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Real-Options-Based Planning Strategies under Uncertainty
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In this work, a real-options-based valuation (ROV) framework for hedging under uncertainty is
developed. The basic idea of the proposed ROV methodology is the recognition and utilization of
external market opportunities to guide internal planning decisions of a company. This is achieved
by applying key financial planning principles such as arbitrage-free pricing and risk-neutral
valuation to real, nonfinancial resource allocation decisions under uncertainty. Three application
areas of the ROV methodology are described: production planning, pharmaceutical pipeline
management, and emission trading. Multistage stochastic programming is used to incorporate
uncertainty and a quantitative comparison of the ROV approach, and the traditional net-present-

value (NPV) approach is provided.

Introduction

Continuous change, uncertainty, and intense competi-
tive interactions are the defining characteristics of today’s
volatile business environment. As a consequence of this
continuous shifting of market expectations and customer
loyalties, most investment decisions, ranging from the
short-term, operational decisions to the long-term stra-
tegic decisions, have to be made under highly un-
certain conditions. The uncertainty in most planning
initiatives can essentially be traced back to the basic
paradigm underlying these activities, which is the opti-
mal allocation of future resources on the basis of current
information and future predictions.! This dependence
on future predictions is the basic cause of all uncertainty
because different managers, drawing on different past
experiences and different sets of information, can come
up with very different forecasts for the very same plan-
ning horizon. However, in the long run, the final meas-
ure of value under uncertainty is determined solely by
the valuation mechanisms embedded within the finan-
cial markets.? In view of this observation, we introduce
a versatile modeling and solution framework for align-
ing the internal planning decisions of a company under
uncertainty with the external financial markets.

Even though many important contributions have been
made in the past few years, most of the research in the
process systems engineering literature has focused
within an enterprise’s boundaries without recognizing
the existence of financial markets. Some of the settings
that have been investigated include midterm production
planning;3~> long-range, capacity expansion planning;16-8
multi-echelon supply-chain design;® batch plant design
and operation;”10-15 and flexibility/reliability analy-
sis.16718 One of the key assumptions that is implicitly
incorporated in all of the literature cited above is an
adaptive posture toward combating uncertainty. This
stance corresponds to exploiting the flexibility inherent
in most planning settings through decision postpone-
ment in the face of uncertainty as modeled by a
two-stage/multistage stochastic programming ap-
proach.3819-22 Consequently, within this framework, no
attempt is made to explicitly influence the underlying
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sources of uncertainty. Alternatively, a company might
also adopt a more aggressive shaper position by at-
tempting to restructure the uncertainty levels in order
to limit downside risk while maintaining upside poten-
tial. Operationally, this can be achieved through special
contracting agreements with the customer such as
minimum quantity commitments in return for price
discounts.?324 In addition to such privately negotiated
contracts, market-traded financial instruments, such as
futures and options contracts,?® can also be used to
manage the risk exposure of a company’s assets in
accordance with its risk-bearing preference/capacity. In
light of these observations, integration of a shaper
attitude toward risk, as captured by the use of financial
instruments, within an adaptive planning framework
is introduced in this paper.

The remainder of the paper is organized as follows.
In the following section, the limitations of the traditional
net-present-value (NPV) approach to decision making
under uncertainty are discussed with the aid of a
simplified planning example. Subsequently, an economi-
cally corrected version of the NPV analysis is described
in the form of the real-options-valuation (ROV) ap-
proach. Multiperiod production planning under demand
uncertainty is then used as a benchmark setting for
guantitatively contrasting the NPV and ROV ap-
proaches, and applications of the approach to pharma-
ceutical pipeline management and emissions trading are
highlighted.

