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In this paper, we examine the combination of quantum chemical methods with optimization
techniques for molecular design. A simple hydrofluorocarbon refrigerant design example and a
solvent design example illustrate the proposed framework. The hydrofluorocarbon compounds
are optimized for their heats of formation, and the potential solvents are searched for capacity,
selectivity, and environmental safety. In both examples, a genetic algorithm is applied to generate
and screen candidate molecules. The molecular properties are evaluated using a combination of
quantum chemical calculations and group contribution methods. We assess the feasibility of
the proposed approach for small molecules and find that establishing a proper tradeoff between
the accuracy of the quantum chemical method and computational expense is vital.

1. Introduction

Molecular design is an iterative process of finding
molecules that possess one or more desired properties.
To save time and resources, it is of great interest to
carry out part of this search for potentially new mol-
ecules on a computer rather than experimentally. For
computational searching, the desired property must be
calculated from a model describing the structure-
property relationship. Previous molecular design
studies1-4 typically employed group contribution meth-
ods (GCMs)5-7 for this purpose. In these methods, the
parameters for the contribution of molecular groups to
the property of the entire molecule (or polymer repeat
unit) are obtained by fitting the group contribution
model to experimental data for a set of chemical
compounds. However, if a certain atom type, molecular
group type, or type of chemical bonding is not present
in the experimental set, the GCM will not account for
this chemical information, thus limiting the predictive
capabilities of these methods. Quantum chemical ab
initio methods (calculations from first principles) obtain
molecular properties from the most fundamental level
of molecular information: the location of the nuclei and
the number of electrons. From this input, in principle,
molecular level information about any system can be
predicted (e.g., molecular energies, electronic charge
distributions, dipole and higher moments, vibrational
frequencies, or molecular structure). Quantum chemical
methods can provide molecular level properties with an
accuracy that lies within the limits of experimental
error. Although at the price of high computational cost,
quantum chemical methods offer intriguing advantages
for molecular design. They do not depend on a particular
class of compounds, and as more methods for accessing
properties (the combination of quantum calculations and
subsequent evaluations) become available, the potential
to predict the properties of unknown molecules is
growing. Frequently, the accuracy of the results is
limited by the computational time rather than by the
chosen method. In this paper, we explore the use of ab

initio methods for molecular design through two small
example problems.

In the first problem, we address the molecular design
of hydrofluorocarbons by minimizing the deviation
between a target property and the property of the
designed molecules. The ideal gas heat of formation
(∆Hf°) at standard conditions is chosen as the target
property, motivated by an interest in chemically stable
hydrofluorocarbon refrigerants. The second example
focuses on the design of solvents for liquid-liquid
extraction. The optimized properties are the solvent
limiting capacity C∞,A, the limiting selectivity S∞,A,B, and
the environmental safety of the solvent, represented by
the octanol-water partition coefficient KOW. In this
example, KOW is evaluated by a quantum chemical
method8 while C∞,A and S∞,A,B are evaluated using the
UNIFAC GCM.7,9 We emphasize that these examples
were selected primarily as benchmark problems to
explore the applicability of our approach.

The solution of the quantum chemical problem as part
of the property evaluation of a molecule is found by
numerical methods and not by analytical structure-
property relationships. Because of the ability to handle
nonanalytical functions, a genetic algorithm (GA) was
chosen as the optimization procedure. The GA generates
molecules and treats the quantum chemical evaluation
subroutine of the molecules as a black box. It is
important to note that, because GAs are directed
random search methods, one cannot claim global opti-
mality. For this reason and because ab initio calcula-
tions are very time-consuming, it is important to tune
the performance of the GA before engaging in costly
quantum chemical property evaluations. Performance
is governed by a number of adjustable parameters such
as probabilities of crossover and mutation, population
size, and number of generations.

For GA tuning, it is favorable to have a list of the
globally best, second best, etc., molecules for evaluating
how many of these globally best candidates the GA is
able to find with a particular set of parameters. Gen-
erating such a list using quantum chemistry, however,
is exactly the problem to be solved. It is much less time-
consuming to generate the list when using GCMs for
rapid property evaluation. In this study, we use two
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different approaches for GCM-based GA tuning. If the
GCM is given in linear form or it can be transformed
into a linear form,2 a list of molecules can be generated
by solving a GCM-based mixed-integer linear program-
ming (MILP) form of the problem to global optimality
and comparing the results to those of a GCM-based GA
for the same molecular search space as in the original
problem. This approach is applied to the first example.
If the GCM cannot be given in linear form, as in our
second example, one can sample either the entire search
space or a reduced search space and find the GCM-based
globally optimal molecules by exhaustive enumeration
or other GCM-based search techniques.

Figure 1 illustrates our proposed approach. First, a
list with n GCM-based globally best molecules is found
either by solving an MILP model or by exhaustive
enumeration (step 1). Next, we evaluate how many of

these best solutions are found by the GA with a
particular set of parameters (step 2). The GA is tuned
such that it finds the maximal average number of
globally best solutions when using the GCM for property
evaluation. Step 3 describes the actual optimization
procedure. All molecules are first screened using the
GCM. Molecules with GCM values within a targeted
range depending on the GCM’s accuracy and the opti-
mization goals are selected for further evaluation by the
ab initio calculation. This reduces the number of can-
didate molecules that need to be evaluated in the
computationally expensive ab initio step. The number
of candidate molecules is further reduced by comparing
them with a database and checking if a particular
molecule was evaluated in a previous generation or GA
run. In this case, the result is retrieved from the
database. After their initial geometries are generated,

Figure 1. Flowchart of the proposed approach.

3420 Ind. Eng. Chem. Res., Vol. 43, No. 13, 2004



the candidate molecules are submitted to a quantum
chemical software. Note that the molecules are submit-
ted individually, which results in a parallel execution
of this most time-consuming step. After geometry
optimization, the candidate molecules can be subjected
to further quantum chemical evaluations as in the
second example, where each candidate molecule is
solvated in water and octanol, respectively. After the
final properties are found, the fitness of the candidate
molecules is evaluated by the GA. When this GA cycle
is repeated for a number of generations, the best
candidates are recorded. All program parts are linked.
While the evaluation routines run, the GA pauses and
waits for result files. If a candidate molecule causes
problems, it can be treated individually and the result
files are then submitted to the GA for continuation.

2. Theory

Quantum Chemistry. The objective of quantum
chemistry is to find the best possible approximation of
the wave function ψ(r,R) in the electronic Schrödinger
equation of a system containing one or more molecules.

