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In this article, a second-order mean-field-based approach is intro-
duced for characterizing the complete set of residue–residue cou-
plings consistent with a given protein structure. This information is
subsequently used to classify protein hybrids with respect to their
potential to be functional based on the presenceyabsence and sever-
ity of clashing residue–residue interactions. First, atomistic represen-
tations of both the native and denatured states are used to calculate
rotamer–backbone, rotamer–intrinsic, and rotamer–rotamer confor-
mational energies. Next, this complete conformational energy table
is coupled with a second-order mean-field description to elucidate the
probabilities of all possible rotamer–rotamer combinations in a min-
imum Helmholtz free-energy ensemble. Computational results for the
dihydrofolate reductase family reveal correlation in substitution pat-
terns between not only contacting but also distal second-order
structural elements. Residue–residue clashes in hybrid proteins are
quantified by contrasting the ensemble probabilities of protein hy-
brids against the ones of the original parental sequences. Good
agreement with experimental data is demonstrated by superimpos-
ing these clashes against the functional crossover profiles of bidirec-
tional incremental truncation libraries for Escherichia coli and human
glycinamide ribonucleotide transformylases.

The use of DNA mutagenesis andyor recombination in the
context of directed-evolution experiments has emerged as a

leading strategy in protein engineering (1–3). However, the major-
ity of generated protein hybrids have either substantially reduced or
even completely lost functionalities. Therefore, the a priori classi-
fication of protein hybrids with respect to their potential to be
functional is widely being recognized as an overarching challenge
for many combinatorial protein-engineering efforts. In the past, the
majority of successful combinatorial efforts involved the recombi-
nation of parental sequences sharing relatively high sequence
identity (i.e., .70% at the DNA level). With the advent of a number
of experimental protocols capable of recombining parental se-
quences with low sequence identity [e.g., ITCHYySCRATCHY (4,
5), SHIPREC (6), GeneReassembly (7)], it has been observed that
the fraction of functional hybrids in the combinatorial library
decreases dramatically as the level of sequence identity shared in
the parental set is reduced (5, 6). Given that most members of a
protein family share pairwise sequence identities of ,70%, this
implies that a large portion of protein diversity may be left
unexplored because of the scarcity of functional hybrids. This leads
to the following dilemma: How can diversity generated by the
recombination of low sequence identity parental sequences be
explored effectively without severely curtailing the chances of
success? To resolve this dilemma effectively, it is necessary to
elucidate a priori what crossovers or crossover combinations are
likely to lead to hybrids with preservedyimproved functionality.

A number of hypotheses have been advanced to explain how
crossovers affect the integrity of proteins. Monte Carlo simulations
by Bogarad and Deem (8) suggested that the swapping of low-
energy structures was least disruptive to protein structure, but
delineating these structures has thus far not been straightforward.
The SCHEMA algorithm (9) postulated structural disruption when
a contacting residue pair in a hybrid does not match at least one of
the parental proteins, and it was used to explain the crossover
distributions found in a number of experiments. Although prom-

ising, this approach cannot differentiate between hybrids with
different directionality (i.e., an A–B versus a B–A crossover), which
have been shown to often have very different functional crossover
profiles (5).

