrowing $B at
the risk-free rate (borrowing at the risk-free rate cor-
responds to taking a short position on the risk-free
asset). The “out-of-pocket” cost for constructing such a
portfolio is NS - B. At the end of the period, the worth
of this portfolio is as shown in Figure 2b, where the
value of the security follows a binomial process and the
(1 + rf)B term corresponds to repayment of the $B
borrowed initially with interest. Next, suppose that the
above portfolio is constructed such that the payoff of the
portfolio exactly matches the payoff of the call option,
that is,

These two equations are solved for the two variables N
and B to yield

On the basis of expressions for N and B, the current
value of the replicating portfolio is calculated as

where R ) 1 + rf.
Now, because the replicating portfolio’s payoff is (by

construction) exactly the same as that of the call option,
its current value must equal the value of the call option
to avoid any arbitrage opportunities. Therefore,

where

is known as the risk neutral probability. The value of
the call option is thus obtained by discounting the
expected value of the option with respect to the risk
neutral probability q (not the actual probability p) and
using the risk-free rate rf (not the actual discount rate)
as the appropriate discount factor. From a risk manage-
ment perspective, the key feature of an option is its
asymmetrical payoff. Because the contract does not
imply any obligation to buy the underlying product, the
holder of the contract profits from favorable price
changes while being protected from adverse ones. In
return for this downside protection, the option holder
has to pay a premium to the option-issuing authority.
Buying an option is similar to purchasing insurance, in
which the “insured” pays an insurance premium to
avoid losses. This central idea of options pricing can be
applied to the valuation of real options as discussed
next.

Figure 2. Binomial pricing tree for stock price (a) and replicating
portfolio (b).

N(uS) - (1 + rf)B ) Cu (3)

N(dS) - (1 + rf)B ) Cd (4)

N )
Cu - Cd

uS - dS
(5)

B ) 1
1 + rf

(dCu - uCd

u - d ) (6)

NS - B ) 1
R[(R - d

u - d)Cu + (u - R
u - d)Cd] (7)

C ) NS - B ) 1
R

[qCu + (1 - q)Cd] (8)

q ) R - d
u - d

)
1 + rf - d

u - d
(9)
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3.2. ROV Based on the Quadranomial Approach.
The ROV framework is obtained by extending the option
pricing framework to account for real assets. This
requires generalization of the definition of an option as
a financial vehicle that allows the exchange of one asset,
whose value evolves stochastically over time, for an-
other.4 In a financial (call) option setting, the stock value
evolves stochastically over time and the holder of the
option can exchange the exercise price for the underly-
ing stock. In the same spirit, the flexibility offered in
the staged investment in the development of a new drug
can also be interpreted as an option by recognizing that
(i) the future cash flows generated by the drug once it
is commercialized evolve stochastically over time and
(ii) management has the flexibility of (a) continuing with
the development, (b) abandoning the project, (c) at-
tempting to accelerate the clinical testing, or (d) con-
ducting additional tests to expand the possible market
of the drug as information becomes available. Conse-
quently, a one-to-one correspondence can be established
between the option pricing problem and the flexibility
valuation problem, implying that the tools utilized to
address the former could be used for addressing the
later. Using real options, we postulate that a pharma-
ceutical company’s individual project could be traded as
a security (instead of trading stock in the company as a
whole) and look to the external financial markets to
estimate the project’s payoffs in different states of
nature. The arbitrage-free principle provides a frame-
work for evaluating the “fair” value of the call option
premium to undertake a stage of R&D based on esti-
mates of the current value of the project and its
associated volatility. If the “fair” value of the investment
opportunity is greater than the actual cost of the
investment and the firm has the necessary resources,
the decision is made to exercise the R&D investment
option.

Because of the presence of technological and market
uncertainties, real options in pharmaceutical drug
development can be evaluated using the quadranomial
approach, which allows for the simultaneous resolution
of uncertainties.32 The commonly used binomial model
for pricing options uses a tree representation to depict
the evolution of a single uncertain variable over discrete
time.11 An advantage of the binomial modeling approach
is that it provides a numerical solution to complex real-
world investment decisions (e.g., staged investment
decisions that may include the options of deferral,
abandonment, expansion, or contraction of a project)
when exact formulas are not available. The quadrano-
mial approach, which considers two sources of uncer-
tainty, is a two-variable binomial tree. In the case of a
pharmaceutical company, it is assumed that market/
demand uncertainty is correlated with the economy
while technological uncertainty is independent of it.
Both forms of uncertainty evolve simultaneously over
time. In lieu of an external twin security that exactly
matches the payouts of the project, real-options prac-
titioners often use the present value of the project itself,
without flexibility, as the underlying risky asset V0.32

Assuming that the estimated starting value of a project
is V0, its multiplicative up and down movements are u
and d when driven by the market uncertainty. The
upward market movement u occurs with probability q,
while the downward movement occurs with probability
1 - q. Here, q refers to the risk-neutral probability
obtained by hedging the project with securities and risk-

neutral Treasury Bonds. Technological success occurs
with probability φ, while failure of a particular testing
phase occurs with probability 1 - φ. Technological
uncertainty is estimated from historical clinical trial
data and is assumed to be independent of the economy
so it does not contribute to a change in the project’s
value. However, if a project fails a trial within a clinical
phase, the project’s value goes to zero. Let Ct

s represent
the value of the project at time t and state s. The event
tree has four possible outcomes at the end of one period
as shown in Figure 3: (1) C1

