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Abstract: An optimization-based framework is intro-
duced for testing whether experimental flux data are
consistent with different hypothesized objective func-
tions. Specifically, we examine whether the maximiza-
tion of a weighted combination of fluxes can explain a
set of observed experimental data. Coefficients of impor-
tance (CoIs) are identified that quantify the fraction of the
additive contribution of a given flux to a fitness (objec-
tive) function with an optimization that can explain the
experimental flux data. A high CoI value implies that the
experimental flux data are consistent with the hypothesis
that the corresponding flux is maximized by the network,
whereas a low value implies the converse. This frame-
work (i.e., ObjFind) is applied to both an aerobic and
anaerobic set of Escherichia coli flux data derived from
isotopomer analysis. Results reveal that the CoIs for both
growth conditions are strikingly similar, even though the
flux distributions for the two cases are quite different,
which is consistent with the presence of a single meta-
bolic objective driving the flux distributions in both
cases. Interestingly, the CoI associated with a biomass
production flux, complete with energy and reducing
power requirements, assumes a value 9 and 15 times
higher than the next largest coefficient for the aerobic
and anaerobic cases, respectively. © 2003 Wiley Periodicals,
Inc. Biotechnol Bioeng 82: 670–677, 2003.
Keywords: flux balance analysis; optimization in meta-
bolic engineering; bilevel programming

INTRODUCTION

Living organisms have evolved to maximize their chances
for survival (Darwin, 1899). This is manifested at the level
of metabolism with the presence of multiple redundant path-
ways leading to and from key intermediates so that the
removal of a single enzyme will (likely) not prevent an
organism’s ability to produce key components (Edwards
and Palsson, 2000b; Price et al., 2002; Schilling and Pals-
son, 2000). Furthermore, experimental evidence suggests
that organisms have developed control structures to ensure

optimal growth in response to environmental constraints
(Edwards et al., 2001). Although the existence of a fitness
function driving an organism’s evolution is widely ac-
cepted, it is unclear whether its fingerprint can be detected
in the flux distributions of primary metabolism. Specifi-
cally, are metabolic networks driven to evolve as optimal
biomass producers, maximum ATP generators, or optimal
consumers of available substrates? In this investigation, we
address the question of whether such a fitness function, or in
optimization language, an objective function, can be identi-
fied from experimentally determined metabolic fluxes. We
also examine how this fitness surrogate varies as environ-
mental conditions change.

There exist two classes of metabolic modeling frame-
works that inherently account for the presence of a fitness
function that drives the metabolic machinery toward opti-
mal survivability. First, the cybernetic modeling approach
assumes that an organism is an optimal strategist utilizing
all available resources with maximum efficiency (Ram-
krishna et al., 1987). The expression and activity of the
enzymes that catalyze network functionality are regulated
by cybernetic control variables obtained from the solution
of a constrained optimization problem (Dhurati et al., 1985;
Kompala et al., 1984). This framework also contends that
even genetically altered systems have the same underlying
goal of optimal resource allocation, although the set of com-
peting physiological choices open to the network expands or
contracts depending upon the nature of the alteration
(Varner and Ramkrishna, 1999a, 1999b). Cybernetic mod-
els have been successful in modeling the growth dynamics
of yeast in batch and continuous cultures (Jones and
Kompala, 1999), diauxic growth patterns and simultaneous
consumption of substrates of Escherichia coli (Ramakrishna
et al., 1996) and Klebsiella oxytoca (Kompala et al., 1986),
and the time evolution of the aspartate family of amino
acids in Corynebacterium lactofermentum (Varner and
Ramkrishna, 1999c). Stoichiometric or flux balance analy-
sis (FBA) models, on the other hand, employ this optimality
principal in a slightly different fashion (Edwards et al.,
2002). They use only the stoichiometric mass balances of
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the metabolic network and cellular composition information
to generate the broadest set of reaction flux distributions
potentially available to the cell. This assumes that a meta-
bolic network is capable of spanning all flux combinations
allowable by the stoichiometric constraints with the maxi-
mization of biomass yield typically postulated as the objec-
tive function. Stoichiometric models have, in some cases,
been successful in predicting the phenotypical characteris-
tics of cells such as growth rates (Edwards et al., 2001; Pons
et al., 1996), metabolic byproduct secretion rates (Varma et
al., 1993b; Varma and Palsson, 1994), biochemical produc-
tion rates (Henriksen et al., 1996; Jørgensen et al., 1995),
and viability in the presence of gene deletions (Burgard and
Maranas, 2001; Burgard et al., 2001; Edwards and Palsson,
2000a).