Limitations of the NPV Approach under
Uncertainty

Traditionally, most resource allocation decisions have
been guided by the discounted-cash-flow approach,
which uses the classic NPV criterion to choose between
alternative investment decisions.?%2” Furthermore, the
basic deterministic NPV analysis can be extended to
account for uncertainty and managerial flexibility
through the decision-tree-analysis (DTA) framework,?8
which maps out all alternative future actions contingent
on all possible future states of nature. As a representa-
tive illustration of how the NPV analysis is typically
incorporated within a DTA framework, consider a two-
period planning horizon in which the production deci-
sion has to be made in the current period (t = 0) to meet
an uncertain demand in the future period (t = 1). The
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Figure 1. NPV analysis under uncertainty for a simplified
production planning setting.

product demand, which is assumed to follow a binomial
distribution, is known for the current period. In the
following period, the demand is expected to either
increase or decrease with given probability values. The
uncertainty in demand is translated into the uncer-
tainty in the value realized by the company (Figure 1)
through the following simple supply-chain model

V,=u x min(P, u6,) (1)
Vy=u x min(P, dé,) 2

The above expressions determine the future revenue
streams contingent on the demand realized in the future
period (ufg or déy), the production decision (P) made in
the current period, and the unit sales price for the
product (u). Subsequently, by discounting the expected
future revenue flows using an expected rate of return,
the NPV (V) is calculated and utilized to establish the
optimal production amount through the solution of the
following optimization model

__1 _
rggox Vo= 1+ r[qu + (1 - p)Vdl )

The primary challenge in using the above-described
methodology is the estimation of the expected rate of
return (r) used for translating future cash flows into
their present value equivalents. Basic finance theory de-
fines r as the equilibrium expected rate of return on se-
curities equivalent in risk to the project being valued.?®
The two most popular means for determining this key
parameter have been through (i) an ad hoc classification
of risk and (ii) use of the capital asset pricing model
(CAPM).20

The former approach relies on defining a risk spec-
trum in terms of a qualitative description of risk (such
as low, medium, high), followed by the allocation of a
specified rate of return to each of these risk categories.
Subsequently, the rate of return is determined and used
for valuation based on the perceived location of the
project being valued within this risk spectrum. As one
would expect, this approach exposes the valuation
procedure to a significant amount of managerial sub-
jectivity and can thus be used to provide only a rough,
initial estimate of the value of a project.

The CAPM, which is the most widely used approach,
resolves the subjectivity that arises with the risk
classification methodology by utilizing the variance as
the appropriate risk metric.3°=32 Specifically, the rate
of return is given by

r=r;+ plE(ry,) —rd (4)

where
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_ Cov(F,ry)

~ var(r,,) ©)

In the above relations, r; is the risk-free rate of return;
f is the return on a financially traded twin security that
is perfectly correlated with the project being valued;
rm is the rate of return of the entire market; and E(-),
Cov(+,+), and Var(-) are the expectation, covariance, and
variance operators, respectively. The task of obtaining
the rate of return under the CAPM is thus reduced to
that of identifying the twin security and its correspond-
ing B value for the calculation of the risk premium
(BIE(rm) — ri]).

Even though the CAPM has been widely applied for
making capital budgeting decisions, several key limita-
tions of this approach can be identified. First, the model
is based on the assumption that the variance in returns
is the appropriate risk metric for distinguishing between
competing projects. Because variance is a symmetric
measure, it fails to recognize the basic asymmetric risk
preference of most companies/individuals. Second, there
is an implicit dependency between the tasks of identify-
ing the twin security and determining the value of the
project that is being tracked by that security. For
instance, consider the simple supply-chain model of eq
3. To identify the perfectly correlated twin security, the
future payoffs V, and V4 need to be known. However,
these values depend on the optimal production level P
through eqgs 1 and 2, which, in turn, cannot be deter-
mined unless the twin security (and subsequently the
rate of return) is known. These limitations of the NPV
approach motivate the adoption of an alternative valu-
ation framework that makes use of real-options-based
valuation (ROV).

