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Abstract

In this work, we provide an overview of our previously published works on incorporating demand uncertainty in midterm

planning of multisite supply chains. A stochastic programming based approach is described to model the planning process as it

reacts to demand realizations unfolding over time. In the proposed bilevel-framework, the manufacturing decisions are modeled as

‘here-and-now’ decisions, which are made before demand realization. Subsequently, the logistics decisions are postponed in a ‘wait-

and-see’ mode to optimize in the face of uncertainty. In addition, the trade-off between customer satisfaction level and production

costs is also captured in the model. The proposed model provides an effective tool for evaluating and actively managing the exposure

of an enterprises assets (such as inventory levels and profit margins) to market uncertainties. The key features of the proposed

framework are highlighted through a supply chain planning case study.
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1. Introduction

The increasing competitive pressures in the global

marketplace coupled with the rapid advances in infor-

mation technology have brought supply chain planning

into the forefront of the business practices of most

manufacturing and service organizations. Unwillingness

to commit to large irreversible investments for expand-

ing the existing manufacturing asset base while still

generating shareholder value has forced most chemical

companies to re-evaluate and improve the way in which

they run and manage their existing facilities. Given the

complexity of large chemical operations and the often

conflicting objectives of the various business divisions,

such as marketing, distribution, planning, manufactur-

ing and purchasing, it is imperative to develop a unified

and rigorous framework for capturing the various

synergies and trade-offs involved. Effective integration

of these various functionalities is the primary objective

of supply chain planning.

Supply chain planning is concerned with the coordi-

nation and integration of key business activities under-

taken by an enterprise, from the procurement of raw

materials to the distribution of the final products to the

customer. The decision making process in these highly

complex and interacting networks can be decomposed

according to the time horizons considered (Gupta &

Maranas, 1999). This results in the following temporal

classification of the decisions/models: strategic , tactical

and operational . Strategic or long-term planning models

aim to identify the optimal timing, location and extent

of additional investments in processing networks over a

relatively long time horizon ranging from 5 to 10 years

(Sahinidis, Grossmann, Fornari, & Chathrathi, 1989;

Sahinidis & Grossmann, 1991; Norton & Grossmann,

1994). These decisions affect the long-term performance

of the system from a design and planning perspective.

Short-term operational scheduling models (Shah, Pan-

telides, & Sargent, 1993; Xueya & Sargent, 1996; Karimi

& McDonald, 1997) constitute the other extreme of the

spectrum of planning models. These models are char-

acterized by very short timeframes, such as 1�/2 weeks,

over which they address the exact sequencing of the

manufacturing tasks while accounting for the various

resource and timing constraints. The third class, com-
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prising of midterm tactical models (Gupta & Maranas,

1999; Dimitriadis, Shah, & Pantelides, 1997; McDonald

& Karimi, 1997), is intermediate in nature. These models

address planning horizons of 1�/2 years and incorporate

some features from both the strategic and operational

models. For instance, they account for the carryover of

inventory over time and various key resource limitations

much like the short-term scheduling models. Similarly,

in spirit with the strategic planning models and unlike

the operational models, they account for the presence of

multiple production sites in the supply chain. The

midterm planning models derive their value from this

overlap and integration of modelling features and thus

form the focus of our work.
In today’s ever changing markets, maintaining an

efficient and flexible supply chain is critical for every

enterprise, especially given the prevailing volatilities in

the business environment with constantly shifting and

increasing customer expectations. Various sources of

uncertainty can be identified in these systems. Based on

the timeframe over which these uncertainties affect the

system, they can be categorized into short-term or long-

term uncertainties (Subrahmanyam, Pekny, & Reklaitis,

1994). Short-term uncertainties may include day-to-day

processing variations, cancelled/rushed orders, equip-
ment failure, etc. Long-term uncertainty refers to raw

material/final product unit price fluctuations, seasonal

demand variations and production rate changes occur-

ring over longer time frames. Underestimating uncer-

tainty and its impact can lead to planning decisions that

neither safeguard a company against the threats nor

take advantage of the opportunities that higher levels of

uncertainty provide. For instance, one of the key
sources of uncertainty in any production-distribution

system is the product demand. Failure to account for

significant demand fluctuations could either lead to

unsatisfied customer demand translating to loss of

Nomenclature

Sets

{i} set of products
{f} set of product families
{j} set of processing units
{s} set of production sites
{t} set of time periods
Parameters