Here, Ĥ is the Hamiltonian operator, E(R) is the energy
of the system, R is the vector of the nucleic coordinates,
and r refers to the coordinates of the electrons. The wave
function ψ(r,R) is postulated to contain all physical
information of the system; once it is known, in principle,
all other physical information can be obtained from it.
Because of the complexity of eq 1, no analytical solution
is known for systems of practical interest and ψ is
approximated computationally. Most methods are based
on the variation principle, which states that any trial
wave function φ estimating the true ψ can only yield
an energy E g E0, where E0 is the ground-state energy
of the system. Variational methods such as the Har-
tree-Fock (HF) method or density functional theory
(DFT) approximate ψ by varying φ until E converges to
a local minimum, using the self-consistent-field (SCF)
method. Following the Born-Oppenheimer approxima-
tion, nuclei are treated as fixed because they are about
1000 times heavier than electrons and, thus, move much
slower than electrons. Therefore, E and ψ depend only
parametrically on R: for each R, ψ(r,R) is different. In
a geometry optimization step, R is modified using a
nonlinear gradient method until E converges to a local
minimum. For each R, the SCF procedure is solved
again. Hence, there are two nested energy minimization
problems (Figure 1, step 3), resulting in significant
computational expense. Quantum chemical results from
nonoptimized geometries are physically meaningless.
For a thorough introduction to the large field of quan-
tum chemistry, the reader is referred to the litera-
ture.10-13

Initial Geometry and Molecular Representation.
For successful geometry optimization, nonlinear gradi-
ent methods require a good initial guess for R. Most
quantum chemical codes have a graphical user interface
for building molecules to accompany the chemical
intuition of the user. In an optimization problem, new
molecules are generated by the solver; therefore, the
initial guess for R must also be generated computation-
ally. The quantum chemistry package Gaussian 9814

provides the subroutine Model Builder,15,16 which gen-

erates an initial geometry solely from molecular con-
nectivity information by assigning standard bond lengths
and bond angles to adjacent atoms according to their
types. For representing molecules, a connectivity matrix
M was chosen. In M, each row contains information
about one atom of the molecule. The first-column
element mi1 represents the atom type through its atomic
number. For example, for carbon, mi1 ) 6. All other
columns contain the connectivity information as binary
variables: mi,j+1 ) 1 if the atom in row i is connected to
the atom in row j; mi,j+1 ) 0 otherwise. For example,
the molecular matrix for F2CdCFH is given by

Note that this representation only intrinsically en-
codes multiple bonds. This way of modeling is similar
to the quantum chemical notion of the molecule as a
collection of nuclei surrounded by an electron cloud. It
is important to note that bonds are not an input but
rather a result of the electronic structure calculation.

Optimization Procedure: GA. The molecular de-
sign problem is a discrete optimization problem: atom
A is either connected to atom B or not, and it is of a
given type (i.e., carbon) or not. Commonly used discrete
optimization methods are mathematical programming
methods or guided random search methods such as
simulated annealing or GAs. Mathematical program-
ming techniques17 such as MILP require a complete
analytical model of the optimization problem. Because
the approximate solution of the Schrödinger equation
is not available in analytical form, these methods cannot
be used directly to solve the quantum chemical model
of the molecular system. A GA, first introduced by
Holland18 and discussed by Michalewicz,19 is used in this
study. By maintaining a population of chromosomes and
applying crossovers and mutations to them, a GA
constantly samples the search space and is intrinsically
parallel in nature.19

Chromosome Representation. The molecular candi-
dates are represented as bit strings. These are one-
dimensional fields of binary elements, i.e., chromosomes,
on which the GA operates. For evaluating the fitness,
chromosomes are translated into the molecular matrix
M (eq 2). The combination of bit-string representation
and translation procedure encodes the constraints of the
optimization problem. After randomly creating a num-
ber of chromosomes, one obtains an initial population
and can apply the GA, which consists of the following
steps.

(a) Fitness Evaluation. For each chromosome, the
fitness is a measure of how far this chromosome deviates
from the optimization goal. In this study, the fitness
expresses how far the property Pi of a particular
chromosome i deviates from the given target Ptarget. For
a vanishing deviation, the fitness Fi should approach
1, and it should decrease as the deviation increases. This
behavior is achieved by defining Fi in form of a Gaussian

Ĥψ(r,R) ) E(R) ψ(r,R) (1)

M ) [6 0 1 1 1 0 0
6 1 0 0 0 1 1
9 1 0 0 0 0 0
9 1 0 0 0 0 0
9 0 1 0 0 0 0
1 0 1 0 0 0 0

] (2)

Ind. Eng. Chem. Res., Vol. 43, No. 13, 2004 3421



function:3

Here, R is a parameter of the algorithm, which deter-
mines how steeply the Gaussian curve decreases with
larger deviations. If the design involves properties that
have either a lower bound or an upper bound, we use a
sigmoidal fitness function

where PF)0.5 is the property value for which the evalu-
ated fitness is 0.5. The lower or upper limit of the
property constraints is placed at this point.3 Note that
the limit is not a bound; i.e., values below the lower
bound or above the upper bound can still yield accept-
able fitness values, depending on the slope â of the
resulting S curve. For multiple objectives, eqs 3 or 4
are formulated for each objective and the total fitness
of each chromosome is obtained by averaging over all
property objectives. From the fitness of each chromo-
some, the total fitness of the population is determined
by

where pop•size is the size of the population.
(b) Selection. The selection process ensures that the

fittest chromosomes have better chances for survival,
while the unfit chromosomes do not die out immediately
but only after a number of generations. A probability
pi for selection into the next generation is defined to be
proportional20 to the fitness of chromosome i:

After calculation of a cumulative probability qi,

and generation of a random number r with 0 e r < 1,
chromosome i is selected into the new population if qi-1
< r e qi. This is repeated pop•size times in order to
obtain the population of the next generation.

(c) Crossover. Chromosomes of the new population are
randomly selected for crossover with a probability pc.
During crossover, two chromosomes exchange their
sequences of bits following a randomly selected position
of the bit string.

(d) Mutation. Chromosomes of the new population are
randomly selected for mutation with a probability pm.
Mutation is the change of one bit (0 f 1 or 1 f 0) of a
chromosome at a randomly selected position of the bit
string.

Tuning the GA. Several parameters influence the
performance of the GA: the population size pop•size,
the probability of crossover pc, the probability of muta-
tions pm, and the number of generations Ngenerations.
Before the GA is used to operate on a population of
molecules that are evaluated by costly quantum chemi-
cal calculations, it is important to tune these parameters

for optimal performance of the algorithm, which is a
compromise between rapid convergence (evaluation of
few molecules) and extensive sampling of the search
space (evaluation of many molecules). If the algorithm
converges too fast, the confidence in the solution is
smaller. After finding the n best molecules using a rapid
property evaluation method such as GCM, information
about the performance of the GA can be obtained by
evaluating how many of the best solutions the GA finds
and at what computational expense. For this purpose,
the GA is run for a number of generations while the
same GCM is used for the property evaluation. Using
the fitness Fi as a measure, a record of n all-time-best
(GA) individuals is maintained. The GA is a random
search technique, and it is unlikely that it finds all
globally best molecules. Let N be the set of the n globally
best molecules. The percentage Pn,best of the n globally
best molecules that the GA finds is given by

where ν is the number of molecules found by the GA
that are elements of N. When the GCM-based GA is run
k times, Pn,best is averaged by

In this study, we chose n ) 10. For k g 1000, P10,best,avg
fluctuates only in the first decimal place. Another
important performance measure of the GA is how many
function evaluations the algorithm needs to achieve a
certain Pn,best, i.e., how many candidate molecules pass
the filter discussed below. This is of interest because,
ultimately, costly quantum chemical calculations are to
be used for these function evaluations. The objective of
the empirical tuning procedure is to maximize P10,best,avg.