Real-Options-Valuation (ROV) Approach. The
key idea behind the ROV technique is the extension of
the theory developed for financial options®334 to real,
nontraded assets.®® The basic observations on which this
approach is based are as follows: (1) It is typically easier
to track the underlying source of uncertainty rather
than the effect of uncertainty through market-traded
instruments. (2) The value of a project can be tracked
more effectively through a portfolio of securities rather
than a single security. (3) A tracking portfolio can be
periodically rebalanced in accordance with the changing
risk characteristics of the project.

As an illustrative example of how the ROV methodol-
ogy incorporates the above-described features, this
approach is applied to the simplified supply-chain
planning setting introduced in the previous section. In
view of this objective, suppose that the product being
manufactured is market-traded, implying that there are
efficient and liquid spot and futures markets in which
this product can be bought and sold. Currently, markets
such as the New York Mercantile Exchange (ww-
w.nymex.com) and The Chicago Board of Trade (ww-
w.cbot.com) exist for several products spanning indus-
trial sectors ranging from energy (crude oil, heating oil,
natural gas) to metals (gold, copper, silver) and agri-
culture (soybean, wheat, corn). Such market settings
effectively translate the balance between the forces of
supply and demand into a clear price signal. For
example, if the aggregate demand for the product is
higher (lower) than the aggregate supply, then the price
of a futures contract written on that product is expected
to increase (decrease). Thus, a futures contract can be
used as a twin security for tracking demand uncertainty
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Figure 2. Demand uncertainty tracked by correlated market-
traded security.
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Figure 3. Basic idea of the ROV approach.
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as shown in Figure 2. In addition to these market-traded
instruments, other financial opportunities, such as
borrowing/lending at the risk-free rate, are of key
importance with respect to the ROV approach. Within
a securities market setting, borrowing (lending) is
equivalent to selling (buying) government-issued Trea-
sury bonds. In light of the availability of these financial
instruments, the basic idea of the ROV approach is to
set up a replicating portfolio consisting of the twin
security and the risk-free security that perfectly cor-
relates with the revenue uncertainty (Figure 3).
Specifically, a portfolio consisting of buying N shares
of the twin security and borrowing $B at the risk-free
rate is constructed in the current period (t = 0). Given
that the current price of the twin security (Sp) is known,
the total expense incurred in setting up this portfolio is
NSy — B. The value of this portfolio in the subsequent
period (t = 1) is uncertain, as it depends on whether
the price of the twin security moves up or down, as
shown in Figure 4. Next, the replicating characteristics
of this portfolio are enforced by requiring that the future
values of this portfolio equal the revenue values in the
two future states through the following relationships

NS, — Bl +ry)=V, (6)
NS, — Bl +r) =V, @)

The solution of eqs 6 and 7 determines the composition

of the replicating portfolio as given by

_Vu_vd_ V= Vqy

N_Su—Sd_uSO—dSO ®)
S4V, — S,V dv, — uV,

B = 1 dVu uvd — 1 u d (9)
Using egs 8 and 9, the present value of the replicating
portfolio is

NS oL |'(1+rf—d)v Jr(u—l—rf)v]

0 T 14\ u—d /[ u—d /¢
__1 _
=Ty [Vt @ - avd (10)
where
q - u-— d ( )

At this point, the fundamental arbitrage-free pricing
principle is invoked, which states that, if two assets
have the same payoff in all future states, then they must
be identically priced. If this were not the case, then
market participants could potentially make risk-free
profits by simultaneously buying the undervalued asset
and selling the overvalued one. Basic finance theory
suggests that such arbitrage opportunities do not exist
in efficient, transparent markets.?® In light of this
principle, the present value of the uncertain future
revenue streams is, thus, the same as the present value
of the replicating portfolio, implying that

Vo= iV, + (- a)Vy (12)

Comparison of eq 12 with eq 3 highlights the two basic
differences between the NPV and ROV approaches.
First, NPV analysis uses the expected rate of return (r),
whereas the ROV analysis uses the risk-free rate of
return (rf) for discounting future cash flows. Second,
NPV analysis determines the expected value of future
cash flows using the true probability (p) of demand
variability, as opposed to the risk-neutral probability (q)
used by the ROV approach.