FCfjs fixed production cost for family f on unit j at site s

nijs variable production cost for product i on unit j at site s

pis price of raw material i at site s

tss’ transportation cost from site s to site s’

tsc transportation cost from site s to site c

hist inventory holding cost for product i at site s in period t

zis safety stock violation penalty for product i at site s

mic revenue per unit of product i sold to customer c

Rijst rate of production of product i on unit j at site s in period t

bi’is yield adjusted amount of product i consumed to produce product i’ at site s

lif 0�/1 parameter indicating whether product i belongs to family f

Hjst production capacity of unit j at site s in period t

MRLfjs minimum run length for family f on unit j at site s

dict demand for product i at customer c in period t

IL
ist safety stock for product i at site s in period t

Variables

Yfjst binary variable indicating whether product family f is manufactured on unit j at site s in period t

Pijst production amount of product i on unit j at site s in period t

RLijst run length of product i on unit j at site s in period t

FRLfjst run length of product f on unit j at site s in period t

Cist consumption of product i at site s in period t

Wiss’t intersite shipment of product i from site s to site s’ in period t

Aist amount of product i available for supply at site s in period t

Iist inventory of product i at site s in period t

Sisct supply of product i from site s to customer c in period t

I�ict shortage of product i at customer c in period t

IDist deviation below safety stock of product i at site s in period t
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market share or excessively high inventory holding costs

(Petkov & Maranas, 1997), both highly undesirable

scenarios in the current market settings where the profit

margins are extremely tight. The former scenario
corresponds to a failure in recognizing an opportunity

to capture additional market share while the later

translates to a failure in effectively managing the

downside risk exposure of the company. Deterministic

planning models, which do not recognize the uncertainty

in the future demand forecasts, can thus be expected to

result in inferior planning decisions as compared to

models that explicitly account for the uncertainty.
The rest of the paper is organized as follows. In the

next section, the deterministic midterm supply chain

model which has been the basis of our work is described.

Subsequently, the need for incorporating uncertainty

into the planning decisions is motivated and the various

issues involved in achieving this are discussed. Next, the

resulting mathematical framework is presented followed

by a description of the benefits and challenges asso-
ciated with the proposed framework for describing

uncertainty. Application of the developed framework

to a supply chain planning case study is then presented.

Finally, the work is summarized and concluding re-

marks are provided.

2. Deterministic midterm production planning model

The deterministic planning model originally proposed

by McDonald and Karimi (1997) is adopted as the

representative formulation for our work. This model is

aimed at determining the optimal sourcing and alloca-

tion of an enterprise’s limited resources to its manufac-

turing assets so as to satisfy the market demands in the

most cost-effective way. The supply chain network

considered in the model consists of multiple production
sites, potentially located globally, manufacturing multi-

ple products. The demand for these products exists at a

set of customer locations. The planning horizon, in

keeping with the midterm nature of the model, ranges

from around 1 to 2 years. Each production site is

characterized by one or more single stage semi-contin-

uous processing units having limited capacity. The

various products, which are grouped into product
families, compete for the limited capacity of these

processing units. The decision making process at the

tactical level can be decomposed into two distinct

phases: the manufacturing phase and the logistics phase

(Gupta & Maranas, 1999; McDonald & Karimi, 1997;

Gupta & Maranas, 2000). The manufacturing phase

focuses on the efficient allocation of the production

capacity at the various production sites with an aim to
determining the optimal operating policies. Subse-

quently, in the logistics phase, the post-production

activities such as demand satisfaction and inventory

management are considered for effectively meeting the

customer demand. This classification of supply chain

activities translates into the following model formula-

tion.

(MP)

min
X
f ;j;s;t

FCfjsYfjst�
X
i;j;s;t

yijsPijst�
X
i;s;t

pisCist

�
X
i;s;s?;t
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X
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X
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X
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D
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X
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�
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subject to
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X
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Pi?jst (3)
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X

s?