4 ) uV0, technological
success and market upward movement, occurring with
probability φq; (2) C1

3 ) dV0, technological success and
market downward movement, occurring with probability
φ(1 - q); (3) C1

2 ) 0, technological failure and market
upward movement, occurring with probability (1 - φ)q;
(4) C1

1 ) 0, technological failure and market downward
movement, with probability (1 - φ)(1 - q). Note that
the third and fourth possibilities result in a project value
of zero regardless of the anticipated demand for the
product because the drug is a technological dead-end.

When the decision tree framework is applied over
discretized time intervals of 1 year, four branches
emanate from every node if the process is extended over
multiple time periods. The values of u, d, and q are
computed using the formulas for pricing stock options
based on the binomial model:8

Here, ∆T is the discrete time interval, rf is the risk-
free interest rate, and σ is the volatility in the market
demand as estimated by historical data and market
research. These formulas follow from a discrete ap-
proximation to the Black-Scholes continuous-time model,
which is valid for small enough values for ∆T. Having
developed an approach to value individual pharmaceu-
tical R&D projects, we next move to describing the
problem of valuing multiple candidate drugs and for-
mulating an optimum drug portfolio under consideration
of managerial flexibility.

4. Mathematical Problem Representation

The starting point of the pharmaceutical planning
problem is the candidate portfolio P, a set of products
that are being considered for development. Figure 1
describes the five phases of pharmaceutical R&D in-
cluded in the set S of drug developmental stages: three
clinical trial phases, FDA approval, and product launch.1
In practice, a pharmaceutical company may elicit expert,

Figure 3. Quadranomial tree showing resolution of the market
and technical uncertainty for one period.

u ) eσx∆T (10)

d ) e-σx∆T ) 1/u (11)

q ) erf∆T - d
u - d

(12)
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though subjective, estimates of stage duration for each
research phase of a project and calculate the single-point
probabilistic time to complete each stage. The duration
of each phase of clinical development is postulated as
follows: phase I, 1 year; phase II, 1 year; phase III, 2
years; FDA approval, 2 years.

Following a successful FDA approval phase, the
product can be immediately commercialized under the
assumption that capacity investments and production
preparations are made during the 2 years spent await-
ing FDA approval. The proposed OptFolio formulation
uses the following sets and parameters to describe the
pharmaceutical portfolio optimization problem.

Sets

i ) product (i ) 1, 2, ..., P)
s ) stage of drug development (s ) 1, 2, ..., S)
t ) year of the portfolio planning horizon (t ) 0, 1,
..., T)

For each candidate drug i, portfolio selection decisions
made at the present time (t ) 0) classify the impending
stage as s ) 1 regardless of where the candidate drug
is in its development. Subsequent development stages
are numbered in ascending order until termination at
product launch.

The key parameters of the problem formulation are
identified and defined as follows.

Parameters

V0i ) current value of drug i at t ) 0
σi ) estimated annual market volatility for drug i
∆T ) duration in years of each discrete time interval
for value movements
rf ) risk-free interest rate
ui ) upward movement in value for drug i during
each discrete time interval
di ) downward movement in value for drug i during
each discrete time interval
qi ) risk-neutral probability of upward movement in
value for drug i during each discrete time interval
Tis ) length in years of stage s of drug development
for drug i
Iis ) investment cost of developmental stage s for
drug i
φis ) probability of technical success in stage s of
development for drug i
Bt ) budgetary constraint for year t

The parameter V0i represents the estimated value of
drug i, based on the NPV of all cash flows that result if
the drug is commercialized, at time t ) 0 of the planning
horizon. This value is an aggregate of the projected sales
revenue of the drug minus production, distribution, and
marketing costs and all other expenses. The market
volatility σi is the estimated annual standard deviation
in the value of product i if it is commercialized. The
estimation of the current value of a project and its
associated volatility is typically based on market fore-
casts, the historical sales data of similar products, and
the qualitative risk of the project.32 The risk-free inter-
est rate rf, set at 5%, corresponds to an average
observable market rate (e.g., U.S. Treasury Bills) that
allows for the use of a hedging portfolio to replicate the
value of the R&D project. Here, we assume that no risk
premium is applied to any specific project and op-
portunity costs are not incurred even in the presence of
budgetary limitations.