In our previous work, programs for estimating the frequency
and location of crossovers in combinational DNA libraries were
developed (5, 10, 11). In this article, the second-order mean-field
identification of residue–residue clashes in protein hybrids
(SIRCH) procedure for evaluating protein hybrids is introduced.
Residue–residue clashes may arise because of a different
directionality in the parental sequences with regard to a
charged pair, residue sizes, or hydrogen bond (see Fig. 1), among
other reasons. SIRCH consists of three steps. (i) Calculation of
possible rotamer–backbone, rotamer–intrinsic, and rotamer–
rotamer conformational energies (including van der Waals,
electrostatic, and solvation contributions) by using atomistic
representations of both the native and denatured states. (ii) Use
of an extended, second-order mean-field description to elucidate
the probabilities of all possible residue–residue combinations in
a minimum Helmholtz free-energy ensemble. (iii) Systematic
detection of clashes in potential hybrids through the evaluation
of pairwise substitution patterns uncovered by the second-order
mean-field description. A complete characterization of the
entire collection of all possible residue–residue combinations
complying with the protein family backbone coordinates is
generated. This in silico protein family description augments the
incompleteycoarse correlation statistics that can be gleaned
from protein family sequence data. The SIRCH procedure is
used to analyze pairwise substitution patterns in the dihydrofo-
late reductase (DHFR) enzyme family and to assess the result of
the recombination of Escherichia coli and human glycinamide
ribonucleotide (GAR) transformylases (5, 12, 13). Results dem-
onstrate that experimentally determined functional crossover
positions for the GAR transformylases are consistent with the
predicted residue–residue clashes, capturing the effect of cross-
over directionality (i.e., an A–B versus a B–A crossover) ob-
served in experimental crossover distributions.

Method
Conformational Energy Calculation. Conformational energy has
been used widely (14–19) as a scoring function to query whether
a particular hybrid protein will likely retain functionality or
whether unfavorable energetic interactions and geometric
clashes brought about by recombination will prevent the hybrid
from even conforming to the backbone structure. Rotamer
combinations (the term ‘‘rotamer’’ is used here to include
side-chain conformers of all residue types) are used to describe
hybrid protein conformations and designs. The protein family
(and fold) of interest is represented by the backbone coordinates
of a single representative structure. The coordinates of the
backbone atoms along with any wild-type proline residues are
locked throughout the calculation (neither Pro3X nor X3 Pro

Abbreviations: SIRCH, second-order mean-field identification of residue–residue clashes in
protein hybrids; DHFR, dihydrofolate reductase; GAR, glycinamide ribonucleotide.
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mutations are permitted; also, cisytrans isomerization is not
allowed).

The conformational energy of a rotamer combination in the
native state is expressed as the sum of (i) rotamer–backbone
energies, ei

bb(r), (ii) rotamer–intrinsic energies, ei
int(r), and (iii)

rotamer–rotamer energies, eij(rs). Here i and j refer to sequence
positions, and r and s refer to rotamer choices at positions i and j,
respectively. The total energy E of a specific combination of
rotamers in the native state can be written as

Ecombination 5 O
i51

N

ei~r!1 O
i51

N21 O
j5i11

N

eij~rs!, [1]

where N represents the total number of residues in the protein, and
ei(r) 5 ei

bb(r) 1 ei
int(r). The first two terms describe rotamer–

backbone and rotamer–intrinsic interaction energies, while the
third term describes rotamer–rotamer interaction energies. For
every position, excluding the termini (1 and N), a backbone-
dependent (i.e., on f and c dihedral angles) set of rotamers is
considered, in accordance with the library of Dunbrack and Cohen
(20). For the termini, a backbone-independent rotamer library (20)
is used. For each sequence position, the rotamer library (excluding
proline rotamers) encompasses 320 different rotameryresidue
combinations. Prior to the calculation of the rotamer–backbone
and rotamer–intrinsic energies, rotamers are subjected to 50 steps
of conjugate gradient minimization (18) by using CHARMM (21).

The CHARMM program is used along with version 22 of the
all-atom parameters (22) to estimate conformational energies.
Three contributions to conformational energy are considered: (i)
van der Waals, (ii) electrostatics (including hydrogen bonds), and
(iii) solvation. For both van der Waals and electrostatics, a cutoff
distance of 14 Å is used without any scaling of the 1–4 interactions.
A Coulombic potential is used with a constant dielectric constant
(« 5 8) as suggested in ref. 18. Solvation energies are described as
the sum of the solvation energies for the individual atoms in the
rotamer. The solvation energy of each atom is assumed to be
proportional to its accessible surface area as determined analyti-
cally by a 1.4-Å probe. The proportionality constants of Wesson and
Eisenberg (23), developed specifically for use in CHARMM, are used
to estimate solvation energies based on accessible surface areas.
Rotamer–rotamer solvation energies are estimated by using the
method of Street and Mayo (24), in which the difference in solvation
energy due to the overlap of two isolated side chains is scaled down
by 50% to prevent overcounting.