Although many hypotheses have been put forward as sur-
rogates for cellular fitness functions, substantially less work
has been conducted toward systematically validating them
with experimentally derived flux distributions of metabolic
networks. This is due in part to fact that the complete quan-
tification of fluxes throughout the central metabolic path-
ways was intractable until recently. Traditionally, the only
observables have been the growth rate, the uptake and se-
cretion rates of substrates and products, and those reaction
fluxes that can be calculated directly based on uptake or
secretion of these external compounds. The development of
complete isotopomer models (Christensen and Nielsen
2000; Forbes et al., 2001; Klapa et al., 1999; Park et al.,
1999; Zupke et al., 1997), however, enables the calculation
of the amount of reaction flux passing through every reac-
tion of central metabolism. Briefly, isotopomer analysis in-
volves the uptake of a 13C-labeled substrate and the subse-
quent analysis of the labeling state by nuclear magnetic
resonance (NMR) and/or gas chromatography/mass spec-
toscopy (GC/MS) measurements (Christensen and Nielsen,
1999; Schmidt et al., 1999b; Szyperski, 1995; Wiechert and
de Graaf, 1996). This allows for a more accurate quantifi-
cation of intracellular flux distributions providing an addi-
tional set of observables to test the various fitness function
hypotheses.

In this work, we introduce a mathematically rigorous
framework for testing whether experimental flux data are
consistent with different hypothesized objective functions.
Rather than starting by postulating such an objective func-
tion, or even accepting that one exists, we introduce a quan-
titative framework akin to inverse optimization (Tarantola,
1987) for inferring or disproving the consistency of differ-
ent hypotheses. Specifically, we examine whether the maxi-
mization of a weighted combination of fluxes can explain a
set of observed experimental data. For example, the driving
force governing cellular metabolism may be a compromise
between ATP, redox, and biomass production fluxes de-
pending on the state of the system. Mathematically, deci-
phering this balance requires identification of the weights or

coefficients, cj, that accept the experimental fluxes, vj
exp, as

an optimal solution to the following linear programming
(LP) problem:

Maximize: �
j

M

cj�j

subject to:

�
j

M

Sij�j = 0, � i ∈ N

�j � 0, � j ∈ M

where M and N are the total number of reactions and me-
tabolites, respectively, Sij is the stoichiometric coefficient of
metabolite i in reaction j, vj represents the flux of reaction j,
and cj is a weight associated with reaction j. These coeffi-
cients, heretofore referred to as coefficients of importance
(CoI), are scaled so that their sum is equal to 1. Intuitively,
the coefficients of importance, cj, quantify the fraction of
the additive contribution of a given flux, vj, to the fitness
function whose maximization explains the experimental
flux data. A high value for cj implies that the experimental
flux data are consistent with the hypothesis that the flux, vj,
is driven toward its maximum allowable value, whereas a
low value implies the converse. FBA-based modeling typi-
cally assumes that the coefficients of importance define a
unit vector in the direction of a growth flux comprised of all
necessary components of biomass in their corresponding
biological ratios (Ingraham et al., 1983). Other postulated
objective functions include: (i) the maximization of metabo-
lite (Varma et al., 1993a) or ATP (Majewski and Domach,
1990; Ramakrishna et al., 2001) production; and (ii) the
minimization of the Euclidean norm (i.e., sum of the fluxes)
(Bonarius et al., 1996), nutrient uptake, or redox production
(Savinell and Palsson, 1992). The approach proposed here,
referred to as ObjFind, requires the solution of a bilevel
optimization problem that minimizes the squared deviations
of identified fluxes from experimental data while ensuring
that the identified fluxes are the product of an optimization
problem. A solution strategy founded upon duality theory
concepts is discussed in detail in the “Modeling and Com-
putational Protocol” subsection. Based on this framework,
we examine: (i) what is the objective function (if any) of a
metabolic network that is the most consistent with experi-
mental flux data; (ii) whether this objective function is
unique; and (iii) how the driving forces governing cellular
metabolism vary under different environmental conditions.