The binomial pricing lattice is generated using the
discrete approximation to the Black-Scholes model
given by eqs 10-12.8 As market and technical uncer-
tainty are resolved, the binomial pricing tree spans all
possible future outcomes represented as nodes of project
value as shown in Figure 4 for a time period of 1 year.
A value scenario is an outcome that occurs at the
beginning of a developmental stage, where the continue/
abandon decision is available. Here, the index ks ∈{1,
2, ..., Nis} corresponds to a specific value scenario of a
candidate drug as given by the binomial pricing tree
where Nis, the number of value scenarios available at
the beginning of stage s for drug i, is given as Nis ) 1 +
∑Ti,s-1/∆T. The binomial coefficients, their respective
probabilities, and the discrete value distributions for
drug i at the beginning of stage s of clinical testing are
given by the binomial formula

where coefks is the binomial coefficient for a product
beginning stage s with value scenario ks, Viks is the value
of drug i at the beginning of developmental stage s for
scenario ks, and ωiks is the probability that drug i will
follow scenario ks at the beginning of stage s. The
number of value scenarios available at the beginning
of each stage is based on the discrete time interval ∆T.
For a candidate drug about to begin phase I testing, the
binomial pricing tree will have N2 ) 1 + 1/∆T value
scenarios available at the end of the 1-year interval,
with the index k2 ranging from 1 to N2.

Figure 4 demonstrates this procedure for the case of
a 1-month discrete time interval (∆T ) 1/12) for a
candidate drug that has completed phase I clinical

Figure 4. Binomial pricing tree showing possible value scenarios
for a product at the end of phase I testing.
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testing. Here, N2 represents 13 value scenarios, or
nodes, available at the beginning of stage 2 after phase
I testing is complete. The value scenarios are numbered
in ascending order of the project’s value at the beginning
of a stage, classifying the lowest node on the binomial
tree as value scenario one and continuing to the topmost
node. Each intersection point, or node, of the binomial
tree shown in Figure 4 represents the value of the
candidate drug at the end of a time interval. The value
scenarios correspond to the nodes that exist at the end
of the developmental stage. Value scenario k2 ) 1 is the
result of 12 consecutive downward price movements
during the year-long phase I clinical trials, giving the
candidate drug an estimated value of Vk2)1 ) d12V0 at
the beginning of phase II clinical trials. Value scenario
k2 ) 5 corresponds to four upward price movements and
eight downward price movements, giving the candidate
drug an estimated value of Vk2)5 ) u4d8V0 at the
beginning of phase II clinical trials. A possible path
through the pricing tree to value scenario k2 ) 5 is
marked in Figure 4 and is analogous to the log-normal
price distribution of a tracking stock in the securities
market. Note that the order in which these price
movements occur does not affect the final value scenario
because there are numerous paths that consist of four
upward value movements and eight downward value
movements through the binomial tree to this node.

Using this same method, discrete value distributions
are generated each time a drug i is about to enter
another phase of clinical testing and the binomial
coefficients and probabilities are used to determine the
probability of moving from a given value scenario to
another scenario in the subsequent phase of drug
development. Consequently, a candidate drug beginning
phase I testing in stage s ) 1 will have 2Ni,s)5-1 potential
paths leading to stage s ) 5, each with a certain
probability of ωiks)5.

For a drug i beginning phase I testing at t ) 0, these
calculations are performed to enumerate the scenarios
available at the end of phase I testing (t ) 1), phase II
testing (t ) 2), phase III testing (t ) 4), and phase IV
FDA approval/product launch (t ) 6). The aggregate
value of the candidate drug i at product launch for
scenario k5 is given by

Note that upper and lower bounds on the value of the
candidate drug at commercial launch could easily be
imposed to keep expected payoffs within a realistic
range. The conditional probability Piksks+1 of moving from
scenario ks to scenario ks+1 in the next stage of develop-

ment is given by the binomial probability of a value
movement as follows:

Given a stage s beginning scenario of ks, ks+1 must have
a lower bound of ks, which occurs if all value movements
are downward for the length Tis of the stage, and an
upper bound of ks + Tis/∆T, which occurs if all value
movements are upward for the duration of the stage.
Note also that

The OptFolio model formulation utilizes binary vari-
ables to track the selection and abandonment of candi-
date drugs through the planning horizon. The key
decision variables of the model are chosen as follows.

Binary Variables. yisks ) 1 if drug i is selected to
undergo stage s of development while in value scenario
ks and yisks ) 0 otherwise.

The binary variables yisks control the product selection
decisions at the beginning of developmental stages. If
it is favorable under value scenario ks to begin the next
stage s of development, the drug will be selected to
continue and yisks will equal 1. However, if it is favorable
to abandon the drug in this given value scenario, the
binary variable will be set to 0. The optimal drug
developmental portfolio is selected based on R&D
investment constraints and the probabilities of future
revenue streams. As market and technical uncertainty
are resolved, the developmental portfolio can be recon-
figured to account for this new information.