The three contributions to conformational energy are used
without any empirical balancing. However, comparison of rotamers
of different types can be misleading without the use of a reference

energy (18). For instance, without consideration of a reference
energy, arginine residues are highly favored over other types
because of their high solubility and large size. Therefore, the
establishment of a reference state for each of the different residue
types is necessary for providing a consistent basis of comparison.
We use the ‘‘expanded’’ state of Elcock (25) to represent the
denatured-state ensemble, allowing the calculation of standardized
rotamer energy differences dei(r) and standardized rotamer–
rotamer energy differences deij(rs). This representation of the
denatured state has two advantages over dipeptideytripeptide
systems. First, the number and type of atoms remain constant, and
second, the topology of the protein fold is retained such that atoms
that are in close proximity in the native state remain relatively close
to each other in the denatured state. This procedure is described in
detail in Supporting Text, which is published as supporting infor-
mation on the PNAS web site, www.pnas.org. A depiction of the
expanded state is also found in Fig. 4, which is published as
supporting information on the PNAS web site. The standardized
conformational energy DE for a specific rotamer combination can
then be written as

DEcombination 5 O
i51

N

dei~r! 1 O
i51

N21 O
j5i11

N

deij~rs!. [2]

Prior to the calculation of rotamer–rotamer conformational ener-
gies, rotamers are screened out of the library if dei(r) is .50
kcalymol or they are not among the 10 lowest energy choices for a
particular residue type (19). Typically, '100–120 rotamers are
retained for each sequence position, encompassing all residue
choices considered.

Ensemble of RotameryResidue States. The objective of this study is
to determine whether a residue–residue pair brought about by
recombination andyor mutation is structurally favorable or unfa-
vorable. This necessitates the establishment of the proper tradeoff
between structural fitness (energy) and sequenceyconformational
variation (entropy) characteristic of protein families. To this end, a
statistical mechanics description of the residueyrotamer space of
states (ensemble) is adopted. An ensemble of states is defined as the
collection of all possible rotamer and residue combinations. The
membership probabilities P of each state are found by equilibrating
the ensemble. The expressions for the total energy and entropy of
the ensemble, containing not only different rotamer choices but
also different residue choices for each sequence position, are
functions of the respective state probabilities P, as shown next.

Uensemble 5 O
all rotamer

combinations

PcombinationDEcombination [3]

Sensemble 5 2R O
all rotamer

combinations

Pcombinationln Pcombination [4]

Assuming a canonical ensemble (a closed system with constant
temperature T), the state probabilities are determined at equi-
librium by minimizing the Helmholtz free energy Aensemble 5
Uensemble 2 TSensemble. The use of the Helmholtz free energy
allows the systematic exploration of tradeoffs between confor-
mational energy and entropy. However, the direct solution of this
problem is intractable, because the number of possible rotamery
residue choices is prohibitively large. For example, a 200-residue
protein with 120 rotamer choices for each position gives rise to
120200 ' 10416 possible rotamer combinations. Mean-field ap-
proximations are used to restore tractability to the ensemble-
equilibration problem.

First-Order Mean-Field Approximation. Earlier mean-field approxi-
mations to the Helmholtz free energy (14, 26, 27), referred to herein
as first-order, were based on the assumption that the probability P

Fig. 1. Residue–residue clashes may arise in protein hybrids because of a dif-
ferent directionality in the parental sequences of a charged pair, residue sizes, or
hydrogen bond. H, proton donor; O, proton acceptor.
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of a specific rotamer combination can be approximated as the
product of individual rotamer site probabilities pi(r) of each se-
quence position i. This implies that the site probabilities at each
position are assumed to vary independently from one another.