Wiss?t (4)

FRLfjst�
X
lif �1

RLijst (5)

X
f

FRLfjst5Hjst (6)

MRLfjsYfjst5FRLfjst5HjstYfjst (7)

Aist�Iis(t�1)�
X

j

Pijst�
X

s?

Wiss?t (8)

Iist�Aist�
X

c

Sisct (9)

X
s;t?5t

Sisct?5
X
t?5t

dict? (10)

I�
ic(t�1)�dict�

X
c

Sisct5I�
ict 5

X
t?5t

dict? (11)

IL
ist�Iist5ID

ist5IL
ist (12)

Pijst; RLijst; FRLfjst; Cist; Wiss?t; Aist; Iist; I�
ict ; Sisct; ID

ist

]0; Yfjst � f0; 1g

The objective function of the deterministic midterm-

planning model (MP), Eq. (1), captures the combined

costs incurred in the manufacturing and logistics phases.

The manufacturing phase costs include fixed and vari-

able production charges, cost of raw material purchase
and transportation charges incurred for the intersite

shipment of intermediate products. The subsequent

logistics phase costs are comprised of the transportation

charges incurred for shipping the final product to the

customer, inventory holding charges, safety stock viola-

tion penalties and penalties for lost sales. The decisions

made in the manufacturing phase establish the location

and timing of production runs, length of campaigns,
production amounts and consumption of raw materials.

Specifically, Pijst , RLijst , FRLfjst , Aist , Cist , Wiss’t and

Yfjst constitute the manufacturing variables , and un-

iquely define the production levels and resource utiliza-

A. Gupta, C.D. Maranas / Computers and Chemical Engineering 27 (2003) 1219�/1227 1221



tions in the supply chain. These manufacturing variables

are constrained by the manufacturing constraints given

by Eqs. (2)�/(8). The production amount of a particular

product is defined in terms of the rate of production and
the campaign run length by Eq. (2). The input-output

relationships between raw materials and final products,

accounting for the bill-of-materials, are given through

Eq. (3). Redundancy in the intersite shipment of

intermediate products is eliminated by Eq. (4), which

forces the products shipped to a particular site in a

particular period to be consumed in the same period.

The allocation of products to product families is
achieved through Eq. (5). Grouping of products into

product families is typically done to account for the

relatively small transition times and costs between

similar products. Eq. (6) models the capacity restrictions

while Eq. (7) provides upper and lower bounds for the

family run lengths. The amount available for supply in

the logistics phase following the manufacturing phase is

defined through Eq. (8). The decisions made in the
logistics phase, termed the logistics variables , are Sisct ,

Iist , ID
ist/and I�

ist : The corresponding logistics constraints

are given by Eqs. (9)�/(12). The linking between the

manufacturing and logistics phases is captured by Eq.

(9). The inventory level, which is determined by the

amount available for supply and the actual supplies to

the various customers, is defined by Eq. (9). No over-

stocking is permitted at the customer (Eq. (10)) and the
customer shortages are carried over time (Eq. (11)). Eq.

(12) models the violation of the safety stock levels.

Establishing of safety stock targets for the inventory

level can be viewed as an aggregate deterministic

attempt to buffer against unpredicted contingencies

such as demand variations and production rate fluctua-

tions.

Formulation MP takes a deterministic view of supply
chain planning by considering all model parameters,

such as cost coefficients, production rates, demand, etc.

to be known with complete certainty. This assumption

of complete and deterministic information, though

desirable from a model complexity point of view, is

highly optimistic. This is especially so given the highly

dynamic nature of most supply chains which are

characterized by numerous sources of technical and
commercial uncertainty. The former typically arises in

the manufacturing phase of the supply chain where

issues such as rates of production and bill-of-material

relationships are subject to considerable variation.

Commercial uncertainty or market risk manifests into

the planning decisions through the exposure of the

supply chain to commodity prices fluctuations and

seasonal demand variations. Within this spectrum of
sources of uncertainty, probably the most important

and extensively studied one is demand uncertainty

(Gupta & Maranas, 2000; Petkov & Maranas, 1998;

Ierapetritou & Pistikopoulos, 1996; Liu & Sahinidis,

1998). The emphasis on incorporating demand uncer-

tainty into the planning decisions is well placed given the

fact that effectively meeting customer demand is what

primarily drives most supply chain planning initiatives.
In view of this, development of a framework for

incorporating demand uncertainty in the midterm plan-

ning model is described next.