Figure 5 highlights the market uncertainty inherent
in the drug discovery process for a drug beginning phase
I clinical testing. Assuming that a candidate drug
successfully completes the prior stage of clinical testing,
two decisions are available at the beginning of the next
stage of clinical development: continue with develop-
ment or abandon the project. This translates into a four-
stage problem with four decision points as shown in
Figure 5. If the candidate drug successfully passes the
FDA approval phase (developmental stage 4), the drug
is commercially launched in stage 5. Figure 5 represents
the cone of market uncertainty for candidate drugs
beginning phase I at developmental stage s ) 1. Over
the course of the planning horizon, the number of
available value scenarios increases and the spread
between these values increases as a function of the
volatility of the candidate drug. Figure 6 displays the
cones of market uncertainty for two products. Product
i ) 1 has successfully completed phase I clinical testing
and is a candidate to enter phase II testing. Product i
) 2 is a candidate to begin phase I testing. Using t ) 0
as a basis, stage s ) 1 corresponds to phase II testing
for product 1 and phase I testing for product 2. The
number of available scenarios at the beginning of each
stage differs based on the lengths of these respective

Figure 5. Market uncertainty for a candidate drug beginning
phase I.
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stages. The binary parameters wist account for the
differences in stage durations for products at various
points in the developmental cycle. For example, wi)1,s)3,t)3
) 1, while wi)1,s)3,t)4 ) 0 to denote that stage s ) 3 for
product i ) 1 begins at period t ) 3 years. In this
manner, products at different points in the develop-
mental pipeline can be compared to formulate the
optimal portfolio for that given time.

In addition to market uncertainty, candidate drugs
in the developmental pipeline are subject to technical
uncertainty. Figure 7 shows the technical uncertainty
for candidate drugs beginning phase I clinical testing
at developmental stage s ) 1. The technical uncertainty
of a stage of drug development has two possibilities:
success or failure. The probability of success for a stage
of drug development for a candidate drug is given as
φis. Thus, the total probability of a drug i reaching a
given value scenario at the beginning of a stage includes
both the cumulative technical success probability and
the risk-neutral probability of price movement derived
from the market volatility and the risk-free interest
rate.

Drug Precedence Constraints. If a candidate drug
i is not selected for development in stage s ) 1 of clinical
testing, then this drug should be excluded from any
future phases of clinical testing. Mathematically, this
is expressed as

Furthermore, it is necessary to prevent a drug from

being selected in a particular phase of clinical testing
if it has been abandoned in a prior stage, which
translates into constraints expressed as

Value Monotonicity Constraints. In the binomial
pricing tree, the value scenarios are numbered in
ascending order of the project’s value at the beginning
of a stage, classifying the lowest node on the binomial
tree as value scenario 1 and continuing to the topmost
node. A characteristic of the solution to the OptFolio
problem is that once yisks equals 1 for a given scenario
ks, yisks equals 1 for all scenarios of a higher index ks.
Clearly, if a candidate drug is chosen to continue
development in a stage s under a given value scenario
ks, it will also be chosen in the more valuable scenarios
that are arranged above ks in the binomial pricing tree.
Similarly, if yisks equals 0 for a given scenario ks, yisks

equals 0 for all scenarios of a lower index ks. Math-
ematically, this is expressed as

Investment Constraints. Decisions to include a
drug in the pharmaceutical company’s portfolio or
abandon it are made before each phase of clinical testing
begins. However, these decisions may be “out of synch”
with the decision points of drugs at different locations
in the developmental pipeline. Assuming an aggregate
budgetary constraint for every year t in the planning
horizon that limits the investment in subsequent stages
of development, the binary parameters wist ensure that
only those drugs beginning a stage of development at
time t will be included in the budgetary constraint. The
investment constraints regarding drugs i under consid-
eration to begin stages at time t are expressed as

To satisfy the budgetary constraints, it may be neces-
sary to reduce the number of value scenarios in which
a drug’s development is continued. Consequently, the

Figure 6. Market uncertainty of products at different points in
the developmental cycle.

Figure 7. Technical uncertainty of drug development.
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road map of future continuation/abandonment decisions
is dependent on the resource constraints. Note that the
R&D investment limit Bt does not have a dependence
on the success probabilities of the current R&D projects.
The optimal portfolio at t ) 0 may be substantially dif-
ferent (i.e., it may contain more candidate products or
show a preference toward low-risk, low-reward products
over high-risk, high-reward products) when the need to
guarantee revenue to fund future R&D efforts is in-
cluded.

Real Options Decision Tree. The sequential deci-
sion process described in Figure 8 is evaluated by using
backward recursion to make continuation/abandonment
decisions at each market scenario of the binomial deci-
sion tree based on the future revenue streams obtained
by market launch. The value Misks for each market
scenario is formulated as a stochastic dynamic program

beginning from the expected payoff Visks received during
commercial launch where Misks are continuous variables
that represent the value of candidate product i in stage
s of development following value scenario ks. In this
form, the optimal decision policy chooses continuation
whenever Misks is positive. To account for the possibility
that continuation may not be chosen because of resource
limitations, the optimal decision rule is expressed in
terms of the binary selection variables yisks:

If the future value of the drug, discounted to the time
when the current stage s begins using the risk-free
interest rate rf, less the investment cost of the stage is
positive, the decision is made to continue development,
assuming that the appropriate resource constraints are
not violated. If this quantity is negative, the decision is
made to abandon development of this drug for the given
market scenario ks. Successive substitutions working
backward through eq 24 result in an explicit expression
for Mi,s)1,ks)1, the ROV for candidate drug i at t ) 0.