Filter. To avoid unnecessary evaluations and by
application of a GCM, molecules are screened for
proximity to the optimization goal if the property is to
be evaluated by quantum chemistry. A filter only
accepts molecules with

from being evaluated by the quantum chemical method.
In eq 8, Pi,GCM is the property P of chromosome i, based
on a GCM calculation, and ∆P is a tolerance that
ensures that candidate molecules whose Pi,GCM lies
outside of this tolerance are highly unlikely to have a
Pi based on quantum chemistry within the tolerance.
The choice of ∆P depends on the accuracies of both the
GCM and the quantum chemical method.

3. Case Study 1: Design of Hydrofluorocarbons

3.1. Problem Definition. The first example is mo-
tivated by the search for alternative, chlorine-free
refrigerants. One of the properties of interest here is
the heat of formation ∆Hf° of the candidate substance,
which is used as an indicator for the stability of the
compound. To this end, molecules with ∆Hf° closest to
a target value ∆H°f,target are identified using the GA-
based optmization procedure.

Heat of Formation. The heat of formation is ob-
tained using the method of Curtiss et al.,21 by first
evaluating the dissociation (atomization) energy ∑D0,
i.e., the energy difference between the molecule and its

Fi ) exp[-R
(Ptarget - Pi)

2

Ptarget
2 ] (3)

Fi ) {1 + exp[-â(Pi - PF)0.5

Prange
)]}-1

(4)

Ftot ) ∑
i)1

pop•size

Fi (5)

pi ) Fi /Ftot

qi ) ∑
j)1

i

pj

Pn,best ) 100ν/n (6)

Pn,best,avg ) 1/k∑
i)1

k

Pn,best(i) (7)

Ptarget - ∆P e Pi,GCM e Ptarget + ∆P (8)
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dissociated atoms. For example, for the molecule
AxByHz,

where ε0(X) is the energy of the particle (atom or
molecule) X and εZPE(AxByHz) is the zero-point energy
of the molecule. Variables x, y, and z represent the
number of atoms of A, B, or H in the example molecule.
The zero-point energy is a part of the ground-state
energy that accounts for molecular vibrations persisting
even at 0 K. All values in eq 9 are calculated using
Gaussian 98.14 Note that the quantum chemical model
must be the same for all particles X. The enthalpy of
formation of the molecule at 0 K is given by

Here, the dissociation energy is subtracted from the sum
of the widely accepted values for the 0 K heats of
formation of gaseous atoms ∆Hf°(X, 0 K), which are
tabulated in work by Chase et al.22 ∆Hf°(AxByHz, 0 K)
is also corrected for the standard state (298 K):

In this equation, H°(AxByHz, 298 K) - H°(AxByHz, 0 K)
is evaluated by the quantum chemistry software and
[H°(X, 298 K) - H°(X, 0 K)]st are obtained from
tabulated values.22

Quantum Chemical Model. A number of prelimi-
nary runs were first carried out in order to find a model
chemistry that balances acceptable accuracy and com-
putational expense. The ∆Hf° values were predicted for
several hydrofluorocarbons using B3LYP/6-31G(d) for
both the geometry optimization and the final energy
calculation. Bauschlicher23 reports an average error of
5.18 kcal/mol for ∑D0 using this model chemistry on the
G2 test set of 55 molecules.24 When comparing results
for ∑D0 and ∆Hf°, we neglect the influence of the
average error in H°(AxByHz, 298 K) - H°(AxByHz, 0 K)
in eq 11 on the average error in ∆Hf°. For the set of 21
molecules that were calculated for this work, we found
an average error of 4.53 kcal/mol. The results obtained
in our work are summarized in Table 1. Curtiss et al.21

reported average errors of 2.43 kcal/mol for the 55
molecules of the G2 test set. However, these results
were obtained using the B3LYP/6-311+G(3df,2p) model
chemistry. This basis set was deemed too computation-
ally expensive for the purpose of using it as a subroutine
within an optimization loop. For comparison, the heat
of formation values as calculated from the GCM are
provided in Table 1. The average error for this method
was found to be 12.23 kcal/mol.

Bit String Representation and Objective Func-
tion for Case Study 1. For the problem at hand, the
search space is constrained to hydrofluorocarbons with
a maximum of three carbon atoms and possible multiple
bonds between them. The bit strings contain 10 digits,
each of which can assume the value 0 or 1 (hence, the
name “bits”). For example, a randomly generated string

S may look like

The elements of S are defined as follows. The first two
positions define the number of carbon atoms in the
molecule by the equation

The third and fourth positions define the number of
bonds between the first and second carbon atoms based
on the formula

The case S(3) ) S(4) ) 0 encodes a double bond on each
side of the middle atom in the case of a molecule with
three carbon atoms, and if the molecule has only two
carbon atoms, they are also connected by a double bond
between them. The last six positions of S define the
number of fluorine atoms on each carbon:

The translation of the bit strings into connectivity
matrices is described next. First, all carbon atoms are
connected in a molecular backbone. In the next step,
the bond multiplicities between carbon atoms are as-
signed, which permits the calculation of the number of
remaining bonds at each carbon atom (three at most).
These bonds are then filled with the number of fluorine
atoms assigned to each carbon atom through the bit
string. When all fluorine atoms are connected, the
remaining bonds of each carbon atom are filled with
hydrogen atoms. On the basis of these definitions, one
recognizes S as a bit string representation of F2CdCFH.
Note that one cannot attach three fluorine atoms to the
first carbon atom as required by S(5) ) S(6) ) 1 because
the carbon atoms are connected by a double bond, which
has higher priority. Thus, in this problem representa-
tion, two bit strings can result in the same molecular
connectivity matrix, producing some redundancy. How-
ever, this formulation ensures that no bit string can
result in an infeasible molecule. The objective function
in this example is written in the form of eq 3 with a
target value of ∆H°f,target ) -150 kcal/mol.

GA Tuning: An MILP Model Based on a Group
Contribution Method for Rapid Property Calcula-
tion. For tuning of the GA, a significantly faster
evaluation method is needed. In this case study, a GCM
proposed by Joback and Reid6 was used as a surrogate
for the heat of formation predictions based on quantum
chemical calculations. The advantage of Joback and
Reid’s method is its simplicity, which stems from the
assumption that each group i contributes additively by
a value ∆h°f,i to ∆H°f of the molecule. The approximat-
ing expression is

where ni is the number of occurrences of group i in the

S ) (1 0 0 1 1 1 1 0 0 1 )

no. of carbons ) 1 + S(1) × 2S(2)

no. of bonds between C1 and C2 )

S(3) × 20 + S(4) × 21

no. of fluorines on C1 ) S(5) × 20 + S(6) × 21

no. of fluorines on C2 ) S(7) × 20 + S(8) × 21

no. of fluorines on C3 ) S(9) × 20 + S(10) × 21

∆H°f ) 68.29 + ∑ni∆h°f,i (12)

∑D0 ) x ε0 (A) + y ε0 (B) + z ε0 (H) - ε0(Ax By Hz) -
εZPE(Ax By Hz) (9)

