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Introduction

Through the processes of natural selection and co-
option,
nature

has crafted an
astounding ar-
ray of proteins
with a remark-
able repertoire
ranging from
catalysis, signal-
ing, recognition
and regulation
to compartmen-
talization and
repair. Despite
this plethora of
functionalities
and exquisite
specialization,
many biotech-
nological tasks
require proteins
to operate un-
der conditions
that were not selected for in nature, such as enhanced thermo-
stability, altered substrate specificity, different cofactor (i.e.,
NADH, ATP, etc.) dependence, nonaqueous environments and,
often, combinations of the above. Unlike many of the systems
engineered by people, proteins through evolution had to ac-
quire the inherent ability to change and assume over time
subtly, or even dramatically, different roles in living organ-
isms. This amazing plasticity has enabled bioengineers to de-
sign or more often redesign proteins more attuned to specific
tasks. Protein engineering, however, remains a formidable
challenge. Proteins are much larger (i.e., over 50 residues) than

nonbiological catalysts, and exhibit complex networks of
dynamic interaction necessary for function. Given the residue
composition of a protein, the task of de novo identifying

its three-dimen-
sional (3-D)
structure is non-
trivial and only
limited suc-
cesses (Bradley
et al., 2003) are
currently avail-
able. On top of
this, even com-
plete structure
resolution does
not mean that
function is al-
ways truly elu-
cidated. In many
cases, function-
ality and non-
functionality are
separated by
differences of
only fractions
of Angstroms

in the position of certain key atoms, an accuracy threshold well
beyond the current modeling state-of-the-art. These daunting
challenges have led to protein engineering paradigms that
involve the synthesis and subsequent screening of multiple
protein candidates (from tens to billions) as a way of hedging
against the imprecise knowledge of sequence-structure-func-
tion relations.

This juxtaposition of repeated library generation and
screening has emerged as the directed evolution design
paradigm. Directed evolution methods mimic the process of
Darwinian evolution and selection to produce proteins or
even entire metabolic pathways with improved properties.
These methods (see Figure 1) typically begin with the infu-
sion of diversity into a small set of parental nucleotide
sequences through mutagenesis and/or DNA recombination.
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Figure 1. Representation of the key steps of directed evolution experiments.

Crossovers are defined as the junction points between segments from different
parental sequences.
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The resulting
combinatorial
DNA library
is transformed
into an appro-
priate host (e.g.,
E. coli) and then
is subjected to a
high-throughput
screening or se-
lection proce-
dure. The best
variants are
isolated for an-
other round of
mutagenesis or
recombination.
The cycles of
mutagenesis/recombination, screening and isolation continue until
a protein with the desired level of improvement is found.

In the past few years, a wide range of success stories of
directed evolution for many different applications has been
reported (Petrounia and Arnold, 2000; Brakmann, 2001;
Schmidt-Dannert, 2001; Bacher et al., 2002; Dalby, 2003). For
example, Schneider et al. (2003) reengineered retroviruses used
in gene therapy to greatly enhance their spreading efficiency
through human fibrosarcoma cells. Schmidt-Dannert et al.
(2000) used directed evolution to engineer a novel biosynthetic
pathway in E. coli for the production of carotenoids, a diverse
class of natural pigments that are of interest for pharmaceuti-
cals and food colorants, while also playing a role in the pre-
vention of cancer and chronic disease. Boder et al. (2000)
generated single-chain antibodies that bind essentially irrevers-
ibly (femtomolar binding constant) with potential future impli-
cations for improved cancer and viral therapeutics. Bessler et
al. (2003) enhanced the alkaline pH activity of an � -amylase
that can be used to improve the starch removal capability of
household detergents. Improved xylanases for wood pulp treat-
ment (Burk, 2003) have led to substantial reduction in the use
of bleaching agents, reducing their overall environmental im-
pact. Briefly, other successes include many-fold improvements
in enzyme activity and thermostability (Miyazaki et al., 2000;
Baik et al., 2003), improved enantioselectivity (Reetz et al.,
2001; Carr et al., 2003; Horsman et al., 2003), enhanced
bioremediation (Wackett, 1998; Bruhlmann and Chen, 1999;
Furukawa, 2000), and even the design of genetic circuits
(Yokobayashi et al., 2002) and vaccines (Patten et al., 1997;
Marzio et al., 2001; Whalen et al., 2001). It is increasingly
becoming apparent, however, that it is vital to be able to assess
and then “steer” diversity toward the most promising regions of
sequence space (Moore et al., 1997). This is because only an
infinitesimally small fraction of the diversity afforded by DNA
and protein sequences can be examined regardless of the effi-
ciency of the screening procedure. For example, a 500-nucle-
otide gene implies 4500 � 10301 alternatives, but even the most
efficient screening methods can query only up to 1012 se-
quences (Olsen et al., 2000a; Chen and Georgiou, 2002; Lin
and Cornish, 2002). Therefore, it is desirable to know how
diversity is generated (see second section) and allocated (see
third section) in the combinatorial DNA library and what