Supply-Chain Planning. The midterm planning
model proposed by McDonald and Karimi3 is first used
as a benchmark to illustrate the ROV methodology. This
model has the underlying structure of the capacitated
lot-sizing problem. Details regarding the deterministic
formulation can be found in McDonald and Karimi®¢ and
Gupta and Maranas.®” Classification of the variables
and constraints of this model into production- and
supply-chain-type categories results in a two-stage
decision-making framework that is utilized to incorpo-
rate demand uncertainty for the single period setting.34
Extension of the single-period framework to the multi-
period case results in the model formulation described
in Appendix A.5

In the context of the multiperiod production planning
(MPP) model, the difference between the ROV and NPV
analyses arises in the rate of return r used for discount-
ing and the probability distribution used for application
of the expectation operator Egt+1(+). As described in the
previous section, NPV uses the risk-free rate of return



Table 1. Parameter Values

parameter value

set

((;:var 140

Ctran 2
h 3
u 25
P 500
6o 200
u 1.3
d 0.8
p 0.8

Table 2. Activity-Based Cost Analysis

cost component ROV NPV
fixed setup cost $86 $51
variable production cost $8,483 $7,888
transportation cost $4,204 $3,655
customer shortage cost $5,364 $18,968
inventory holding cost $1,176 $2,673
total expected cost $19,313 $33,23

in conjunction with the risk-neutral probabilities,
whereas ROV uses the objective probabilities and the
expected rate of return. The demand uncertainty is
modeled through a discrete, multiplicative binomial
process. In such a setting, the expected rate of return
given by

= PSut A= P)Sy

—1l=pu+(@Q—-—pd—1 (13)
So
is used in the NPV approach. A representative planning
case study is described next to illustrate how model
MPP can result in significantly different planning
results within the ROV and NPV frameworks.

A manufacturing enterprise that produces a single
product is planning its production activities over a
planning horizon of 10 time periods. The parameters
characterizing this operation are listed in Table 1. On
the basis of the cost estimates available to the company,
a profit margin of approximately 25% is forecasted. As
indicated in Table 1, the available production capacity
is well in excess of the current product demand. Future
market forecasts for the product are bullish, with an
expected demand growth rate of approximately 19%.

The MPP model is solved for ROV and NPV using the
CPLEX 7.0 solver accessed via GAMS®8 for the data
given in Table 1. For the ROV approach, the risk-free
rate is assumed to be 5%, resulting in a risk-neutral
probability of 0.53. The optimal expected costs obtained
for the two alternative valuation approaches are listed
in Table 2, along with their breakdowns in terms of the
various constitutive components. As indicated by these
results, expected cost savings of approximately 42% are
forecasted by the adoption of an ROV-based planning
approach over the traditional NPV approach. The cost
analysis presented in Table 2 also provides valuable
insights into the sources of these observed savings. In
particular, these savings are primarily attributed to a
3-fold reduction in customer shortage penalties.

Figure 5 shows the temporal variation of cost over
the planning horizon, indicating that consistent cost
savings are realized throughout the planning horizon
by the ROV approach. The magnitude of these savings,
however, varies significantly from period to period
(Figure 6), ranging from a low of 8% to a high of almost
60%. In addition to expected cost, the temporal profiles
of the expected capacity utilization (Figure 7), inventory
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Figure 6. Forecasted savings over the planning horizon.
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Figure 7. Expected capacity utilization over the planning horizon.
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Figure 8. Expected inventory profile over the planning horizon.
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Figure 9. Expected customer shortage profile over the planning
horizon.

level (Figure 8), and customer shortage (Figure 9) are
examined. Almost identical profiles are obtained (see
Figure 7), with capacity utilization ranging from 40 to
95% over the planning horizon. The increase in capacity
utilization over time is attributed to the expected growth
in future demand. On the logistics side, significant
reduction in expected inventory is predicted (see Figure
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8), highlighting the effectiveness of the proposed ROV
approach from an inventory management perspective.
Figure 9 demonstrates that the reduction in inventory
level does not come at the expense of compromising the
customer service level. Customer demand satisfaction
of 100% is achieved for the first half of the planning
horizon, whereas a significant portion of the demand is
lost as a result of capacity limitations in the second half.
The fractions of missed sales, however, are almost
identical for the ROV and NPV approaches.