∆Hf°(Ax By Hz; 0 K) ) x ∆Hf°(A, 0 K) +

y ∆Hf°(B, 0 K) + z ∆Hf°(H, 0 K) - ∑D0 (10)

∆Hf°(Ax By Hz, 298 K) ) ∆Hf°(Ax By Hz, 0 K) +
[H°(Ax By Hz, 298 K) - H°(Ax By Hz, 0 K)] -

x [H°(A, 298 K) - H°(A, 0 K)]st - y [H°(B, 298 K) -
H°(B, 0 K)]st - z [H°(H, 298 K) - H°(H, 0 K)]st (11)
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molecule. This simple additivity form results in a
relatively straightforward MILP formulation,25,26 the
details of which are given in the appendix. The key
advantage of this MILP formulation is that efficient
solvers such as CPLEX or OSL (accessed via GAMS27,28)
can identify the globally optimal molecule that is closest
to the given target value. In addition, the MILP
framework can be used to generate a list of n best
solutions,2 knowledge of which provides the basis for
GA tuning.

3.2. Results of Case Study 1. Solutions of the
MILP Model. Solving the MILP model based on the
GCM for a target of ∆H°f,target ) -150 kcal/mol (Figure
1, step 1) produced a list of 10 molecules (Table 2) that
are closest to the target value. Table 2 provides the basis
for evaluating the GA when using the GCM for property
evaluation. Based on the additivity assumption, the
GCM cannot predict if a particular conformation of
atoms in a molecule will be energetically stable. There-
fore, there is no certainty if all of the molecules in Table
2 can exist under standard conditions. The molecules
ranked 3rd, 9th, and 10th, however, do exist as indi-
cated in Table 1.

GA Tuning Based on the GCM. Figures 2 and 3
show the evolution of the normalized total fitness of the

population (Ftot, eq 5, divided by pop•size). In these
runs, the parameters of the GA were varied. All runs
exhibit the expected behavior: the normalized total
fitness of the population is increasing. A GA is con-
verged if the total fitness assumes a value that cannot
be improved over a reasonable number of generations.
The examples typically show convergence after 10-20
generations. The GA tries to maximize the total fitness
of a population; it does not strive for a great diversity
of specific individuals. Therefore, a converged population
frequently has a high number of equal individuals with

Table 1. Experimental and Calculated Data for ∆Hf° of Various Hydrofluorocarbonsa

formula name
∆H°f,exp

[kcal/mol]
∆H°f,B3LYP/6-31(d)(abs dev)

[kcal/mol]
∆H°f,GCM(abs dev)

[kcal/mol]

CH3F fluoromethane -56.0022 -55.02 (0.98) -62.16 (6.16)
-59.0044 (3.99) (3.16)

CH2F2 difluoromethane -107.722 -107.20 (0.50) -109.03 (1.33)
-108.08 ( 0.2245 (0.88) (0.95)

CHF3 trifluoromethane -166.622 -168.41 (1.81) -157.17 (9.44)
-165.146 (3.31) (7.94)
-166.2147 (2.20) (9.05)

CFtCH fluoroethyne 30.048 28.45 (1.55) 2.67 (27.33)
CFHdCH2 fluoroethene -33.249 -32.27 (0.93) -37.12 (3.92)

-32.450 (0.13) (4.72)
CF2dCH2 1,1-difluoroethene -78.6251 -84.79 (6.17) -86.33 (7.71)

-82.19 ( 2.4052 (2.60) (4.14)
-77.7 ( 0.847 (7.09) (8.63)
-79.83 ( 0.253 (4.96) (6.50)

CF2dCHF trifluoroethene -113.3 ( 2.052 -121.73 (8.43) -135.16(21.86)
CF2dCF2 tetrafluoroethene -157.449 -166.38 (8.98) -184.37 (26.97)

-157.448 (8.98) (26.97)
-157.9 ( 0.854 (8.48) (26.47)
-157.9 ( 0.853 (8.48) (26.47)
-164.055 (2.38) (20.37)
-162.0 ( 1.056 (4.38) (22.37)

CFH2-CH3 fluoroethane -63.1957 -63.76 (0.57) -67.09 (3.90)
CF2H-CH3 1,1-difluoroethane -118.858 -120.12 (1.32) -115.23 (3.57)

-118.78 ( 0.9559 (1.34) (3.55)
CF3-CH3 1,1,1-trifluoroethane -176.051 -182.01 (6.01) -162.93 (13.07)

-178.94 ( 0.7660 (3.07) (16.01)
-178.9 ( 0.461 (3.11) (15.97)

CF3-CFH2 1,1,1,2-tetrafluoroethane -214.162,63 -219.70 (5.60) -209.80 (4.30)
CF2H-CF2H 1,1,2,2-tetrafluoroethane -213.357 -211.15 (2.15) -210.23 (3.07)
CF3-CF2H pentafluoroethane -263.058 -270.96 (7.96) -257.93 (5.07)
CF3-CF3 hexafluoroethane -321.248 -329.06 (7.86) -305.63 (15.57)

-321.2 ( 1.264 (7.86) (15.57)
-31865 (11.06) (12.37)
-318.0 ( 2.066 (11.06) (12.37)
-321.22 ( 0.9656 (7.48) (15.59)

CFHdCH-CH3 trans-1-fluoro-1-propene -41.367 -38.64 (2.66) -44.01 (2.71)
CFHdCH-CH3 cis-1-fluoro-1-propene -42.167 -39.18 (2.92) -44.01 (1.91)
CH2dCH-CF3 3,3,3-trifluoropropene -146.858 -150.04 (3.24) -137.88 (8.92)

-146.79 ( 1.668 (3.25) (8.91)
-144.5 ( 1.669 (5.54) (6.62)

CF2dCF-CF3 hexafluoropropene -275.2670 (7.55) (9.88)
CH3-CF2-CH3 2,2-difluoropropane -129.8 ( 3.071 -131.00 (1.20) -120.99 (8.81)
CF3-CF2-CF3 octafluoropropane -426.272 -430.88 (4.68) -406.40 (19.80)

-426.55 ( 2.1073 (4.32) (20.15)
a Values in parentheses show absolute deviations from experimental values.

Table 2. Ranking of 10 Molecules Closest to a Target
Value of ∆H°f,target ) -150 kcal/mol, Calculated from the
GCM-Based MILP Model

rank molecule ∆H°f,GCM [kcal/mol]

1 CFtC-CF3 -149.651
2 CF2dCdCF2 -150.399
3 CF3H -157.165
4 CF2dCF-CH3 -142.433
5 CF2dCH-CFH2 -140.093
6 CH2dCF-CF2H -139.393
7 CFHdCH-CF2H -139.015
8 CFH2-CF2H -162.098
9 CH2dCH-CF3 -137.882
10 CH3-CF3 -162.928
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fitness values close to 1, and the algorithm may con-
verge into a suboptimal population with little prob-
ability of improving. Figures 2 and 3 show that the runs
with parameters pc ) 0.25 and pm ) 0.01 (solid curves,
Figures 2a and 3b) quickly converged to populations
with a high normalized total fitness and exhibited a
small fluctuation around this value. This is attributed
to few changes in these populations after 20 generations.
This set of parameters is unfavorable because it does
not generate enough diversity in its populations to
sample a variety of molecules. The dashed curves in
Figures 2 and 3 show larger fluctuations. This can be
attributed to a more random behavior of the algorithm,
which frequently produces below-average individuals
but also bears a higher possibility of finding above-
average individuals.