3. Decision making under uncertainty

The need to account for uncertainty in the planning

decisions can essentially be traced back to the core
functionality of planning models, which is to allocate

resources for the future based on current information

and future projections. The foremost consideration in

incorporating uncertainties into the planning decisions

is the determination of the appropriate representation of

the uncertain parameters. Two distinct methodologies

for representing uncertainty can be identified. These are

the scenario-based approach and the distribution-based

approach. In the former approach, the uncertainty is

described by a set of discrete scenarios capturing how

the uncertainty might play out in the future. Each

scenario is associated with a probability level represent-

ing the decision maker’s expectation of the occurrence of

a particular scenario. For instance, suppose a company

is waiting for the result of a pending legislation in

Congress that would give it access to new markets in
Asia. Clearly, the resolution of this source of uncertainty

results in two discrete scenarios with their respective

probabilities. However, the applicability of the scenario-

based approach is limited by the fact that it requires

forecasting all possible outcomes of the uncertain

parameter. In cases where a natural set of discrete

scenarios cannot be identified and only a continuous

range of potential futures can be predicted, the distribu-
tion-based approach is used. By assigning a probability

distribution to the continuous range of potential out-

comes, the need to forecast exact scenarios is obviated.

The distribution-based approach is adopted in this work

by modelling the demand as normally distributed with a

specified mean and standard deviation. The normality

assumption is widely invoked in literature (Wellons &

Reklaitis, 1989; Nahmias, 1989) as it captures the
essential features of demand uncertainty and is con-

venient to use.

An enterprise can adopt two strategic ‘postures’ when

faced with demand uncertainty. It can either position

itself as a shaper or as an adapter to combat uncertainty.

In the former strategy, the company aims to restructure

the demand distribution so that the associated downside

risk is limited while the upside potential is retained. This
is typically achieved through contracting agreements

with the customer. For example, the company may offer

a supply contract with a minimum/maximum quantity

A. Gupta, C.D. Maranas / Computers and Chemical Engineering 27 (2003) 1219�/12271222



commitment to its customer in return for a price

discount (Anupindi & Bassok, 1999). By contrast, in

the adapter strategy, the enterprise does not attempt to

influence the uncertainty level in the market. It controls
the risk exposure of its assets, such as inventory levels

and profit margins, by constantly adapting its opera-

tions to unfolding demand realizations. An adapter view

to the planning process is taken in this work.

One of the most popular frameworks for planning

under uncertainty is two-stage stochastic programming

(Birge & Louveaux, 1997; Dantzig, 1955). In this

approach, the decisions and constraints of the system
are classified into two sets. The first-stage variables, also

known as design variables, are determined prior to the

resolution of the underlying uncertainty. Contingent on

these ‘here-and-now decisions and the realizations of the

uncertain parameter, the second-stage or control vari-

ables are determined to optimise in the face of un-

certainty. These ‘wait-and-see’ recourse decisions model

how the decision maker adapts to the unfolding
uncertain events. The presence of uncertainty is reflected

by the fact that both the second-stage decisions as well

as the second stage costs are probabilistic in nature. The

objective is, therefore, to minimize the sum of the first-

stage costs, which are deterministic, and the expected

value of the second-stage costs. The classification of the

decisions of the midterm planning model into manufac-

turing and logistics naturally fits into the two-stage
stochastic programming framework as described next.

4. Midterm production planning with uncertain demand

The midterm production-planning model under de-

mand uncertainty is formulated as the following two-

stage stochastic program (2SMP) (Gupta & Maranas,

2000; Gupta, Maranas, & McDonald, 2000).