P combination
~1! 5 P

i51

N

pi~r! [5]

This simplification substantially reduces the number of state
probabilities required to describe the ensemble (e.g., from 10416

to 200z120 5 24,000 for a 200-residue protein). Substituting the
first-order approximation (Eq. 5) into the expressions for the
energy and entropy of a rotamer sequence (Eqs. 3 and 4) leads
to the following expressions for the first-order mean-field energy
U(1) and entropy S(1) of the ensemble,

U~1! 5 O
i51

N O
r[R i

pi~r!dei~r! 1 O
i51

N21 O
j5i11

N O
r[R i

O
s[R j

pi~r!pj~s!deij~rs!

[6]

S~1! 5 2R O
i51

N O
r[R i

pi~r! log pi~r!, [7]

where R i and R j represent the set of rotamer choices available at
positions i and j, respectively. Minimization of the first-order
mean-field free energy A(1) 5 U(1) 2 TS(1), subject to the condition
that the site probabilities sum up to one ((r[R i

pi(r) 5 1), yields

pi~r! 5
exp~2d#ei~r!yRT!O

r9[R i

exp~2d#ei~r9!yRT!
, @i, r [ R i, [8]

where

d# ei~r! 5 dei~r! 1 O
j51
jÞi

N O
s[R j

pj~s!deij~rs!, @i, r [ R i. [9]

The mean-field energy d#ei(r) can be interpreted as the energy of
rotamer r placed at sequence position i plus the average interaction
energy that it experiences from other rotamer choices s at other
positions j in the ensemble. As shown in Eq. 8, the site probabilities
are Boltzmann-distributed with respect to their mean-field energies.
Typical solution procedures involve uniform initialization of the
rotamer probabilities and iterative calculation of the mean-field
energies (Eq. 9) and site probabilities (Eq. 8) until self-consistency
is achieved (26–29). Koehl and Delarue (26) and Lee (27) used a
first-order mean-field approach for estimating the conformational
entropy of side chains and positioning them. Voigt et al. (14) and
Saven and coworkers (19, 30) extended the ensemble to include
both residue and rotamer choices to investigate the fitness of single
residue substitutions in mutagenesis experiments.

A key limitation of the first-order mean-field approximation is
that it cannot capture whether andyor how the substitution patterns
at two sequence positions i and j are related. Therefore, no
information can be gleaned as to how a site probability distribution
at one position is influenced by placing a specific rotamer at another
position (i.e., conditional probability). However, this is exactly the
type of information needed to evaluate the impact of bringing
together two new sets of residues in hybrids generated by recom-
bination. To overcome these limitations, a second-order mean-field
approximation to the Helmholtz free energy is developed that
allows for the explicit consideration of rotamer–rotamer joint
probabilities.

Second-Order Mean-Field Approximation. A second-order approxi-
mation is proposed that can track joint probabilities explicitly,
represented by Pij(rs). The Bethe approximation (31) is used to
estimate the ensemble probability P as the product of all joint
probabilities, appropriately scaled to avoid double counting.

Pcombination
~2! 5 P

i51

N21 P
j5i11

N

Pij~rs!YP
i51

N

pi~r!N22 [10]

The Bethe approximation was developed originally to assess the
entropy within metallic superlattices (31, 32), but in recent years
it has been applied in the field of computer vision (33) and has
been shown to be analogous to the use of belief propagation
methods (34) in resolving Bayesian causal networks (35).

Substituting the second-order mean-field approximation (Eq. 10)
into the equations for ensemble energy (Eq. 3) and entropy (Eq. 4)
leads to the following expressions.