Because the best molecules are sought as solutions
of the optimization problem, it is not as important to
find a good final population but to find good individuals
in the course of running the algorithm. As indicated
above, the parameter combination pc ) 0.25 and pm )
0.01 did not promise to maintain a successful (high
normal fitness) and diverse population, whereas other
parameter combinations did (e.g., Figure 3a,c). For the
decision on the set of GA parameters, a large number
of parameter combinations were evaluated by trial and
error while recording P10,best,avg and the number of
function evaluations. Table 3 shows the performance of
the GA for an average set of parameters (upper part)
and the final set of parameters (lower part). The GA
was run 1000 times for all sets of parameters that were
tested to average over the different outcomes arising
from the random search method. The frequency of
occurrence of crossovers and mutations agrees well with
their probabilities, for example, in the upper part,
population size × number of generations × crossover
probability ) number of crossovers ) 150. This value
is close to the computational average of 149.794 over
1000 runs. The set of parameters pc ) 0.25 and pm )
0.01 showed only an average performance (P10,best,avg )
55.49%) as expected from the discussion of Figures 2
and 3. The lower part of Table 3 shows the set of
parameters that was chosen as the best performing set.
As evidenced by the high mutation probability (pm )
0.03), the total fitness of this GA fluctuated, but with
almost 9 out of 10 best molecules, this GA exhibited a
very good performance. As one would expect, better
sampling of the search space requires more function
evaluations, which is also observed in Table 3.

GA Based on DFT Calculations. Table 4 lists the
10 best molecules that were found by the GA, using
Gaussian 98 with the B3LYP/6-31G(d) model chemistry
for the calculation of ∆Hf°. Five of these molecules were
also found by the GCM-based MILP. Their ranks in
Table 2 are listed in parentheses in Table 4. Note that
the molecule from Table 1 that seems closest to the
target value, 3,3,3-trifluoropropene (CH2dCH-CF3),
was found by the DFT-based GA. The molecules ranked
fourth, eighth, and ninth in Table 4 are also listed in
Table 1, indicating that they can be synthesized. The
list was compiled from the results (10 best molecules)
of three runs of the GA. Each run took about 2.5-3 h
of wall-clock time with evaluation times between 248.6
and 3617.2 CPU s/molecule. The Gaussian 98 evalua-
tions run parallel in each generation.

A number of molecules presented problems to the
Model Builder of Gaussian 98 because the subsequent
geometry optimization did not converge. The cause lies
in the nature of the Model Builder,16 which was de-
signed to account for most cases involving organic
molecules. It is not guaranteed to give reasonable initial
geometries in all cases. For molecules that created this
problem (temporarily no result files available for the
GA), the GA paused and the initial geometry was
improved manually. After the result was submitted to
the GA, the algorithm continued. Note that molecules
ranked third and sixth in Table 4 have the same
configuration but not the same conformation. Their
molecular matrices (eq 2) are different, which caused
the Model Builder to generate different initial geom-
etries, converging into different local optima in the
geometry optimization.

Figure 2. Development of the mormalized total fitness of a
population of 20 molecules for different GA parameters. If pm is
too small (case b), the fitness of the population may deteriorate.
The population of case a is converged with many identical
molecules.

Figure 3. Development of the normalized total fitness of a
population of 50 molecules for different GA parameters. The total
fitness of populations a and c fluctuates stronger than in case b,
indicating little diversity of population b. Populations a and c are
better candidates for a set of GA parameters that ensures sufficient
sampling of the search space.
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4. Case Study 2: Solvent Design

4.1. Problem Definition. The objective of this case
study is to identify a solvent for the liquid-liquid
extraction of benzene from cyclohexane. Solvent selec-
tion for liquid-liquid extraction or extractive distillation
is based on various solvent criteria such as solvent
selectivity, capacity, cost, safety requirements, waste-
water load, environmental requirements, and several
more. Out of these, we exemplarily chose capacity,
selectivity, and environmental fate as guiding properties
for the solvent design case study. The solvent capacity
CA is a measure of how well the solvent S can dissolve
a solute A that is to be recovered from the mixture A-B,
where B is the carrier. Solvent selectivity SA,B indicates
the preference of S for A compared to B. For a “first-
order” characterization of solvents, it is common practice
to apply the limiting values of CA and SA,B at infinite
dilution of A and B (e.g., Hradetzky et al.29):

For most solvents, capacity and selectivity are compet-
ing properties (solvents with high selectivity show only
low capacity and vice versa), which lead to the formula-
tion of their product ω as a more realistic basis for
evaluation:

The environmental impact of a solvent has been cor-
related to the octanol-water partition coefficient KOW.30

It is a measure of the hydrophobicity because it de-
scribes the equilibrium partition between water and a
nearly water-immiscible liquid phase. Also, 1-octanol is
a good surrogate for the lipids in aquatic and animal
biota and the organic matter in soils and sediments.
Furthermore, increasing values of KOW have been found
to correlate with increasing bioaccumulation in the food
chain (Lin and Sandler31). The same authors have
correlated KOW to the ratio of infinite-dilution activity

coefficients in pure water and pure 1-octanol:

with a ) -0.68 and b ) 0.91. In the same paper, the
authors evaluated log KOW for 40 compounds using
quantum chemical solvation calculations and a previ-
ously developed group contribution solvation (GCS)
model,8 which will be discussed in the next paragraph.
On the basis of the ideas of this GCS model, they also
devised a GCM for the rapid calculation of KOW
(GCSKOW). In our example problem, we evaluate C∞,A,S
and S∞,A,B using the UNIFAC group contribution model
and KOW using quantum chemistry (GCS) or, for filter-
ing molecules, with the GCSKOW model.