RESULTS

The ObjFind procedure is applied to the central metabolic
network of E. coli. Experimental flux values, vj

exp, deter-
mined from an isotopomer analysis (Schmidt et al., 1999a)
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study for both aerobic and anaerobic growth conditions, are
used in conjunction with a stoichiometric model of E. coli
central metabolism (Palsson, 2002) in an effort to pinpoint
which underlying driving forces are governing the net-
work’s operation. This model, comprised of 62 reactions
and 48 metabolites, includes all reactions of glycolysis, the
TCA cycle, and the pentose phosphate pathway, as well as
a number of respiration reactions. Coefficients of impor-
tance are assigned to each reaction flux associated with a
metabolite drain, energy dissipation, or redox potential dis-
sipation. In other words, an assignment is made for every
flux that consumes, by either draining or dissipating, a re-
source in the network. The reaction fluxes associated with
these coefficients are shown with colored arrows in Figure
1. Note that previously postulated objective functions are
encompassed here as linear combinations of these reaction
fluxes.

In our first case study, we identify CoIs consistent with
the experimental fluxes, vj

exp, being optimal to the LP prob-
lem maximizing:

�
j

cj�j

subject to the network stoichiometry. Consequently, if this
LP problem is solved using the coefficients cj, identified by
ObjFind, an optimal solution, vj*, exists, although not nec-
essarily unique, such that:

�
j

��*j − �j
exp�2

is minimized. The minimum sums of the squared flux de-
viations from the experimental data for the aerobic and an-
aerobic fluxes were found to be 0.016 (mmol/g DW h)2 and
0.797 (mmol/g DW h)2, respectively, which were well
within the experimental error. The identified CoIs consis-
tent with the aerobic and anaerobic experimental flux dis-
tributions are superimposed in Figure 2. Remarkably, the
CoIs for both growth conditions are strikingly similar even
though the flux distributions (see Table I) for the two cases
are quite different. This unexpected convergence is consis-
tent with the presence of a single metabolic objective driv-
ing the flux distributions in both cases. This objective is
exemplified by the values of the coefficients of importance.
It appears that fluxes with similar CoIs cluster within groups
that are both topologically and functionally related. Specifi-
cally, seven fluxes, shown in purple, are clustered where the
glycolysis pathway meets the TCA cycle. In addition, the
fluxes with the largest coefficients, shown in red in Figure
1, are associated with drains of metabolites not far from
glucose in the metabolic network, whereas the smallest co-
efficients, shown in blue, are associated with ATP and
NADH dissipation. The most notable differences between
the two sets of coefficients of importance are associated
with the secretion of acetate, ethanol, and succinate, where
the anaerobic CoIs are much larger. This is consistent with
the fact that these metabolic byproducts are secreted only
under anaerobic conditions. It is also noteworthy that the
coefficient associated with the ATP dissipation flux is equal
to zero for the anaerobic growth case, indicating that the
network is more energy deficient under anaerobic growth
conditions.

Next we investigate the effect of deviations in the flux
distributions from the experimental ones on the robustness
of the values identified for the coefficients of importance.

Figure 1. The reaction fluxes allowed to assume nonzero coefficients of
importance are shown in color. The reactions with similar CoI magnitudes
are denoted by the same colors. Note the magnitudes of the CoIs are similar
for both the aerobic and anaerobic growth conditions.

Figure 2. The values of the coefficients of importance for the aerobic (�)
and anaerobic (�) experimental flux distributions.
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Specifically, the sum of the squared deviations between the
identified and experimental fluxes is allowed to increase
from its minimum value by (i) 0, (ii) 1, (iii) 10, and (iv) 100
squared flux units (mmol/g DW h)2; whereas, at the same
time, each CoI is maximized individually to identify its
sensitivity to experimental errors. The deviations of the
CoIs from their nominal values for both aerobic and anaero-
bic cases are shown in Figure 3. Clearly, although some
changes are present, the maximum extent possible is not
high for small experimental errors, implying a substantial
robustness in the assignment of values to the coefficients of
importance with respect to experimental error. In addition,
these deviations seem to be proportional to the nominal
values of the CoIs and are approximately 95% larger for the
anaerobic versus the aerobic case.