U~2! 5 O
i51

N21 O
j5i11

N O
r[R i

O
s[R j

Pij~rs!~deij~rs! 1 dei~r! 1 dej~s!!

2 ~N 2 2!O
i51

N O
r[R i

pi~r!dei~r! [11]

S~2! 5 2RF O
i51

N21 O
j5i11

N O
r[R i

O
s[R j

Pij~rs! ln Pij~rs!

2 ~N 2 2!O
i51

N O
r[R i

pi~r! ln pi~r!G [12]

As described earlier, the minimization of the ensemble free
energy for the first-order mean-field approximation can readily
be converted into a recursive relation resolved through direct
substitution. Such a conversion for a second-order mean-field
approximation is much more elusive. To accomplish this, a set of
variable transformations is needed. First, the energy expression
can be written in a form analogous to that of the entropy by
substituting fi(r) 5 exp(2dei(r)yRT) and cij(rs) 5 exp(2deij(rs)y
RT) into the expressions for the second-order energy and
entropy (Eqs. 11 and 12). By combining the resulting expressions
via A(2) 5 U(2) 2 TS(2), the following expression for the Bethe
free energy (scaled by RT) is derived.

A~2!

RT
5 O

i51

N21 O
j5i11

N O
r[R i

O
s[R j

Pij~rs!@ln Pij~rs! 2 ln~cij~rs!fi~r!fj~s!!#

2 ~N 2 2!O
i51

N O
r[R i

pi~r!~ln pi~r! 2 ln fi~r!! [13]

The joint probabilities Pij(rs) are then equilibrated in the
ensemble by minimizing A(2)yRT, subject to

O
r[R i

pi~r! 5 1, @i [14]

O
r[R i

O
s[R j

Pij~rs! 5 1, @i, j . i [15]

O
s[R j

Pij~rs! 5 pi~r!, @i, j Þ i, r [ R i [16]

Moore and Maranas PNAS u April 29, 2003 u vol. 100 u no. 9 u 5093

BI
O

CH
EM

IS
TR

Y



Eqs. 14 and 15 ensure that both the site and joint probability choices
sum to one for a given position or pair of positions, respectively,
whereas Eq. 16 ensures consistency between joint probabilities and
respective site probabilities. The dimensionality of the resulting
nonlinear optimization problem is too high to allow for direct
numerical solution. For example, for a 200-residue protein, .108

probability variables are present. To remedy this, we use the method
of Lagrangean multipliers for converting a constrained nonlinear
optimization problem into a system of nonlinear algebraic equa-
tions. The Lagrangean function L is formed by augmenting the
original function A(2)yRT by adding all three constraints to the
objective function with multipliers gi, Gij, and lji(r), respectively.

L 5
A~2!

RT
1 O

i51

N

giS1 2 O
s[R j

pi~r!D
1 O

i51

N21 O
j5i11

N

GijS1 2 O
r[R i

O
s[R j

Pij~rs!D
1 O

i51

N O
j51
jÞi

N O
r[R i

lji~r!Spi~r! 2 O
s[R j

Pij~rs!D [17]

Minima of L are located at points where derivatives with respect
to each of the variables (i.e., rotamer probabilities and multi-
pliers) are equal to zero. Setting Lypi(r) 5 0 yields

pi~r! 5 zifi~r!expSO
j51
jÞi

N
lji~r!

N 2 2D, @i, r [ R i, [18]

where zi is chosen to normalize pi(r) (Eq. 14). Similarly, Ly
Pij(rs) 5 0 provides

Pij~rs! 5 Zijcij~rs!fi~r!fj~s!exp~lji~r! 1 lij~s!!,

@i, j . i, r [ R i, s [ R j, [19]

where Zij enforces the normalization of Pij(rs) (Eq. 15).
Note that when the derivatives of L with respect to the multipliers

are set to zero, the original three constraints (Eqs. 14–16) are
recovered. The set of five nonlinear equations (Eqs. 14–16, 18, and
19) is recast further by substituting message variables mij(s) for
multipliers lij(s).