The seemingly inconsistent result that the ROV
approach leads to a 3-fold reduction in customer short-
age penalty (as indicated in Table 2) while maintaining
the same customer service level (as shown in Figure 9)
can be explained from a hedging portfolio viewpoint.
Using the risk-neutral probability in conjunction with
the risk-free rate of return to evaluate the recourse
function in model MPP is equivalent to setting up a
portfolio consisting of a financial asset (the twin secu-
rity) and a real asset (the supply-chain operation).
Consequently, given the perfect correlation between the
demand realized and the value of the twin security, the
decrease in value of the real asset in the face of high
demand (because of capacity limitations) is offset by the
increase in value of the financial asset. This also
explains why the major portion of the savings is
concentrated in the later half of the planning horizon
as seen in Figure 5. Thus, a more stable, robust cost
profile is obtained in the face of demand uncertainty
using the ROV analysis.

Pharmaceutical Pipeline Management. The cur-
rent growth in the pharmaceutical sector has largely
been fueled by new-product pipelines and the promise
of novel drugs in the future. These product pipelines
are in a constant state of flux as new drug leads are
identified and products reach the market or are discon-
tinued during development because of safety/efficacy
concerns.®® As a result of this dynamic market state,
the optimal management of the new-product pipeline
has moved to the forefront of all strategic planning
initiatives of a pharmaceutical company.

Every drug in the pharmaceutical pipeline undergoes
a well-defined development process consisting of a
number of distinct, sequential stages. After the drug
discovery process in which the drug lead is identified,
optimized, and tested in animals, the drug is taken
through three phases of clinical testing. Phase | studies
are aimed at determining the toxicity level of the drug
and are usually carried out in small populations of
patients. Following the successful completion of phase
I trials, phase Il trials are undertaken in which the
pharmacokinetic and pharmacodynamic characteristics
of the drug are determined. Finally, large-scale phase
111 trials are conducted to establish the effectiveness of
the drug. This is achieved by comparing the therapeutic
potential of the drug with the performance of an existing
treatment. Once sufficient evidence regarding the safety
and efficacy of the drug is collected, an investigational
new drug application (IND) is filed with the Food and
Drug Administration (FDA). Approval of the IND cul-
minates in the commercialization and large-scale pro-
duction of the drug.

The entire drug development process is characterized
by significant technical and market uncertainty. Nega-
tive test results such as excessive toxicity and/or un-
foreseen side effects for a given drug candidate termi-
nate any further development. Even at the IND approval

Phase III FDA
Drug5 I ]
Drug4 Phase III : FDA |
FDA
Drug3 1
Phase II Phase 111 FDA
Drug2 I T ]
Phase II Phase III FDA
Drug 1l T T ]
| | | | |
f 1 1 1 1
Year 1 Year 2 Year 3 Year 4

Figure 10. Pharmaceutical pipeline composition for representa-
tive case study.

stage, chances of failure are significant in light of ever-
changing and ever-tightening regulatory restrictions.
On the market side, incomplete information regarding
the cost of producing the drug, the pricing structure,
and the market share that can be captured translate
into significant uncertainty in the drug’s market value.
The cumulative impact of these uncertain conditions is
further amplified by the relatively long duration (8—10
years) and the large investment ($500—$800 million)
required for the development process. Accounting for
uncertainty is thus critical in effectively managing a
company'’s drug development activities. In recognition
of this fact, we address the pharmaceutical pipeline
management problem as a portfolio optimization prob-
lem within the ROV framework.