(2SMP)

In formulation (2SMP), the manufacturing variables

are considered as the first-stage, here-and-now decisions

while the logistics decisions are modelled as the second-

stage wait-and-see decisions. Due to the appreciable lead

times involved in the production process, the manufac-

turing decisions are made prior to the realization of the

uncertain demand. The logistics decisions, which essen-

tially aim at satisfying the customer demand in the most

cost effective way while accounting for inventory

management, are postponed to after the demand is

realized. The objective function of model (2SMP) is

composed of two terms. The first term captures the costs

incurred in the manufacturing phase. The second term

quantifies the costs of the logistics decisions and is

obtained by applying the expectation operator to an

embedded optimisation problem. This recourse optimi-

sation problem determines the optimal supply policies

and inventory profiles given the production levels and

demand realisations for the various products. The role

of the expectation operator is to average over all

possible demand realizations the costs incurred in the

logistics activities. The constraints describing the supply

chain are also partitioned within this framework. Eqs.

(2)�/(8) provide the restrictions for the outer production

setting problem while Eqs. (9)�/(12) describe the logistics

planning phase. The coupling between these two phases

arises through Eq. (9) that models the carryover of

inventory given the amount available for supply from

the production phase Aist and the actual supplies to the

various customers Sisct . Model (2SMP), thus, aims at

determining the optimal production settings in the

supply chain that minimize the manufacturing and the

expected logistics costs.

Model (2SMP) provides an effective tool for mana-

ging the risk exposure of an enterprise. The uncertainty

in the product demand is translated into the uncertainty

in the logistics decisions through the second stage

inventory management problem. This implies that

min
Pijst ;Cist;FRLfjst

RLijst;Wiss?t ;Aist]0

Yfjst � f0;1g

X
f ;j;s;t

FCfjsYfjst�
X
i;j;s;t

yijsPijst�
X
i;s;t

pisCist�
X
i;s;s?;t

tss?Wiss?t

�Edict

min
Sisct ;Iist

ID
ist
;I�

ict
]0

X
i;s;c;t

tscSisct�
X
i;s;t

histIist�
X
i;s;t

zisI
D
ist�

X
i;c;t

micI
�
ict

s:t:
Eqs: (9)-(12)

2
66664

3
77775

subject to Eqs. (2)�/(8)
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inventory levels, supply policies, safety stock deficits and

customer shortages are contingent on the first-stage,

manufacturing decisions and the demands realized. A

probability distribution can, therefore, be associated
with each of these decisions. These distributions provide

valuable information regarding the sensitivity of the

firm’s assets, such as inventory levels and profit margins,

to the external demand uncertainty. For instance, by

utilizing the predicted distributions for the inventory

levels at the various sites in the supply chain, key

strategic options such as capacity integration/expansion/

disinvestments can be uncovered. Similarly, based on
the variability in the supply levels and the associated

shortages at the customers, quotation of guaranteed

service levels can be made to strengthen the competitive

advantage of the enterprise in the marketplace (Gupta et

al., 2000).

The key challenge in solving two-stage stochastic

formulations such as (2SMP) arises from the expectation

evaluation of the inner recourse problem. For a
scenario-based description of demand uncertainty this

is achieved by explicitly associating a second-stage

variable with each demand scenario and then solving a

large-scale extensive formulation of the model. A similar

methodology is also employed when the uncertainty is

described with a probability distribution by explicitly/

implicitly discretizing the demand distribution using

techniques such as Monte Carlo sampling (Liu &
Sahinidis, 1998; Diwekar & Kalagnanam, 1997) and

Gaussian quadrature (Straub & Grossmann, 1990;

Acevedo & Pistikopoulos, 1998). The primary advan-

tage of such discretization methods lies in their relative

insensitivity to the form of the underlying distribution of

the uncertain parameter. However, these methods are

characterized by an exponential increase in the problem

size with the number of uncertain parameters due to the
nested structure of the two-stage formulation. This

translates into excessively large computational require-

ments thus limiting the applicability of these techniques.

In view of this, an alternative methodology is based on

solving the inner recourse problem analytically for the

second-stage variables in terms of the first-stage vari-

ables followed by analytical integration for expectation

evaluation (Gupta & Maranas, 2000; Petkov & Mar-
anas, 1998). This obviates the need for discretizing the

probability space and thus reduces the associated

computational burden. In terms of model (2SMP), this

corresponds to solving the inner optimisation problem

for the optimal values of the logistics variables Sisct , Iist ,

ID
ist/and I�

ist in terms of the manufacturing variable Aist

and the uncertain demand dict . Consequently, the

optimal second-stage costs are obtained and the ex-
pectation is evaluated analytically (Gupta & Maranas,

2000). The resulting deterministic equivalent model is

then solved for the optimal production settings in the

supply chain.