By resolving this recursion, Mi,s)1,ks)1 is expanded for
the case where all drugs are under consideration to
begin phase I clinical testing at developmental stage
s ) 1:

Upon linearizing the binary-binary products found in
eq 25, the expression comprises a large number of
binary variables, which makes the model size prohibi-
tively large as more products or managerial choices are
added. A more tractable approach is to express the
selection variables in terms of the current stage of
development and the future stage of development
instead of including all stages to reduce the number of
variables in the model formulation.

The objective function of the OptFolio model is ex-
pressed as the ROV for the candidate portfolio at t ) 0:

where the values of Misks for all other decision nodes are
defined as continuous variables in the form of eq 24 and
added as constraints to the problem. In addition, the
following constraints are also needed to ensure that the
Misks continuous variables are always nonnegative:

The continuous-binary products Mi,s+1,ks+1yisks that ap-
pear in eq 24 can be linearized using continuous
variables ziksks+1 as follows:

where Mi,s+1,ks+1

upper are parameters that represent upper
bounds on the continuous scenario values of Mi,s+1,ks+1.
These upper bounds are generated by solving the

Figure 8. Portfolio selection decisions under uncertainty.

Misks
) Max{-Iis +

∑
ks+1)1

Ni,s+1

[φispiksks+1
Mi,s+1,ks+1

]

(1 + rf)
Tis/∆T

, 0} (23)

Misks
) [-Iis +

∑
ks+1)1

Ni,s+1

[φispiksks+1
Mi,s+1,ks+1

]

(1 + rf)
Tis/∆T ] yisks

(24)

∑
i

Mi,s)1,ks)1
) ∑

i [-Ii1 yi1k1
-

1

(1 + rf)
1/∆T

∑
k2)1

Ni2

[φi1pik1k2
Ii2 yi2k2]yi1k1

-
1

(1 + rf)
2/∆T

∑
k2)1

Ni2 [φi1 pik1k2 ∑
k3)1

Ni3

[φi2pik2k3
Ii3 yi3k3]yi2k2]yi1k1

+
1

(1 + rf)
2/∆T

∑
k2)1

Ni2

[φi1pik1k2 ∑
k3)1

Ni3 [φi2 pik2k3 ∑
k4)1

Ni4 [φi3 pik3k4[ 1

(1 + rf)
2/∆T

∑
k5)1

Ni5

[φi4 pik4k5
Vik5] - Ii4]yi4k4]yi3k3]yi2k2]yi1k1] (25)

max ROV ) ∑
i

Mi,s)1,ks)1
(26)

Misks
g 0 (27)

Misks
) [-Iis‚yisks

+

∑
ks+1)1

Ni,s+1

[φispiksks+1
ziksks+1

]

(1 + rf)
Tis/∆T ] (28)

0 e ziksks+1
e Mi,s+1,ks+1

upper yisks
(29)

Mi,s+1,ks+1
- Mi,s+1,ks+1

upper (1 - yisks
) e ziksks+1

e Mi,s+1,ks+1
+

Mi,s+1,ks+1

upper (1 - yisks
) (30)

Ind. Eng. Chem. Res., Vol. 41, No. 25, 2002 6615



problem with no budgetary restrictions using the fol-
lowing model formulation:

This procedure is identical with the dynamic recursive
program described by eq 23. The optimal scenario values
obtained in the unconstrained problem represent upper
bounds of Mi,s+1,ks+1

upper on the values of Mi,s+1,ks+1 that can
be realized in the constrained problem. When the
investment constraints are relaxed, the scenario values
of a given candidate drug correspond to the maximum
revenue potential available when resources are not
scarce. An unconstrained scenario value of Misks must
characterize the best possible result that is obtainable
in the constrained problem; otherwise, the uncon-
strained scenario value is not optimal. Similarly, if a
given scenario value of Misks is equal to 0 in the
unconstrained problem, its value should remain equal
to 0 when investment constraints are imposed.

Model Formulation. The complete model formula-
tion of the problem is

To enhance the flexibility of the decision framework,
the OptFolio model can be modified to incorporate

additional managerial choices. These choices could
include deferring an R&D investment decision until
more information becomes available, expanding or
contracting the scale of the investment in response to
changing market conditions, using third-party compa-
nies that specialize in managing clinical trials in an
attempt to accelerate a developmental stage, or con-
ducting phase IV indication tests to increase the thera-
peutic claims of the drug. In most situations, these
additional decision choices would create path-dependent
routes through the decision tree that would have dif-
ferent volatilities and risk-neutral probabilities. Here,
a decision node in a given binomial tree may be the
starting point for one or more different binomial trees
that result if a certain course of action is chosen. The
combination of many options creates a nonrecombining
decision tree with a large state space.32 The inclusion
of more choices in the model alters the values of Misks

that control the optimal decision made at each value
scenario node:

where A, B, and C represent the payoffs from the choices
that are available in the current value scenario and
binary selection variables represent each additional
decision. Working back through time from the end
points of the different binomial trees, the OptFolio
model makes the value-maximizing decision at each
node, based on the choices available, and determines
the optimal road map of decisions.