After identifying the CoIs and verifying their robustness
to experimental error we turn our attention toward decipher-
ing the biological significance of their values. Specifically,
we examine how closely these coefficients of importance
track the biomass maximization hypothesis. A biomass re-
action flux (Varma and Palsson, 1993), complete with en-
ergy and reducing power requirements, is added to the net-

work to drain metabolic precursors in their appropriate ra-
tios, as proposed by Ingraham et al. (1983) for biomass
formation. A coefficient of importance is assigned to this
aggregate biomass flux. Note that an infinite number of
solutions exist for the CoIs because the biomass flux is
comprised of a linear combination of the other drain fluxes.
We thus identify its maximum value as capable of explain-
ing the flux distributions for the aerobic and anaerobic
cases, respectively. The value for the coefficient of impor-
tance for biomass can then be interpreted as the maximum
fraction of cellular resources that are diverted to biomass

Figure 4. The coefficients of importance for the aerobic (�) and anaero-
bic (�) experimental flux distributions with the addition of a biomass flux.

Table I. Experimentally (Schmidt et al., 1999a) determined flux distri-
butions for aerobic and anaerobic conditions.

Reactiona Aerobic Anaerobicb |% Difference|

pts 115.0 115.0 0.0%
hxi 61.0 30.0 50.8%
gdh 53.1 84.9 59.8%
ald 89.1 84.9 4.8%
tk1 18.9 28.2 49.1%
tal 18.9 28.2 49.1%
tk2 9.6 26.9 179.9%
eno 181.2 194.6 7.4%
pyk 26.6 69.1 159.9%
pdh 126.1 111.4 11.7%
cis 52.0 4.8 90.8%
akd 45.0 4.7 89.6%
ppc 21.4 6.1 71.4%
xace 0.0 34.1 —
xeth 0.0 65.3 —
xlac 0.0 69.8 —
xsuc 0.0 3.9 —
cooc 254.9 199.6 21.7%
bacac 74.1 5.9 91.3%
bakgc 7.0 0.1 98.4%
be4pc 9.3 1.3 84.7%
bf6pc 0.3 0.2 27.2%
bg6pc 0.9 0.3 63.6%
bgapc 6.5 1.7 71.4%
boaac 14.4 2 84.8%
bpepc 18.1 3.8 77.1%
bpyrc 15.3 2.8 80.0%
br5pc 5.7 1.5 71.3%

aReactions corresponding to abbreviations are provided in Figure 1.
bFlux distributions for the anaerobic case are scaled so that glucose

uptake rate is identical to the aerobic case.
cFluxes were obtained from completely defined mass balances around

the metabolites of interest.

Figure 3. The maximum allowable increase of the coefficients of impor-
tance (CoIs) for the (a) aerobic and (b) anaerobic experimental flux dis-
tributions when solution optimality is relaxed. MIN � minimum.
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formation. We find that the maximum possible values of
biomass CoIs for the aerobic and anaerobic cases are 0.58
and 0.68, respectively, as shown in Figure 4. This means
that biomass maximization appears to be an important de-
scriptor of the observed flux distributions, but not the
unique one, given that 0.58 and 0.68 are not equal to 1. No
other flux has a coefficient of importance nearly as high as
the one identified for biomass formation. Interestingly, the
relative magnitudes of the coefficients for all other reaction
fluxes remain similar to their original values except for the
metabolic byproduct coefficients, xsuc and xeth, which are
equal to 0 for the aerobic case, and the coefficients for xace
and nadh dissipation, which drop out under both growth
conditions.