The problem is defined as follows: Given a set of
candidate drugs in various stages of development;
estimates of the probability of success, duration of
testing, and investment required for the remaining
stages; and forecasts for the future market values,
determine the optimal drug development portfolio that
maximizes the ROV.

The key idea that distinguishes the proposed ROV
approach from the substantial contributions to new-
product development in the process systems engineering
community3°~4! is the explicit tracking of the uncer-
tainty in the market value of the drug through market-
traded securities. This can be achieved by constructing
a portfolio of securities whose value is correlated with
the market value of the drug under development. For
instance, suppose that the drug under consideration is
a cancer drug; then, the market value of this drug can
be reasonably tracked with a portfolio of biotechnology
companies specializing in developing cancer treatments.
The drug development process can then be viewed as a
compound real option on the value of this portfolio. A
detailed model description and results can be found in
the recent works of Rogers et al.4243

The proposed methodology is highlighted by applying
it to a pharmaceutical pipeline consisting of five drugs
in various stages of development, as depicted in Figure
10. Drugs 1 and 2 have just completed phase | trials,
drug 3 is awaiting application of the IND to the FDA,
and drugs 4 and 5 are ready to be taken into large-scale
phase Il trials. A schematic of the drug development
process is shown in Figure 11. This diagram depicts the
unfolding of technical and market uncertainties over
time and the planning decision points throughout the
time horizon. Specifically, the key decision that is
modeled is the abandonment option that is available at
the end of every stage of the development process as
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Figure 13. Optimal development schedule for drug 2 (C =
continue, A = abandon).

indicated in Figure 11. This abandonment option derives
its value from the underlying market uncertainty by
limiting the downside risk under unfavorable market
conditions (as captured by low market values). The
individual valuations for the five drugs are presented
in Figure 12. The results shown in Figure 12 demon-
strate the value of the abandonment option, especially
for drugs 1 and 2, for which this option is worth more
than twice the original (without-abandonment) value.
In addition to the value of the drug, the optimal
abandonment schedule is also obtained, as shown in
Figure 13 for drug 2, where phase Il trials for drug 2
are undertaken given the current market-value esti-
mate, MV,. At the end of phase 11, if the market value
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is in excess of 3.2MV,, then phase Il trials are
conducted; otherwise, the abandonment option is exer-
cised. Subsequently, upon successful completion of
phase 11l trials, a market value in excess of MV is
required for initiation of the IND approval phase with
the FDA. Optimization of the entire pharmaceutical
pipeline subject to budgetary restrictions yields the
optimal product portfolio consisting of drugs 1-3 and
5. The decision to not pursue development of drug 4 is
attributed to the lack of sufficient budgetary resources
at the start of the planning horizon. The value of the
ROV approach lies in providing external market disci-
pline to internal product development decisions.

Emissions Trading. In the past decade, market-
based environmental policy has emerged as a more cost-
effective alternative to the conventional “command-and-
control” standards of environmental law and regula-
tion.*44> Emission markets operate by issuing tradeable
permits denominated in units of a specific pollutant
(e.g., pounds or tons of SO,) in amounts equivalent to
their allowable emissions over a given period of time
(e.g., 1 year). All permits are transferable, so that, if a
facility can generate excess permits by reducing emis-
sions below its allotted amounts, then it can sell these
extra permits to other facilities. At regular intervals,
facilities submit emission reports for the compliance
period, which can range anywhere from 3 months to 1
year. At that time, facilities must own sufficient permits
to cover emissions to avoid a noncompliance penalty
charged by the regulatory authority for any excess
emissions. Having been used to cover emissions, these
permits are then retired from the regulatory compliance
system, preventing subsequent use or transfer.

The cost efficiency achieved in meeting environmental
targets through a market-based approach, however,
comes at the expense of exposing the enterprise to
market volatility, in terms of both the number of such
permits available and their price. These uncertainties
can be traced back to the variability in emission levels
that arises because of uncertainty in the demand for a
company’s goods/services, variability in the quality of
fuel and other raw materials consumed, and random-
ness in weather and other environmental factors.*®
Consequently, failure to recognize emission uncertainty
and the resulting market volatility can pose severe
financial, operational, and political challenges.