The OptFolio model could also be modified to incor-
porate a stochastic Monte Carlo simulation of the
development and commercialization for each candidate
drug to determine how the portfolio ROV and composi-
tion change over simulated outcomes.33 The purpose of
the simulation is to gauge the variance of the ROV
outcomes based on varying model input parameters in
order to calculate the risk of each candidate drug. To
account for the emergence of competitors’ products, the
model framework could include “leakage” in the value
of the underlying asset as in the option to buy a stock
that pays dividends. In the absence of dividends, the
optimal course of action is to defer the start of a stage
of the project until the last possible moment. With this
leakage of value due to competition and lost patent
protection, it may be optimal to invest early. In addition,
real options analysis could be embedded into a game
theory situation where competing firms recognize each
other’s behavior and adjust their strategies accordingly.

5. Pharmaceutical Portfolio Case Study

As an illustrative example of the OptFolio model, we
consider a pharmaceutical company that has 20 candi-
date products (P1-P20) in R&D along six developmen-
tal classifications: six products beginning phase I
testing (type I, P1-P6), five products beginning phase
II testing (type II, P7-P11), three products beginning
phase III (type III, P12-P14), two products in the
second year of phase III testing (type IV, P15 and P16),
two products beginning phase IV FDA review (type V,
P17 and P18), and two products in the second year of
FDA review (type VI, P19 and P20). In general, candi-
date products with high probabilities of technical suc-
cess and a high current value to future investment
ratios are preferable. Conversely, the ability to control
downside risk with the abandonment option means that
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the ROV increases with increasing market volatility.
Constrained by an R&D budget, the pharmaceutical
company must decide which candidate products to fund
for further development during the upcoming year.

The candidate products fall into one of six types
depending on the remaining length of their develop-
mental schedule as shown in Figure 9. Products under
consideration to begin phase I clinical testing are
assumed to be 6 years away from product launch, so
selection decisions are made over a planning horizon of
6 years. A discretization time interval of 1 month is used
in the mathematical model, resulting in 73 possible
value scenarios at product launch for each candidate
drug that is beginning phase I development. Required
model parameters include the current value of the drug,
probabilities of technical success for each stage of
development, the investment costs for each stage of
development, and the estimated annual volatility in the
candidate drug’s value. Realistic values, based on
historical studies of the pharmaceutical industry,3,34-37

are chosen for the data used in this example as sum-
marized in Table 1. In practice, these time-dependent
parameters would be based on historical data, market
research, and qualitative estimates made by R&D
management at the present time of the analysis.

The set of 20 candidate drugs represents a variety of
product characteristics. Volatility estimates range from
20% for low-risk drugs to 100% for high-risk drugs, with
a typical market volatility of 50%/year. The probabilities
of technical success also vary to reflect the risk of each
candidate drug during drug development. The estimated
investment costs needed to begin subsequent phases of
development are loosely related to the current value of
each candidate drug to indicate that valuable drugs

usually cost more to develop and produce. The above
example is modeled using the GAMS modeling system
accessing CPLEX 7.0 for the MILP optimization part.
The budgetary constraint for t ) 0 is varied while
holding the budgetary constraints for all future years
constant at $800M. The linearization procedure de-
scribed in eqs 28-30 used continuous variables ziksks+1

to linearize the continuous-binary products Mi,s+1,ks+1, yisks

that appear in the formulation. Using this approach,
the mathematical model of the case study was reduced
to include only 893 binary variables and 12 843 continu-
ous variables and solved to optimality in 268 CPU s
using an IBM RS/6000-270 workstation. If the objective
function would have included the explicit expression for
Mi,s)1,ks)1 given by eq 25, the resulting linearization of
the binary-binary products would have yielded 101 042
binary variables and would have required far greater
computational time to find even a suboptimal solution
within a 2-3% tolerance of optimality.

Figure 10 summarizes the results of the portfolio
selection case study. The figure shows how the portfolio
size and ROV change as a function of the budgetary
constraint Bt)0. In general, products at later stages of
development, having survived several phases of clinical
testing, are more valuable because they are more likely
to reach commercial launch. However, the capital
investment and marketing costs associated with product
launch during phase IV FDA review are substantial,
limiting the number of products the pharmaceutical
company can bring to market. Thus, the size of the
optimal portfolio balances the desire to launch valuable
products in phase IV FDA review with the investment
in potentially valuable drugs in early stages of develop-
ment.

Figure 9. Developmental schedule for available drugs in the
pharmaceutical pipeline.