Infinite-Dilution Partition Coefficients. Lin and
Sandler8 developed a method to obtain infinite-dilution
partition coefficents γS/1

∞ /γS/2
∞ based on complex quan-

tum chemical solvation calculations. These coefficients
are a measure of how a solute S at infinite dilution
partitions between solvents 1 and 2. Lin and Sandler’s
approach is based on the idea of combining the UNI-
QUAC32 activity coefficient (γ) model with the free
energy of solvation (∆G sol), which is available from
quantum chemistry. ∆G sol is found by assuming that a
single solute molecule is placed into a solvent, which is
modeled as an electric continuum represented by four
physical constants: dielectric constant, ionization po-
tential, refractive index, and density. Models based on
this assumption are called continuum solvation mod-
els.33 The solvation free energy change of a molecule
placed in a fixed position into the continuum solvent
∆G *sol (the asterisk indicates the fixed position) consists
of four components, assuming molecular rotation and
vibration effects are neglected:8,33

with

The cavitation contribution ∆G cav is the work needed
to form a sufficient cavity in the solvent for transferring
a molecule from the gas phase into the solvated state.
The electrostatic component ∆G el represents the con-
tribution from the electrostatic charge distribution that
arises on the molecular surface and its electrostatic
interaction with the solvent. The dispersion contribution
∆G dis results from London dispersion attractions be-
tween the solute and solvent. The repulsion contribution
∆G rep results from quantum-mechanical repulsions
between the solute and solvent. For a more in-depth
explanation of these terms, the reader is referred to the
literature.10,33 Note that the three latter components
arise because of the charges of a molecule, while the
first is due to the molecular size and shape. Lin and

Table 3. GA Performance for Different Parameter Sets, Averaged over a Number of 1000 Runs for Each GA

GA parameter average of 1000 runs

population size 20 percentage of 10 best molecules 55.49%
no. of generations 30 no. of crossovers 149.794
crossover probability 0.25 no. of mutations 6.121
mutation probability 0.01 function evaluations after filtering 8.762

population size 50 percentage of 10 best molecules 88.56%
no. of generations 10 no. of crossovers 124.4
crossover probability 0.25 no. of mutations 14.952
mutation probability 0.03 function evaluations after filtering 15.637

Table 4. Ranking of 10 Molecules Closest to a Target
Value of ∆H°f,target ) -150 kcal/mol, Calculated from the
Quantum Chemical GA

rank molecule
∆H°f,B3LYP/6-31G(d)

[kcal/mol]

1 (9) CH2dCH-CF3 -150.004
2 (2) CF2dCdCF2 -138.093
3 CFH2-CH2-CF2H -166.214
4 CF2dCF2 -166.382
5 (4) CF2dCF-CH3 -132.754
6 CF2H-CH2-CFH2 (conformer with 3) -167.397
7 (1) CFtC-CF3 -132.403
8 (3) CF3H -168.408
9 CH3-CF2-CH3 -130.983
10 CFH2-CF2-CH3 -169.939

C∞,A,S ) 1/γ∞,A,S (13)

S∞,A,B ) γ∞,B,S/γ∞,A,S (14)

ω ) C∞,A,SS∞,A,B (15)

log KOW,i ) b + a log(γi
W,∞/γi

O,∞) (16)

∆G /sol ) ∆G cav + ∆G el + ∆G dis + ∆G rep (17)

∆G chg ) ∆G el + ∆G dis + ∆G rep
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Sandler summarize the latter three terms as the charg-
ing free energy ∆G chg. The UNIQUAC activity coef-
ficient model also distinguishes between a combinatorial
term that is based on the size and shape of the
interacting molecules and a residual term that accounts
for the molecular interaction:

In eq 18, the interaction parameters uii, uij, and uji need
to be determined from experimental data. Lin and
Sandler8 combined ∆G chg and the UNIQUAC model,
eliminating the parameters uii, uij, and uji in order to
avoid the need for experimental data. They arrived at
the following expressions for the infinite-dilution activ-
ity coefficient of a solute S in a solvent 1 and for the
infinite-dilution partition coefficient of a solute S in a
solvent 1 and a solvent 2, respectively

with

Equation 21 can be used to access τi from ∆G i/i
chg of a

solvent molecule solvated in a dielectric continuum of
itself. Here, qi is the relative van der Waals surface of
component i. The charging free energies ∆G S/i

chg can be
obtained from quantum chemical continuum solvation
calculations of a single molecule S solvated in a solvent
i. It should be noted that the molecular structure
parameters ri and qi of the UNIQUAC-based combina-
torial term in eqs 19 and 20 are obtained from optimized
molecular geometries of solutes and solvents, that is,
from quantum chemistry. Unfortunately, activity coef-
ficients calculated from this model do not agree well
with experimental activity coefficients.8 Lin and Sandler
adjusted a scale factor R that accounts for the size of
each atom in the solvation calculation according to the
functional group that the atom belongs to. These scale
factors were adjusted for different solvents (water,
acetonitrile, n-octanol, and n-hexane) until sufficient
agreement with experimental data was achieved. For
example, a carbon in a -CHX group will be assigned a
different R value than a carbon in a -CN group. Also,
the R value of a carbon in a -CN group in water is
different from a carbon in a -CN group in n-octanol.
Lin and Sandler8 found that infinite-dilution partition
coefficients γS/1

∞ /γS/2
∞ were in good agreement with ex-

perimental data. Combining eqs 20 and 16 yields a
quantum chemistry based model for KOW with only one
adjustable parameter R per group.

Quantum Chemical Continuum Solvation Model.
For generating starting geometries, the molecular ma-
trix M (eq 2) was submitted to the Model Builder of
Gaussian 98, followed by an inexpensive HF/STO-3G
geometry optimization. For obtaining the charging free
energies, the GCS method of Lin and Sandler8 was used,
including the same quantum chemistry software: Gen-
eral Atomic and Molecular Electronic Structure Sys-

tem34 (GAMESS). The equilibrium geometry of the
solute in a vacuum was obtained by a geometry opti-
mization using HF with a Dunning-Hay double-ú
valence (GAMESS: DZV) basis35 with added polariza-
tion functions (DZP). Furthermore, one additional set
of diffuse and polarization functions was added with
exponents of one-third of the exponent of each most
diffuse DZP function, respectively, giving rise to a
DZPsp(df) basis. The same vacuum equilibrium geom-
etry was used in subsequent solvation calculations
without further optimization. The solvation calculations
were carried out at the same HF/DZPsp(df) level.

Bit String Representation and Objective Func-
tion for Case Study 2. The search space for this
example includes saturated aliphatic molecules with up
to five carbon atoms in the backbone and the following
functional groups: N(-CtN), O(>CdO), -OH, -NO2,
and -Cln (n ) 1-3). Each molecule can contain one of
these functional groups or none; multiple functional
groups are excluded. The bit string contains eight digits.
Similar to the bit strings in the first example, the first
three positions define the number of carbon atoms,
positions four, five, and six form the code for the
functional group type, and positions seven and eight
encode the carbon atom to which the functional group
is attached. The following constraints are implemented
in the routine that translates the bit strings into the
molecular matrix M: For avoiding redundancy, func-
tional groups can only be attached to a carbon atom
number Ci with

where Ctotal is the total number of carbon atoms in the
molecule and [x] stands for the integer part of a real
number x. For example, if the candidate molecule has
five carbon atoms, the functional groups can only be
attached to carbon atoms number one, two, or three.
Groups N(-CtN) and -Cl3 can only be attached to the
first carbon atom, and O(>CdO) cannot be attached
to the first carbon atom. This limitation of group
O(>CdO) arises from Lin and Sandler’s method, in
which R values for ketones are parametrized, but not
those for aldehydes. The objective function in this
example is written in the form of eq 4 with a lower limit
of ω ) -1.5, a slope of âω ) 1.0, an upper limit of log
KOW ) 2.0 and a slope of âlog KOW ) 7.0. Thus, the
algorithm favors individuals with high ω and low log
KOW values.