lij~s! 5 ln P
k51
kÞi,j

N

mkj~s!, @i, j Þ i, s [ R j [20]

This variable substitution is motivated by methods used to
resolve Bayesian networks by belief propagation (34). The
message variables mij(s) describe how the set of rotamer choices
at position i interacts with the choice of rotamer s at position j,
providing the following expression for pi(r).

pi~r! 5 zifi~r!P
j51
jÞi

N

mji~r!, @i, r [ R i [21]

An expression for Pij(rs) is derived in a similar fashion.

Pij~rs! 5 Zijcij~rs!fi~r!fj~s!S P
k51
kÞi,j

N

mki~r!mkj~s!D,

@i, j . i, r [ R i, s [ R j [22]

Eqs. 21 and 22 then are combined via Eq. 16 to derive a recursion
of reduced dimensionality, also known as belief propagation,
containing only the message variables.

mij~s! 5 O
r[Ri

fi~r!cij~rs!S P
k51
kÞi,j

N

mki~r!D, @i, j Þ i, s [ R j [23]

Three factors are considered in the belief propagation recur-
sion: (i) how rotamers at position i fit with rotamer s at position
j (cij(rs)); (ii) how rotamers at position i fit the backbone
((r fi(r)); and (iii) how other positions k interact with rotamers
at position i ()k mki(r)). Self-consistent resolution of this re-
cursion yields values for the message variables, which then are
substituted into Eqs. 21 and 22 to calculate the site and joint
probabilities. Site and joint probabilities for specific residues a
and residue pairs a, b are examined by aggregating the corre-
sponding rotamer probabilities (where R i

a represents the set of
rotamers of residue type a available at position i).

pi~a! 5 O
r[R i

a

pi~r!; Pij~ab! 5 O
r[R i

a

O
s[ R j

b

Pij~rs! [24]

A flowchart summarizing the steps of the complete compu-
tational procedure is shown in Fig. 5, which is published as
supporting information on the PNAS web site. With the second-
order mean-field approximation in place, the correct tempera-
ture of the ensemble is estimated by matching the entropy of the
natural Pfam (36) protein family to the entropy of the ensemble
(see Supporting Text and Fig. 6, which is published as supporting
information on the PNAS web site, for details).

Substitution Dependency Dij. The identified site and joint ensemble
probabilities are used to determine the tolerance of the protein
structure, or lack thereof, for different residue combinations.
Residue pairs that are favorable or unfavorable can be identified by
examining the probability ratio aij(ab) that quantifies the departure
of the joint probabilities from the independent substitution assump-
tion. Specifically,

aij~ab! 5
Pij~ab!

pi~a!pj~b! H. 1, a and b are favored at i, j
, 1, a and b are unfavored at i, j
5 1, no preference.

[25]

The standard deviation of aij(ab) over all residue combinations
provides a quantitative metric for the substitution dependency Dij:

Dij 5 F O
a51

20 O
b51

20

Pij~ab!~log2 aij~ab! 2 mij!
2G1/2

where mij 5 O
a51

20 O
b51

20

Pij~ab!log2aij~ab!.

[26]