Table 1. Candidate Product Parameters

V0
($ million) σ (%) φs)1 φs)2 φs)3 σs)4

Is)1
($ million)

Is)2
($ million)

Is)3
($ million)

Is)4
($ million)

P1 50 80 0.6 0.7 0.8 0.95 2 10 20 30
P2 100 70 0.65 0.55 0.75 0.9 3 10 40 45
P3 200 50 0.7 0.8 0.9 0.9 10 15 60 100
P4 200 60 0.5 0.7 0.8 0.9 5 15 50 170
P5 600 50 0.6 0.6 0.7 0.9 20 40 45 200
P6 100 20 0.85 0.9 0.9 0.95 15 15 25 45
P7 80 50 0.6 0.8 0.95 10 25 30
P8 100 70 0.6 0.8 0.95 20 35 50
P9 180 55 0.75 0.7 0.85 20 55 80
P10 380 35 0.6 0.8 0.95 30 55 120
P11 80 45 0.6 0.8 0.95 10 25 30
P12 100 80 0.8 0.9 30 60
P13 400 30 0.8 0.9 75 180
P14 700 40 0.6 0.85 90 280
P15 500 35 0.8 0.95 50 100
P16 300 100 0.7 0.9 80 150
P17 350 60 0.75 180
P18 550 30 0.9 220
P19 800 60 0.7 250
P20 1150 20 0.9 350

Figure 10. Optimal portfolio ROV and size as a function of the
t ) 0 R&D budget.
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Figure 11 describes how the composition of the
optimal drug portfolio changes with the R&D budgetary
constraint. P20 is selected in every budgetary scenario
because it has the largest V0 of any product in the set
of candidate drugs and has a 90% chance of being
successfully launched in the following year. Similarly,
P15, which is entering the final year of phase III clinical
testing, is chosen in every scenario because it has a large
V0 in relation to the investment costs of subsequent
developmental stages and a 76% chance of being suc-
cessfully launched in 3 years. As the budgetary con-
straint increases, the OptFolio model chooses type I and
II drugs that have commercial promise but relatively
low investment costs for the current year. Under the
ROV metric, these products, though 5 or 6 years away
from market launch, are considered valuable because
of their potential future value. When Bt)0 ) $675M, the
OptFolio model drops several type I-III candidate pro-
ducts for the opportunity to select P18, a product 2 years
away from commercial launch. Similarly, six products
are dropped from the optimal portfolio at Bt)0 ) $900M
to add P18 at Bt)0 ) $1000M. From a management
perspective, candidate drugs that have made it through
the first two stages of clinical testing are only excluded
if the pharmaceutical company cannot afford to launch
multiple products. These results are consistent with the
analysis of Amram and Kulatilaka,28 who viewed phar-
maceutical investment as a two-part decision structure
consisting of (i) information-gathering investments in
phase I and II testing to identify the most valuable
products and (ii) the progression of these products into
phase III testing, where development continues unless
deterred by a negative scientific or regulatory result.

Figure 12 illustrates the difference in valuation of
type I candidate drugs using ROV and the NPV metric.
Here, we consider ROV to include the abandonment
option and NPV to assume that future cash flows are
static, essentially fixing all binary selection variables

to 1. These financial metrics are substantially different
for drugs in early stages of development, having large
technical and market uncertainties. The NPV technique
undervalues these risky projects because of its inability
to capture managerial flexibility: product selection is
not a commitment to proceed all of the way to com-
mercial launch but only to start with a “wait-and-see”
approach until some of the uncertainty is resolved.14 In
contrast, the real options approach recognizes project
volatility and the flexibility of management to react to
arising circumstances by continuing a project under
favorable conditions and abandoning disappointing
projects. The difference between the ROV and NPV
gives the value of the abandonment option to control
downside risk and increase upside market potential.
Intuitively, candidate products with high probabilities
of technical success and high current value/investment
ratios are relatively low risk and should have similar
valuations under the ROV and NPV metrics. Candidate
drug P5 is fairly low risk because its V0 of $600M is
high relative to future investment costs so the product
is abandoned less frequently than more risky candi-
dates, making it the only type I candidate with a
positive NPV. As a result, the ROV and NPV of this
candidate drug are very close, giving it an abandonment
option worth $6.0 M. For P4, a more risky candidate
drug with only a 50% probability of phase I clinical
success but just a $5M phase I investment cost, the
value of this abandonment option is $23.6M. In this
case, the low phase I investment cost encourages
preliminary R&D, but the phase IV investment cost of
$170M is only undertaken when market conditions are
encouraging. Consequently, the value of the abandon-
ment option is large for risky projects because of the
presence of managerial flexibility to control downside
loss in drug development.

In this analysis, five of the six type I candidate drugs
have positive ROVs, but only one candidate has a
positive NPV. The key result of this analysis is the value
of gathering information at the beginning stages of drug
development to determine whether the investment in
later, more expensive stages is justified and using the
abandonment option to terminate disappointing candi-
dates. Thus, the ROV technique is more appropriate to
value the uncertainty inherent in pharmaceutical port-
folio management as companies strive to identify block-
buster products and avoid the large late-stage costs of
marginal products.

As described before, the OptFolio model generates a
road map of future “what if” decisions by tracking the

Figure 11. Composition of the optimal portfolio as a function of Bt)0.

Figure 12. Comparison of ROV and NPV values of type I
candidate drugs.
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decision of abandonment for individual candidate prod-
ucts over time under changing market conditions and
calculating the minimum market value above which
development is continued. To illustrate this result,
consider candidate drug P1. Figure 13 shows the
optimal developmental schedule for candidate product
P1 in the absence of R&D resource constraints. The
OptFolio model calculates an ROV of $2.17M and
chooses to abandon R&D in 7 of the 13 value scenarios
at the beginning of phase II testing, 12 of the 25 value
scenarios at the beginning of phase III testing, and 24
of the 49 value scenarios at the beginning of phase IV
FDA review. In addition, it determines that the value
of P1 must be at least $79.4M (1.6V0) at the beginning
of phase II testing in order to justify continued invest-
ment in drug development. The minimum cutoff values
for the beginning of phase III and IV testing return to
$50M, the original V0, as uncertainty in R&D is re-
solved.