4.2. Results of Case Study 2. Accuracy of the
Quantum Chemical Model. When attempting to
reproduce data of Lin and Sandler,31 we found that the
accuracy of their model cannot fully be reproduced
because the results of the continuum solvation calcula-
tion are sensitive to the Cartesian coordinates of the
input geometry. For different initial guesses, the geom-
etry optimization using the DZPsp(df) basis will find
geometries with almost identical internal coordinates
but with different Cartesian coordinates. In the con-
tinuum solvation calculation, the grid for the molecular
cavity is set up based on Cartesian coordinates of the
nuclei. Differences in the grid can lead to differences in
the ∆G el, ∆G dis, and ∆G rep terms of eq 17 on the order
of 0.1-0.2 kcal/mol each.36 Because KOW depends on the
difference between two charging free energies (eqs 16
and 20), this uncertainty can be magnified or canceled
when repeating the calculation with different initial
Cartesian coordinates. Table 5 shows a comparison

ln γi ) ln γi
comb + ln γi

res(uii,uij,uji) (18)

RT ln γS/1
∞ ) RT ln γS/1

∞,comb + RTqS(τS - τ1) +

(∆G S/1
chg - ∆G S/S

chg) (19)

RT ln(γS/1
∞ /γS/2

∞ ) ) RT ln(γS/1
∞,comb/γS/2

∞,comb) +

RTqS(τ2 - τ1) + (∆G S/1
chg - ∆G S/2

chg) (20)

∆G i/i
chg

RT
) qi(τi - 1 + ln τi) (21)

Ci e [Ctotal/2] + 1 (22)
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between Lin and Sandler’s results31 and data that were
reproduced for this work. The data can be reproduced
only with a root-mean-square (rms) of 0.199 log KOW
units as opposed to the authors’ rms of 0.114 (for the
molecules shown). This difference in accuracy is at-
tributed to the optmization of the group scale factor R
(section 4.1), which was performed based on the authors’
Cartesian coordinates for each optimized molecular
geometry. These coordinates are different from the
Cartesian coordinates obtained for this work because
in the optimization procedure initial coordinates are
generated automatically. For comparison, among other
properties, KOW data were used for the parametrization
of the widely used COSMO-RS37 statistical mechanics
method, which is based on screening charge distribu-
tions obtained from quantum chemical COSMO38 cal-
culations. Eckert and Klamt39 reported an rms deviation
of 0.471 log KOW units for a parametrization set of 301
compounds.

Best Molecules and GA Tuning Based on UNI-
FAC and GCSKOW Group Contribution Methods.
Solving the fitness for the entire search space, which
encompasses 52 molecules for this small example,
yielded the 10 globally best compounds given in Table
6. On the basis of an analysis similar to the one in
section 3.2, the following GA parameters were chosen
for case study 2: pop•size ) 30, Ngenerations ) 20, pc )
0.25, and pm ) 0.03.

GA Based on Continuum Solvation Calculations.
The tuned GA generated almost the same list of 10 best
candidate solvents as the one in the previous step. The
resulting compounds are also listed in Table 6. The only
difference is that 2-pentanone and 2-nitropropane
switched ranks. The ω values in both cases are the same
because capacity and selectivity were evaluated using
UNIFAC in both cases. The log KOW values differ
because they were obtained from different methods.
Although the quantum chemical method (rms ) 0.199)
is less accurate than the GCSKOW model (rms ) 0.14),
the trends are clearly the same. For comparison, ex-
perimental log KOW values are provided. It is noteworthy
that nitromethane, a classic solvent for the benzene-
cyclohexane system,40 is among the suggested candidate
solvents. The difference in computational expense is

striking: the GCM-based GA runs in less than 1 min,
and the quantum chemistry based GA runs in 18-36
h.

5. Summary and Conclusions

In this work, we explored the use of ab initio calcula-
tions for the property evaluation in molecular design.
Two case studies were presented to assess the feasibility
of the proposed approach. The first example involves
the design of hydrofluorocarbons best matching a par-
ticular ∆Hf° target value, and the second example is a
solvent design study for which we chose three criteria
for solvent selection: capacity, selectivity, and environ-
mental fate, represented by the octanol-water partition
coefficient KOW. In both examples, a GA was deployed
as the optimization procedure, which calls a quantum
chemical code as a subroutine to evaluate the properties
of selected candidate molecules. Furthermore, GCMs
were applied for various reasons: for tuning of the GA,
for filtering of molecules whose deviation from the target
value or upper bounds is considered too large, and as
an additional property evaluation method (case study
2). After running the algorithm two or three times, lists

Table 5. Comparison of Quantum Chemical KOW Results from Solvation Calculations for Case Study 2

compound ∆∆G Lin
chg 31 [kcal/mol] log KOW,Lin ∆∆G this work

chg [kcal/mol] log KOW,this work log KOW,exp

methane 1.884 1.07 1.889 0.956 1.0974

ethane 3.004 1.84 2.994 1.674 1.8175

propane 3.77 2.39 3.981 2.322 2.3674

butane 4.55 2.96 4.832 2.902 2.8974

methanol -0.927 -0.81 -1.163 -1.106 -0.7775

ethanol -0.013 -0.17 -0.031 -0.363 -0.3176

propanol 0.762 0.39 1.034 0.340 0.2576

nitromethane -0.022 -0.13 -0.001 -0.326 -0.3376

nitroethane 0.640 -0.33 0.734 0.150 0.1876

nitropropane 1.199 0.74 1.799 0.897 0.8776

acetonitrile -0.650 -0.55 -0.663 -0.701 -0.3476

propionitrile 0.251 0.09 0.341 -0.031 0.1676

acetone -0.185 -0.23 -0.102 -0.235 -0.2476

chloropropane 3.145 2.07 3.613 2.184 2.0476

dichloromethane 2.097 1.38 2.252 1.343 1.2576

1,1-dichloroethane 2.623 1.79 2.891 1.802 1.7975

chloroform 2.814 1.98 2.584 1.699 1.976

1,1,1-trichloroethane 3.185 2.31 3.173 2.156 2.4975

tetrachloromethane 3.869 2.82 3.085 2.181 2.6477

2-propanol 0.297 0.1 1.102 0.403 0.0576

2-chloropropane 3.041 2.02 3.420 2.073 1.976

rms 0.114 0.199

Table 6. Case Study 2: the 10 Globally Best Molecules
Based on GCM and the 10 Best Molecules Based on
Quantum Chemical Solvation Calculationsa

rank compound ωUNIFAC

log
KOW,GCSKOW

log
KOW,GCS

log
KOW,exp

1 acetonitrile 1.800 -0.380 -0.701 -0.3476

2 acetone 1.668 -0.114 -0.236 -0.2476

3 propionitrile 1.895 0.150 -0.031 0.1676

4 2-butanone 2.106 0.416 0.256 0.2976

5 nitromethane 0.860 -0.154 -0.326 -0.3376

6 nitroethane 1.264 0.375 0.150 0.1876

7 methanol 0.409 -0.697 -1.106 -0.7775

8 butyronitrile 1.962 0.679 0.605 0.6076

9 2-nitropropane 1.573 0.755 0.9378

10 2-pentanone 2.430 0.945 0.8475

9 2-pentanone 2.430 0.720 0.8475

10 2-nitropropane 1.573 0.729 0.9378

a The rankings are the same from 1 to 8, and the two last
compounds switch ranks when changing the log KOW evaluation
method.
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of 10 molecules with the highest fitness values were
compiled for each example.