In addition to emission permits, market-priced option
contracts written on these permits can also be used for
compliance purposes. Options are contracts that give the
holder the right, but not the obligation, to purchase an
emission permit at a specified price (known as the strike
price) and time for a one-time, upfront premium pay-
ment. The key feature of an option is its asymmetrical
payoff. Because the contract does not imply any obliga-
tion to buy the permit, the holder of the contract profits
from favorable price changes while being protected from
adverse ones. In the spirit of the real-options approach,
a global compliance portfolio view is adopted for pollu-
tion abatement planning by formulating the decision
problem as follows:

Given a set of candidate technologies characterized
by their respective emission levels, fixed capital invest-
ments and variable production costs, current market
prices, and the availability of emission permits and
emission options, along with future demand and market
forecasts, determine the optimal technology—permits—
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Figure 14. Total cost distributions for alternative compliance
portfolios (T = technology, P = permits, O = options).

options compliance portfolio that minimizes the total
expected cost.

A multistage stochastic programming approach is
used to incorporate demand and market uncertainties.
Representative results for a particular case study are
presented next, whereas a detailed treatment of the
problem can be found in Gupta and Maranas.*’” A
manufacturing enterprise that is planning its pollution
abatement activities has six potential technology can-
didates under consideration. These six technologies span
the entire spectrum of cost-emission possibilities rang-
ing from the low-cost—high-emission extreme to the
high-cost—low-emission alternative. Emission permits
are currently available at a 40% discount over the
noncompliance penalty, and the future permit price is
expected to lie anywhere between 0 and 100% of the
noncompliance penalty with equal probability. In addi-
tion to the permits, option contracts are also available.
The premium payment for an option increases as the
strike price decreases, reflecting the willingness of the
company to pay a higher premium initially in exchange
for obtaining the future right to purchase an emission
permit at a lower cost.

Three alternative settings are investigated according
to whether permits and/or options are included in the
compliance portfolio. The cost distributions predicted
are shown in Figure 14. Significant cost savings are
achieved by including emission permits and options in
the compliance portfolio. Specifically, the optimal tech-
nology and permits portfolio (T + P) outperforms the
purely technology based portfolio (T) by 19% with
respect to total cost savings. The flexibility provided by
the options contracts translates into an additional
savings of 4% over the T + P portfolio. The risk profile
is also altered favorably through the inclusion of permits
and options, as indicated by the reduction in the
probability of excessively high cost scenarios in Figure
14 forthe T+ P and T + P + O portfolios. The savings
forecasted can be primarily attributed to the reduction
in noncompliance penalties. These expected savings in
noncompliance charges can be traced back to the reduc-
tion of the excess emissions. Figure 15 indicates that
the probability of adequately meeting emission require-
ments is increased from a low of roughly 10% with
technology only to around 95% through the inclusion of
permits and options.

Summary

In this work, a new real-options-based approach to
valuation under uncertainty was proposed. The key
managerial insight underlying this methodology was
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Figure 15. Predicted environmental liability for alternative
compliance portfolios (T = technology, P = permits, O = options).

that external financial market information can be used
for quantifying and evaluating internal planning deci-
sions of an enterprise. In particular, this was achieved
by taking a global portfolio management perspective on
planning initiatives and recognizing that both financial
and real assets can be used to achieve desired objectives.
This amounted to taking a more aggressive shaper
attitude toward planning under uncertainty in contrast
to a purely passive adaptive one.

From a quantitative viewpoint, the ROV analysis was
obtained through a natural extension of the theory
developed for financial options. The fact that it is easier
to track the underlying source of uncertainty rather
than the effect of uncertainty in financial markets was
exploited through the replication portfolio approach.
Subsequently, in light of the arbitrage-free pricing
principle, the risk-neutral pricing approach under un-
certainty was uncovered. Multistage stochastic pro-
gramming was identified as the framework within
which this approach could be embedded to address
various planning settings.