It is important to note, however, that, while for a given
flux distribution the range of allowable values for the co-
efficients of importance is rather narrow, the converse is not
true. In fact, maximization of the sum of CoI-based
weighted fluxes, ∑j cj�j, subject to stoichiometric balances
accepts many different flux distributions as optimal solu-
tions as a consequence of the degeneracy of the LP optimi-
zation problem. Therefore, although the experimental fluxes
do constitute optimal solutions to the optimization problem,
many other alternate optimal solutions exist with or without
biological meaning. This implies that the original experi-
mental flux distribution cannot be unambiguously recovered
based solely on the values of the coefficients of importance.
The same holds true whenever the maximization of bio-
mass, ATP, or any other resource is adopted a priori. Also,
note that simple inspection of the ratio vexp/vmax, where vmax

is the maximum theoretical value of the specified flux sub-
ject to the stoichiometric constraints, does not reveal the
trends that are uncovered with the CoIs. For example, the
ratio

�biomass
exp ��biomass

max , where �biomass
exp

is the maximum biomass formation with all fluxes equal to
their experimental values, is only 0.058 and 0.120 for the
aerobic and anaerobic cases, respectively, whereas the CoIs
for biomass clearly reveal their importance. This implies
that the proposed framework is more robust to deviations in
the biomass composition from the Ingraham et al. (1983)
approximation.

SUMMARY

In this work, a quantitative framework termed ObjFind,
based on a bilevel optimization procedure, was developed
for testing, disproving, or fine-tuning the consistency of
different hypothesized objective functions with experimen-
tally determined flux distributions. This method was applied
to identify the coefficients of importance for E. coli flux
distributions under aerobic and anaerobic growth condi-
tions. These coefficients were remarkably similar, indicat-
ing a single cellular driving force governing the distribution

of metabolic fluxes. In addition, surprisingly little flexibility
was present in the CoIs for both cases among alternate
optimal solutions identified when the sum-squared devia-
tion was equal to its minimum value, although some flex-
ibility was observed in these coefficients as the sum-squared
deviation was allowed to increase. We also found that the
maximization of the aggregate biomass flux to be consistent
with the observed experimental flux values. Thus, the maxi-
mization of cellular biomass appears to be an important
descriptor, although not the unique one, in explaining the
observed fluxes. Finally, significant degeneracy was found
among optimal solutions to the linear programming problem
maximizing the sum (over j) of cjvj subject to the network
stoichiometry. This implies that the flux distributions
through the network cannot be uniquely defined based
solely on the identified CoIs, although they do provide in-
sight as to which fluxes, when maximized, are consistent
with the experimental flux data. It should be noted that,
although one may never prove the existence of a universal
objective function, the ObjFind procedure provides an un-
biased framework for researchers to test the validity of dif-
ferent hypotheses leading to a better characterization of the
underlying driving forces of cellular metabolism.

Modeling and Computational Protocol

The linear programming optimization model, referred to as
the Primal, for a steady-state metabolic network comprised
of N metabolites and M metabolic reactions with P potential
cellular objectives is:

Maximize: ZP = �
j∈P

cj�j (Primal)

Subject to: �
j=1

M

Sij�j = 0, � i ∈N

�GLC = uptake, � j ∈ glucose uptake

vj � 0, � j ∈ M

where Sij is the stoichiometric coefficient of metabolite i in
reaction j, vj represents the flux of reaction j, vGLC is the
basis uptake amount of glucose, and cj is a weight associ-
ated with importance of the reaction flux, vj, referred to as
a coefficient of importance. The vector v includes both in-
ternal and external fluxes and reversible reactions are de-
fined as two irreversible reactions in opposite directions,
constraining all fluxes to positive values. Given a set (j ∈ E)
of fluxes, vj

exp, which have been experimentally deter-
mined, it is possible to determine which linear combinations
of reaction fluxes weighted by cj are maximized such that
the experimental fluxes are optimal with respect to the lin-
ear programming problem described by the Primal. This
requires the solution of the following bilevel optimization
problem:
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Minimize:
cj �

j∈E

��j − �j
exp�2 (ObjFind)

Subject to:

�
Maximize:

�j �
j∈P

cj�j

Subject to: �
j=1

M

Sij�j = 0, � i ∈ N

�GLC = uptake, � j ∈ glucose uptake

�j � 0, � j ∈ M

�
�
j∈P

cj = 1

cj � 0, � j ∈ P

in which the coefficient of importance (cj) values for the
inner problem are adjusted by the outer problem so that the
sum-squared difference between the experimental fluxes
and the optimal solution, vj, for the inner problem is mini-
mized. Note that the ObjFind problem includes the opti-
mality of the Primal problem as a constraint giving rise to
two nested optimization problems.