5. Planning case study

To highlight the proposed framework for managing

demand uncertainty in CPI planning, it is applied to a

representative supply chain network shown in Fig. 1.

The supply chain consists of six production sites

manufacturing a total of 30 products. Products 1

through 10 are manufactured at site 1 and 2 while

products 11 through 20 are manufactured at sites 3 and

4. These 20 products are grouped into ten product

families as follows: F1�/(1, 2); F2�/(3, 4); F3�/

(5, 6);. . .; F10�/(19, 20). Thus, product families F1�/F5

are associated with sites 1/2 while F6�/F10 are associated

with site 3/4. The demand for products 1�/20 exists

externally at market 1 and internally at sites 5 and 6

where they are used as intermediate products. Specifi-

cally, products 21�/25 are produced at site 5 while

products 26�/30 are manufactured at site 6. The demand

for products 21�/30 exists at market 2 as shown in Fig. 1.

An assembly-type product structure exists at sites 5 and

6 (shown in Fig. 2) with one unit of each intermediate

product being consumed to produce one unit of the final

product. All the manufacturing sites are characterized

by limited capacity processing equipment, which incur a

set-up charge for each production campaign. The

demand is assumed to be normally distributed for each

product with a coefficient of variation (standard devia-

tion/mean) of 20%.
The solution of model 2SMP for this supply chain

setting results in an average total cost of 1512 units. The

resulting convex MINLP is solved using a customized

implementation of the outer approximation algorithm

(OA) in approximately 2000 CPU seconds on an IBM

RISC 6000 machine. A total of eight iterations of the

OA algorithm are required as shown in Fig. 3. The

model statistics for the primal and master problem are:

1587 equations; 2351 variables (primal); 2037 equations;

2861 variables; 480 discrete variables (master). In order

to benchmark the computational efficiency achieved by

Fig. 1. Supply chain configuration for the planning case study.
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solving the inner recourse problem analytically, the

planning model is also solved using a Monte Carlo

sampling method. A total of 500 scenarios are generated

by sampling the underlying normal distribution and the

resulting MILP (136 000 equations; 156 000 variables;

120 discrete variables) is solved using the CPLEX solver

accessed via GAMS. The model is found to be extremely

computationally intensive and fails to converge within

the specified resource limit of 10 000 CPU seconds. This

highlights the significant reduction in computational

complexity that can be achieved by adopting the

proposed solution methodology over the naı̈ve, brute-

force approach.

Next, we investigate the impact of demand uncer-

tainty on the various supply chain decisions. To this

end, the optimal decisions obtained by solving model

2SMP are compared with those obtained by solving

model MP. Table 1 lists how the capacity at sites 1

through 4 is allocated amongst the various product

families. As expected, differences in allocation of

capacity are observed both in terms of which product

families are produced at a particular site as well as how

much of capacity is allocated to them. The overall

capacity utilization for each site is also predicted

differently by the two models with the deterministic

model consistently underestimating it as shown in Table

1. In the light of these differences, the question that is

asked is how do the manufacturing decisions obtained

by neglecting variability in product demand perform

when exposed to uncertainty. To answer this question, a

two step procedure is applied. First, the deterministic

model MP is solved. The resulting optimal first-stage

manufacturing decisions are then fixed in model 2SMP

and it is subsequently solved for the optimal second-

stage logistic decisions. This results in a total expected

cost of 1557 units implying an increase of 2.9% over the

original solution of model 2SMP. These results suggest

that tangible cost savings can be realized through the

incorporation of demand uncertainty in the planning

process.

In addition to comparing just the average cost across

the two model formulations, we can also compare the

entire total cost distributions as shown in Figs. 4 and 5.