sequence per-
mutations are
the most prom-
ising in terms of
preserving pro-
tein structure
and activity (see
fourth section).

In the No-
vember 2003
issue, Lee and
Reardon (2003)
highlighted
progress in the
emerging field
of proteomics,
the system-wide
analysis of pro-

tein sets. In this article, the engineering of specific proteins
through combinatorial library design is examined. Different
ways are described for generating library diversity through
DNA manipulation, the advantages and disadvantages of var-
ious mutagenesis and recombination methods (including recent
developments in nonhomologous and synthetic oligonucleotide
recombination) are discussed, the computational challenges
and progress at the level of combinatorial library generation are
highlighted, and efforts are described to discern sequence com-
position vs. functionality trends at the protein level.

Experimental Techniques for DNA Library

Generation

Methods for combinatorial library generation in directed
evolution can be broadly classified depending on whether they
utilize mutagenesis or recombination (see Figure 1) as the
primary mechanism for generating diversity. Mutagenesis-
based methods are deployed to (a) randomly distribute nucle-
otide mutations throughout the length of the parental DNA
sequence(s) (random mutagenesis), (b) exhaustively generate all pos-
sible mutations at a particular sequence locus (saturation mutagene-
sis), or (c) produce specific nucleotide substitutions at predeter-
mined locations (site-directed mutagenesis). Because it is often
unclear which residues should be mutated (i.e., counterintuitive
mutations distal to the active site frequently enhance activity/
stability), the successful use of saturation and site-directed
mutagenesis has so far been infrequent. More commonly, ran-
dom mutagenesis has been used to generate libraries of mutated
DNA sequences. It is typically performed by amplifying the
initial parental DNA sequence(s) via the error-prone PCR
reaction (Leung et al., 1989; Cadwell and Joyce, 1994; Lin-
Goerke et al., 1997), which involves spiking the PCR reaction
mixture with MnCl2 to increase the mutation rate (other similar
methods are described by Matsumura and Ellington (2002)).
Another way to generate randomly distributed mutations is by
transforming the parental DNA sequence(s) into one of many
commercially available bacterial mutator strains (Greener et
al., 1996). In all cases, the mutation rate must be carefully
tuned to achieve a balance between progressing through se-
quence space at a “snail’s pace” (low mutation rate) and a
widespread loss of function in the library through a buildup of

Figure 2. Depiction of the sequence space explored by mutagenesis (site-directed, satura-

tion, and random) and recombination.