A zero value for the substitution dependency Dij implies that
residue positions i and j have independent substitution patterns.
Nonzero (positive) values for Dij signify correlation in the
substitution patterns. The larger the value of Dij, the stronger the
correlation is between positions i and j. The substitution-
dependency metric Dij along with the probability ratios aij(ab)
can be used not only for elucidating substitution correlation
between two residue positions but also for querying whether
residue pairs in a protein hybrid comply or clash with the family
protein structure in comparison to the parental sequences.
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Correlation in the Substitution Patterns of the DHFR
Protein Family
The well studied DHFR protein family is first addressed to
examine whether well known correlated substitution patterns
can be revealed by SIRCH. The substitution dependencies Dij
based on four different DHFR crystals [i.e., E. coli: PDB ID code
1rx2, M20 closed (37), PDB ID code 1rx5, M20 occluded (37),
and PDB ID code 1ra9, M20 open (37); and Lactobacillus casei:
PDB ID code 3dfr, M20 closed (38)] downloaded from the
Protein Data Bank (39) are calculated. The first three crystals
are snapshots of important steps in the E. coli DHFR catalytic
cycle (37), whereas the fourth is a non-E. coli DHFR. Fig. 7
(which is published as supporting information on the PNAS web
site) depicts the substitution dependency plots for the four
structures. The plots are almost identical, demonstrating that the
choice of crystal does not alter the results substantially. The only
significant difference is between the results for the open M20
structure (1ra9) and the two closed structures (1rx2 and 3dfr).
Specifically, for the closed structures, residues 25–50 exhibit a
more pronounced substitution dependency. This is consistent
with the fact that in the closed conformation residues 25–50 are
approached by the M20 loop and other connecting residues.

In the residue–residue substitution-dependency plot for 1rx2
(Fig. 2a), blue implies no correlation, whereas green, yellow,

orange, and red depict residue pairs with increased levels of
correlation in substitution patterns. Interestingly, strong correlation
between the contacting M20 and FG loops (i.e., residues 7–24 and
116–132, respectively) as well as between the end of the M20 loop
(residues 20–25) and the GH loop (residues 142–150) is predicted
correctly. Quite remarkably, strong correlation between the M20y
Hinge region (20–38) with both the region from residues 45–50 and
the region from residues 93–97 is also elucidated even though these
domains are not contacting (distance .8 Å), alluding to the fact
that correlation information seems to be propagated through a
network of interacting residues. The ability of the method to
capture distal correlations in substitution patterns is shown more
clearly in Fig. 2 b and c, in which the substitution-dependency
density plot is contrasted against the set of contacting residues. It
appears that important correlation information between residue
pairs is encoded within Dij that does not necessarily require them
to be contacting. Another important observation involves a com-
parison of the residue pairs that exhibit correlated motion (in
the same direction) based on the molecular dynamics study of
Radkiewicz and Brooks (40), and the substitution-dependency plot
(see Fig. 8, which is published as supporting information on the
PNAS web site). The strong similarity between the two alludes that
residues that ‘‘move’’ in the same direction must also be substituted
in a coordinated manner.

Fig. 2. (a) Map of substitution dependency for E. coli DHFR, closed M20 (1rx2). (b) Contact map (,8 Å) for 1rx2. Orange denotes contacting residue pairs. (c) Map of
substitution dependency after removing contacting residue pairs depicted in a for 1rx2.

Fig. 3. Clashing residue pairs in hu-
manyE. coli (a) and E. coliyhuman (b)
hybrids. Clashes are classified as mild,
intermediate, or severe based on the
fitness metric Fij, which is calculated
by comparing the probability ratio of
the hybrid residue pair aij(hybrid) to
th probability ratios of the parental
sequences aij(low), aij(high), where
low refers to the parental sequence
with the lower aij, and high refers to
the higher-valued one. Vertical bars
indicate positions where functional
crossovers have been found in incre-
mental truncation experiments
(5, 12, 13).
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Next, the a priori classification of crossovers with respect to their
functionality through SIRCH is addressed. This is accomplished by
contrasting the experimental results for the E. coli and human
GAR-transformylase system with the model predictions.

In Silico GAR-Transformylase Hybrid Prescreening
By using the structure of E. coli GAR transformylase [PDB ID code
1gar (41)] as a reference, SIRCH is used to characterize all
single-crossover hybrids between E. coli and human versions of
GAR transformylase (protein sequence identity of 45%). The
locations of all functional crossovers in bidirectional hybrids gen-
erated through incremental truncation (5, 12, 13) are depicted as
vertical bars in Fig. 3. The incremental truncation window is
between residues 50 and 150. Clearly, functional crossovers are
distributed quite differently depending on the directionality of the
incremental truncation library (compare Fig. 3 a and b).