In case study 1, all molecules in Table 4 are known
to exist in the ground state because they were obtained
by DFT ab initio calculations. All of their geometry
optimizations converged into local minima. Because the
thermal energy contribution from 0 to 298 K is small
compared to the dissociation energy ∑D0, DFT results
support the existence of these compounds. However, no
information is obtained on whether a compound can be
synthesized.

In case study 2, all molecules in the search space are
known to exist. Nitromethane, a known extraction
solvent of the benzene-cyclohexane system, was identi-
fied as a candidate solvent. The fitness function (eqs 3
and 4) can readily be extended to more than one
property, thus accounting for more than one design
objective.

Searching for candidates via GAs allows for the
incorporation of multiple evaluation methods within one
design application. Any property evaluation method can
be used in this approach because the GA treats the
property evaluation as a black box. The applicability of
the proposed approach depends on the properties that
are accessible for calculation from quantum chemical
models. Because of computational expense, quantum
models are typically used to calculate very few mol-
ecules, frequently just one, and obtain a bulk property
from other relationships such as statistical mechanics.
This limits their range of applicability. For example, a
diffusion coefficient results from the interaction of many
particles and cannot readily be obtained by quantum
chemical models. Presently, a meaningful application
for engineering applications is also limited by the
accuracy of the existing quantum chemical methods,
which in many instances still lies within the range of
GCMs and does not necessarily warrant the computa-
tional expense of quantum chemistry. However, GCMs
depend on experimental data for group parametrization.
This disadvantage will likely be overcome by quantum
chemical methods in the future.41 For example, Eckert
and Klamt39 have used COSMO-RS to predict vapor-
liquid, liquid-liquid, and solid-liquid equilibrium data,
partition coefficients, and vapor pressures. In COSMO-
RS, only atoms are parametrized, not functional groups.
With the advent of more accurate and more efficient ab
initio methods, opportunities for a fruitful combination
of optimal molecular design and quantum chemical
property prediction are likely to emerge. The proposed
approach can be a valuable tool for automatically
building databases of molecules that combine a number
of desired properties.
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Appendix: MILP Formulation of the
GCM-Based Design Problem for Case Study 1

As an objective, one seeks to minimize the deviation
of the molecule’s heat of formation from a given target
value:

The nonlinear objective is recast in a linear form2 as
follows:

The dependencies on Ll and FCtot are given in eqs 24
and 25. Molecules are modeled as a molecular graph
with up to three possible vertexes. Each vertex can
assume one of the types listed in Joback and Reid,6
excluding the fluorine atoms. Information on how the
vertexes are connected is encoded by the adjacency
matrix A ) ai,j,k,42 whose elements are binary variables
with

Note that i and j range from 1 to 3 because the
molecular graph is limited to three vertexes and k
ranges from 1 to 3 because carbon atoms can be
connected by single, double, or triple bonds. Similarly,
we define a vertex type binary yi,l, which determines the
type of group that occupies a vertex:

The indices l span over all of the groups6 that contain
carbon atoms. The number of fluorine atoms is calcu-
lated by evaluating the number of unoccupied sites on
a vertex that is occupied by a carbon-containing group.
For example, if y1,dCH- ) y2,dC< ) a122 ) 1 and all other
binary variables are zero, there is one site unoccupied
on the first vertex and two on the second one. The third
vertex has no carbon group; therefore, no fluorine atoms
can be attached to it. This combination of binary
variables yields FHCdCF2, 1,2,2-trifluoroethylene. This
can be accomplished by writing the following con-
straints:

Here, FCi is the number of fluorine atoms attached to
vertex i and parameter Hl contains the number of
hydrogen atoms pertaining to group l. FCtot represents
the total number of fluorine atoms in the molecule. The
first term in eq 23 sets up four available sites on vertex
i if the vertex is occupied. The second term subtracts
the number of bonds that are formed with other carbon
atoms, and the third term subtracts the bonds that are
formed with hydrogen atoms. If any sites remain
unoccupied, fluorine atoms are attached to vertex i.
Equation 24 adds the fluorine atoms of the entire

min s

subject to

s g (1 -
∆H°f (Ll,FCtot)

∆H°f,target
), s g (∆H°f (Ll,FCtot)

∆H°f,target
- 1)

ai,j,k ) {1 if vertex i is connected to vertex j,
forming a bond of multiplicity k

0 otherwise
and i, j, k ) 1-3

yi,l ) {1 if vertex i is of type l

0 otherwise
and i ) 1-3 and l ) -CH3, ..., tC-

FCi ) ∑
l

4yi,l - ∑
k)1

3

(∑
j)1

j<i

kai,j,k + ∑
j>i

3

kai,j,k) - ∑
l

yi,lHl

with i ) 1-3 (23)

FCtot ) ∑
i)1

3

FCi (24)

min |1 -
∆H°f

∆H°f,target
|
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molecule. Because fluorine atoms are not treated as a
group, eq 12 is rewritten as

where Ll is the number of group l in the molecule. At
least one vertex should be occupied:

At most one group l can be present at a vertex i or the
vertex remains empty:

A molecular tree graph has exactly one vertex more than
it has edges; i.e., the molecule has exactly one carbon
group more than it has connections between these
groups:

The molecule should be connected; i.e., when vertexes i
and j are occupied, there should be a connection of bonds
leading from i to j. This can be achieved by enforcing
that if vertex j is occupied, there is at least one vertex
i with i < j connected to j via an edge (bond) ai,j,k:

Vertexes can only be connected by one type of bond at
a time:

The number of bonds of type k that a group l can form
with other carbon groups is limited and varies between
the groups. To account for this, the parameter CBl,k is
introduced. For example, CB>C<,1 ) 2 because this
model is restricted to unbranched hydrofluorocarbons.
For double and triple bonds, CBl,k must balance the
number of edges with bond multiplicity k:

For single bonds, the number of edges ai,j,1 can be
smaller than CBl,1 because the vertex i can be an ending
vertex of the molecule. In this case, not all of the possible
connections CBl,1 to other carbon groups would be used.
Instead, these connections could be used to attach
fluorine atoms or hydrogen atoms:

The following constraint uses the continuous variable
Ll to count the number of each group l in the molecule:

In order to reduce the number of degenerate solutions,
some constraints are added to tighten the formulation.
The following two constraints enforce that vertexes 1
and 3 are ending vertexes by restraining their maximal
number of adjacent groups to 1:

Finally, two constraints are added to force vertex 2
to be occupied if vertex 3 is occupied

and to force vertex 1 to be occupied if vertex 2 is
occupied.

This formulation solves the MILP problem to global
optimality. For generating more than one globally
optimal molecule, efficient integer cuts43 are incorpo-
rated. If yi,l

sol is the optimal solution, then the constraint

makes yi,l
sol infeasible when the problem is solved again.

Thus, looping the solution procedure n times and
accumulating n - 1 integer cuts in the process generates
a list of the n best solutions to the problem.
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