Given these distributions, a risk assessment analysis is

performed by comparing the two distributions across

three different metrics. These metrics are: (i) standard

deviation of cost distributions; (ii) probabilities of

exceeding a particular cost level; and (iii) worst-case

costs. The standard deviations for the two distributions

are 77.5 (2SMP) and 103.4 units (MP) implying that a

wider spread of values is obtained by neglecting

uncertainty as seen in Fig. 4. Subsequently, the cumu-

lative probability distributions of Fig. 5 can be used to

determine the probability that the cost will exceed a

specified level. The results of this figure clearly indicate

that for any given cost level, model MP results in a

higher probability compared to model 2SMP since the

curve for the later lies entirely above the curve of the

former in Fig. 5. For instance, the probability that the

total cost exceeds 1650 units is predicted to be as high as

21% by the MP model as compared to just 3% by the

Fig. 2. Product structure at sites 5 and 6.

Fig. 3. Progress of customized OA algorithm.

Table 1

Capacity allocation to product families forecasted by (a) model 2SMP

and (b) model MP

Site Product family

(% capacity utilized)

Total capacity utilization (%)

(a)

1 F2 (42%), F3 (32%), F4 (26%) 100%

2 F1 (50%), F5 (50%) 100%

3 F7 (14%), F9 (42%), F10 (30%) 86%

4 F6 (59%), F8 (36%) 95%

(b)

1 F1 (47%), F2 (37%) 84%

2 F3 (32%), F4 (19%), F5 (47%) 98%

3 F6 (54%), F10 (26%) 80%

4 F7 (15%), F8 (33%), F9 (29%) 77%
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2SMP model. Finally, the worst-case costs obtained for
the MP and 2SMP models are 1802 and 1689, respec-

tively. Thus, the inclusion of demand uncertainty results

in better risk management across the supply chain.

The proposed framework can also be used to study

the performance of the supply chain from a customer

service level perspective. This is especially critical in the

current, highly volatile business setting given the ever-

increasing expectations and constantly shifting loyalties
of today’s customers. In order to do that, the service

level, defined as the probability of meeting the entire

demand, is determined. Fig. 6 illustrates the service

levels achieved for all 30 products. The results of this

figure indicate that products 1�/20 have relatively higher

service levels as compared to products 21�/30. Specifi-

cally, the average service level for products 1�/20 is

79.6% (49.3%) whereas that for products 21�/30 is 17.8%
(18.6%) for the 2SMP (MP) model. This suggests that

conditions at market 1 are relatively more favorable

than at market 2.

6. Summary

In this paper, we presented an overview of our earlier

work(s) addressing the problem of tactical planning of

CPI supply chains under demand uncertainty. The

deterministic model originally proposed by McDonald

and Karimi (McDonald & Karimi, 1997) was adopted

as the benchmark formulation for highlighting the

various issues involved in incorporating uncertainty in

the decision making process. Specifically, the supply

chain networks considered were multi-product, multi-

site and multi-period in nature. Other key features of the

model included capacity constrained production equip-

ment, carry-over of inventory and customer backlogs. It

was shown that by appropriately partitioning the

decisions variables and constraints of the deterministic

model, a framework for incorporating demand uncer-

tainty could be constructed. In particular, the supply

chain decisions were classified into manufacturing and

logistics decisions. The manufacturing decisions were

made before the realization of the uncertain demand

while the logistics decisions were postponed. The option

of delaying the logistics decisions was used as recourse

against the evolving uncertainty in the product demand.

Through a planning case study, the ability of the

proposed framework to address key issues in managing

uncertainties in CPI supply chains was highlighted. It

was shown that by utilizing the presented framework, a

more realistic description of the total planning costs (in

terms of a probability distribution in contrast to a point

estimate) could be obtained. Consequently, this infor-

mation could potentially be utilized to manage the risk

exposure of the company’s assets. Risk management

initiatives aimed at reshaping this distribution such that

the downside risk is minimized while maintaining the

upside potential could be undertaken based on this

information. To this end, the use of derivative financial

instruments, such as options, futures and swaps, in

conjunction with the developed framework is currently

being investigated. In addition to controlling risk in the

supply chain, the proposed framework was also shown

to provide valuable insights into the customer relation-

ship aspects of the supply chain.

Fig. 4. Total cost distributions.

Fig. 5. Cumulative total cost distributions.

Fig. 6. Product service levels.
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