Candidate product parameters can be varied for each
individual drug to determine the sensitivity of the
optimal developmental schedule. For example, if the
current value V0 of candidate drug P1 is increased from
$50M to $150M, the ROV would be expected to increase,
causing the cutoff value for continued R&D investment
to decrease. With P1 being less risky, the OptFolio
model calculates an ROV of $42.75M and chooses to
abandon R&D in 4 of the 13 value scenarios at the
beginning of phase II testing, 10 of the 25 value
scenarios at the beginning of phase III testing, and 21
of the 49 value scenarios at the beginning of phase IV
FDA review. In addition, the minimum cutoff value for
continued R&D decreases to 0.4V0 at the beginning of
phase II clinical trials because of the lower risk of future
drug revenues failing to break even with R&D expen-
ditures. Similarly, we investigate how the optimal
developmental schedule changes if P1 is more of a
technical risk. As shown in Table 1, drug P1 has a 31.9%
chance (0.6 × 0.7 × 0.8 × 0.95) of reaching commercial
launch. Changing the technical success parameters to
φs)1 ) 0.5, φs)2 ) 0.5, φs)3 ) 0.6, and φs)4 ) 0.7 gives a
cumulative probability of 10.5% for a successful com-
mercial launch. As a result, the ROV for the more risky
candidate product P1 is equal to 0 at a volatility of 80%
and does not become positive until σ ) 150%. With σ )
200%, the minimum market value of P1 needs to be at
least $158.7M (3.2V0) at the beginning of phase II
testing to justify continued investment in drug develop-
ment. The minimum cutoff value for the beginning of
phase III stays at 3.2V0, while for phase IV testing, it
returns to $50M, the original V0, as uncertainty in R&D
is resolved. The results of the sensitivity analysis of P1
indicate that the minimum market value needed to
continue development in future stages of R&D is

significantly larger for risky projects. Incorporating the
flexibility of the continue/abandon option into the model
formulation allows for the determination of these cutoff
values to guide the future decisions of portfolio manag-
ers. Within the stochastic valuation framework, deci-
sions to adopt a “wait-and-see” approach for risky
projects by initiating a phase of clinical testing can be
coupled with the future results needed to justify further
R&D efforts.

To illustrate the impact of R&D resource constraints,
we consider a portfolio that contains only candidate
drugs P1 and P2. In the absence of any resource
constraints, the optimal portfolio has an ROV of $5.23M.
This result could also be obtained by evaluating each
drug individually using backward recursion and adding
the results. When Bt)0 ) Bt)1 ) $5M and the other
budgetary constraints are left unrestricted, the ROV of
the optimal portfolio decreases to $4.22M. The OptFolio
model reduces the number of value scenarios in which
P1 and P2’s development is continued to satisfy the
resource constraints. These results demonstrate the
importance of evaluating candidate drugs within a
multistage framework that optimizes the portfolio ROV
subject to budgetary limitations as opposed to using the
standard recursive methods to value projects in isola-
tion.

6. Concluding Remarks

The main objective of this paper was to develop a
stochastic programming model of pharmaceutical R&D
using a real options decision tree approach for making
optimal project selection decisions in response to market
and technical uncertainty and changing R&D budgetary
limitations. In this context, drug development is viewed
as a series of continue/abandon investment options to
value managerial flexibility in deciding at each stage
in pharmaceutical R&D whether to proceed further or
stop development. The overall problem is formulated as
an MILP model whose applicability is demonstrated by
a portfolio selection case study that involves the selec-
tion of the optimal product portfolio under varying
resource constraints.

The key idea that distinguishes the proposed ROV
approach from existing work is the explicit tracking of
the uncertainty in the market value of a candidate drug
for R&D through external financial market information.
From a management perspective, the model proposed
in this paper provides a road map for a “what if”
analysis of future R&D decisions by tracking the deci-
sion of abandonment over time and calculating the
minimum market value above which pharmaceutical
development is continued. In addition, the OptFolio
model serves as a decision-support tool in making
portfolio selection decisions based on uncertain project
and market characteristics as candidate products com-
pete for limited resources. The key insight of this
approach, quantified by the stochastic programming
model, is that it is worth exploring uncertain candidate
molecules in staged R&D investments until additional
information is learned about product performance
(through clinical testing) and market potential. In
realistic case studies, a probabilistic simulation of model
parameters such as phase success probabilities, market
volatility, and phase duration/cost uncertainties would
allow for the integration of a formal risk management
strategy and provides an interesting extension to this
work.33 Ultimately, a real options framework could be

Figure 13. Optimal developmental schedule showing abandon-
ment scenarios (A), continuation scenarios (C), and cutoff values
for P1.
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linked to capacity planning decisions within the stra-
tegic supply chain.
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