We propose an efficient solution approach borrowing
from linear programming (LP) duality theory, which shows
that for every LP problem (primal) there exists a unique
optimization problem (dual) with an optimal objective value
that is equal to that of the primal problem. The dual problem
associated with the Primal LP problem (Bertsimas and Tsit-
siklis, 1997) is:

Minimize: ZD = �uptake� � g (Dual)

Subject to: �
i=1

N

uiSij � cj , � j ∈ P

�
i=1

N

uiSij � 0, � j ∉ P, glucose uptake

�
i=1

N

uiSij + g � 0, � j ∈ glucose uptake

where ui is the dual variable associated with the first set of
constraints in the Primal, and g is the dual variable asso-
ciated with the glucose uptake constraint. The dual vari-
ables, ui and g, indicate the change in the optimal value of
ZP per unit change on the right-hand side of their associated
constraint. Likewise, the reaction fluxes, vj, are the dual
variables associated with the constraints of the Dual prob-
lem.

The concept of strong duality (see Fig. 5) implies that if
the primal has an optimal solution, so does the dual, and
their respective optimal objective values are equal. Further-
more, the primal and dual problems can be simultaneously
feasible only at their respective optimal solutions. There-
fore, by constructing an optimization problem formulation
that includes both the Primal and Dual constraints along

with an equality constraint forcing their respective objective
function values to be equal to each other, we ensure that any
feasible solution (vj, g, ui) will be optimal to both the Pri-
mal and Dual problems. Therefore, solution of the follow-
ing single-level nonlinear optimization problem:

Minimize: �
j∈E

��j − vj
exp�2 (ObjFind)

Subject to: �
j∈P

cj�j = �uptake� � g

�
j∈P

cj = 1

�
j=1

M

Sij�j = 0, � i ∈ N

�GLC = uptake, � j ∈ glucose uptake

�
i=1

N

uiSij � cj , � j ∈ P

�
i=1

N

uiSij � 0, � j ∉ P, glucose uptake

�
i=1

N

uiSij + g � 0, � j ∈ glucose uptake

�j � 0, � j ∈ M

cj � 0, � j ∈ P

systematically characterizes the set of all possible cj values
consistent with the minimization of the sum-squared differ-
ence between a subset of observed fluxes, vj

exp, and an
optimal solution to the Primal. Note that any problems
resulting from the presence of multiple optima to the primal
are circumvented by including the flux variables directly in
the dual minimization. By utilizing LP duality concepts, a
method is introduced for transforming the original intrac-

Figure 5. Weak duality states that any feasible dual solution has an
objective value that is greater than the optimal primal objective, whereas
any feasible primal solution has an objective value that is less than the
optimal dual objective. Strong duality states that if the primal has an
optimal solution, so does the dual, and their respective optimal objective
function values are equal.
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table two-stage optimization problem into a single-stage op-
timization problem. The related problem of maximizing the
value of a particular coefficient, cj*, subject to the sum of
the squared deviations being below a target value is:

Maximize: c*j

Subject to: �
j∈P

cj�j = �uptake� � g

�
j∈E

��j − �j
exp�2 � target

�
j∈P

cj = 1

�
j=1

M

Sij�j = 0, � i ∈ N

�GLC = uptake, � j ∈ glucose uptake

�
i=1

N

uiSij � cj , � j ∈ P

�
i=1

N

uiSij � 0, � j ∉ P, glucose uptake

�
i=1

N

uiSij + g � 0, � j ∈ glucose uptake

�j � 0, � j ∈ M

cj � 0, � j ∈ P

where cj* can be the weight associated with any potential
cellular objective (i.e., biomass formation, energy produc-
tion, etc.). It should be noted that the constraint (ZP � ZD)
is nonconvex due to the bilinear cjvj terms. Therefore, mul-
tiple starting points were used to identify multiple optimal
solutions in each case. We observed that, after >100 restarts,
only a handful of multiple optima were identified. Problems
containing as many as 200 variables were solved in seconds
using MINOS 5.0 accessed via the GAMS modeling envi-
ronment on an IBM RS6000-270 workstation.
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