Residue–residue clashes predicted for single-crossover hybrids
are shown pictorially as arcs of different colors linking the corre-
sponding residues (see Fig. 3). These clashes are present only in
hybrids with a crossover positioned between the two residues (i.e.,
cutting the arc). The severity of the clash is quantified by contrasting
the hybrid residue pair probability ratio against the probability
ratios corresponding to the two parental (wild-type) sequences (i.e.,
E. coli and human). By using the parental residue pairs as a baseline,
the comparison only reveals clashes generated in the hybrid that are
absent in the parental sequences. Blue arcs signify a relatively small
difference in probability ratio between the hybrid and the parental
sequences, whereas orange and red arcs denote clashes of increas-
ing intensity based on the hybridyparental sequence probability
ratio difference. For the humanyE. coli library (Fig. 3a), a large
cluster of functional crossovers is present at the beginning of the
recombination range, followed by an abrupt end at position 66.
Remarkably, position 66 is the location of the first residue for the
first clash in the recombination window. Past the first clashing pair,
a few functional crossovers are present that again disappear after
encountering a pair of nested clashes. Unlike the humanyE. coli
library, no functional crossovers are present at the beginning of the
recombination range for the E. coliyhuman library (Fig. 3b), which
is consistent with the numerous clashes found within the range of
54–77. A large number of functional crossovers (81–115) violates
only a mild clash, whereas the group between positions 125 and 150
is inconsistent with a severe clash between residues 119 and 162.
Molecular modeling for these two positions reveals a steric hin-
drance between histidine and valine that cannot be relieved without
substantial backbone movement. In this case, it seems that this
movement did not affect catalytic activity or binding affinity,

pointing at some of the limitations of mean-field-based approxi-
mation techniques. Overall, SIRCH seems to be quite successful,
although not perfect, at classifying crossovers in terms of their
potential to yield functional hybrids. More importantly, by identi-
fying a relatively small set of clashing residue combinations, SIRCH
provides valuable information for designing strategies based on
site-directed mutagenesis for relieving these clashes.

Summary
In this article, a second-order mean-field approach was described
for the complete description of the entire residue substitution space
of a protein family. The procedure was implemented in the SIRCH
program (see fenske.che.psu.eduyfacultyycmaranas) for identifying
and quantifying the severity of residue–residue clashes in protein
hybrids. This information can then be used upstream or down-
stream to suggest site-directed mutagenesis strategies for either (i)
the parental sequences or (ii) hybrids with residual functionalities
that will lead to the reduction or elimination of clashes in the
protein combinatorial library. Note that the obtained results were
largely insensitive to the starting protein crystal and that a strong
correlation between residue substitution-dependency patterns and
residue motions in the crystal was observed.

Computational results uncovered correlated substitution pat-
terns for the DHFR family not only between contacting but also
between widely separated domains, alluding to the propagation of
residue substitution correlation information through a network of
interacting residues (42). In addition, the distribution of functional
crossovers for the incremental truncation libraries (5, 12, 13) of E.
coliyhuman GAR and humanyE. coli GAR transformylases was in
very good agreement with the residue–residue clashes revealed by
SIRCH. These results are currently being used to identify site-
directed mutagenesis strategies for ratcheting up the functionality
of barely active hybrids. Thus far, the only information gleaned
from the sequence data of protein families (39) involved setting the
entropy of the computationally equilibrated ensemble. Neverthe-
less, additional restrictions can be imported into the ensemble by
appending appropriate equality or even inequality constraints.
These constraints may, for example, fix the consensus active-site
residues, restrict the fraction of charged residues present in the
library, or establish hydrophobicypolar patterning requirements.
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