The benefits of the proposed methodology were high-
lighted through three seemingly unrelated planning
examples. The first case study, supply-chain planning
under demand uncertainty, contrasted the ROV ap-
proach with the traditional NPV approach in terms of
both model formulation and the resulting business
implications. The second, pharmaceutical pipeline man-
agement, case study showcased how market discipline
can be applied to high-risk internal activities such as
new-product development. Finally, the emissions trad-
ing setting emphasized the general applicability of the
portfolio management view that forms the basis of the
ROV analysis.

The three case studies presented spanned the entire
“distance-from-market” spectrum. The distance from
market of a particular setting refers to the degree to
which the underlying source of uncertainty of that
setting is tracked in financial markets. The supply-chain
planning example was closest to the market because
demand uncertainty for a wide range of products can
be efficiently tracked in well-developed, highly liquid
futures markets. Pharmaceutical pipeline management
constituted the other extreme of this spectrum, given
the limited number of market-traded securities through
which the market value of a novel drug can be tracked.
Emissions trading is intermediate between the other
two cases given that emission markets, though reason-
ably efficient and liquid, are still not as well established
as commodity markets. We believe that, in the future,
the potential advantages of adopting an ROV methodol-



ogy will be increased as additional risks are unbundled
and securitized in free-market settings.
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Appendix A. Multiperiod Midterm Planning
Model

Sets

7= {t} = set of time periods
Parameters

cset = fixed setup cost

cvar = variable production cost

ctran = transportation cost

h = inventory holding cost

u = customer shortage penalty

0 = demand in period t

P = production capacity

19 = initial inventory
Variables

Y: = 1, if product is made in period t; O, otherwise

P = production level in period t

St = supply to customer in period t

S; = customer shortage in period t

I; = inventory level at the end of period t

Utilizing the above-described notation, the multipe-
riod production planning model (MPP) is formulated as
follows.

MPP
min ¢ _g) + €"¥Pg) + ¢S i_g) + S =gy T

1 _
hi (t=0) + m 'Q(t:O)(S(tZO)’ I(tZO)’e(tZ:L))

subject to
P =0y = PY () (14)
St=0) = Ou=0) (15)
limo) = 1° + Pieo) — Si=) (16)
Si=0) = Ot=0) — St=0) (17)

Pi=0y Se=op lt=0y St=0p 2 0, Y(t=)€ {0, 1}

where

QSt 11,01) =

€g,,,|MIn Y gy + Py + ¢Sy +
_ 1 _
US 1) T Nlqy + @ +_r)Q(t+1)(S(t+l)! I(t+l)’0(t+2))]
(18)
subject to
Piry = PYqry

Sit+1) = ey T St
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I(t+1) =1+ P(t+l) =S (t+1)

Stryy =St T 0s1) — S ey

Pii1y Seray vy Seeyy = 0
Yy € {0,1}

The first stage of model MPP corresponds to the
planning process for the current time period (t = 0), for
which the demand is assumed to be known with
certainty. The first five terms in the objective function
account for the fixed setup costs and the variable
production, transportation, customer shortage, and
inventory holding costs, respectively, incurred in the
current period. These costs are minimized subject to the
production capacity (eq 14), customer supply (eq 15),
inventory balance (eq 16), and customer shortage (eq
17) constraints. The costs incurred in the future time
periods (t = 1) are captured in the objective function
through the recourse function Q«(S;,It,0t+1). This func-
tion, which consists of a number of nested optimization
problems as shown in eq 18, accounts for the nonan-
ticipative resolution of demand uncertainty over a
multiperiod planning horizon in a recursive manner.
The linking across consecutive time periods arises
through the transfer of inventory and customer short-
ages. This results in the propagation of uncertainty
through the planning horizon.
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