Large blue dots represent parental sequences,while smaller red (mutagenesis) and
green (recombination) dots represent combinatorial DNA library members.
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deleterious mutations (high mutation rate). Typically, an aver-
age rate of one to two amino acid changes per directed evolu-
tion cycle has been found to allow steady experimental
progress (Arnold and Moore, 1997). Random mutagenesis
methods are relatively inexpensive and easy to set up in the
laboratory and have produced improved variants with nonob-
vious mutations absent from any known homologous se-
quences (Horsman et al., 2003). However, it is important to
remember that only sequence diversity adjacent to the parental
sequence(s) is probed (see Figure 2). Functioning distant se-
quence diversity is unlikely to be encountered given that this
requires the sampling of an unbroken chain of continually
improving point mutations. Moreover, after a few directed
evolution cycles, mutational bias could be a factor in the
sequence library. Due to redundancies in the codon represen-
tation (i.e., 64 codons for only 20 amino acids), a mutated
nucleotide may not necessarily code for a different amino acid
(silent mutations). Thus, amino acids with larger codon sets
tend to mutate less often.

In addition to the use of point mutations for generating
library diversity, DNA recombination is used to construct hy-
brids containing crossovers, defined as the junction points at
which the sequence switches from one parent to another (see
Figure 1). This allows, in principle, the sampling of sequences
contained within the convex polytope defined by the vertices
representing the parental sequences (see Figure 2). The key
idea of recombination is to exchange proven diversity present
in existing sequences. The use of DNA recombination for
directed evolution was pioneered with the development of
DNA shuffling (Stemmer, 1994), which relies on a PCR-like
reaction for the reassembly of randomly fragmented parental
sequences. Later, family DNA shuffling (Crameri et al., 1998;
Ness et al., 1999) was demonstrated by recombining large sets
of parental sequences simultaneously. A large number of re-
lated protocols such as StEP (Zhao et al., 1998), RACHITT
(Coco et al., 2001), and single-stranded shuffling (Kikuchi et
al., 2000) have also been developed. In all of these methods,
crossover generation relies on the annealing and extension of
complementary single-stranded fragments originating from dif-
ferent parental sequences (i.e., heteroduplex formation), which
tends to bias crossover positions toward stretches of near
perfect sequence identity. This, in turn, tends to give rise to
biased combinatorial DNA libraries or, even worse, libraries
with no additional diversity over the parental one.

In general, a severe bias toward the reassembly of parental
sequences (i.e., no recombination) is observed when sequences
with less than 60% sequence identity are recombined with
annealing-based protocols (Stemmer, 1994; Moore et al.,
2001). Given the fact that protein structure is more frequently
conserved than DNA homology, annealing-based methods for
recombining genes may potentially exclude solutions to protein
engineering problems. The need for a recombination protocol
capable of freely exchanging genetic diversity without se-
quence identity limitations motivated the development of the
Incremental Truncation for the Creation of Hybrid EnzYmes
(ITCHY) (Ostermeier et al., 1999a) and Sequence Homology-
Independent Protein RECombination (SHIPREC) (Sieber et al.,
2001) protocols. These protocols are capable of generating
libraries from low sequence identity parents with crossovers
evenly distributed along the length of the sequence (see anal-
ysis in Ostermeier (2003b)). However, ITCHY and SHIPREC

are limited to constructing single crossover hybrids between
only two parental sequences. Recent protocol design efforts
have concentrated on overcoming this limitation by generating
multiple crossovers per sequence without homology restric-
tions. The SCRATCHY protocol (Lutz et al., 2001b) generates
multiple crossovers by applying DNA shuffling to ITCHY
libraries, redistributing the prepositioned ITCHY crossovers
throughout the newly reassembled sequences. The number of
crossovers generated by SCRATCHY can be boosted even
further by enriching the library via PCR amplification of cross-
over-containing sequence sections (Kawarasaki et al., 2003).
The recently developed Sequence-Independent Site-Directed
Chimeragenesis (SISDC) (Hiraga and Arnold, 2003), GeneRe-
assembly (Richardson et al., 2002), and Structure-based
COmbinatorial Protein Engineering (SCOPE) (O’Maille et al.,
2002) protocols are fundamentally different from ITCHY/
SCRATCHY and SHIPREC in that the crossover points must
be predetermined prior to the recombination step. For these
protocols, fragments have been shown to recombine indepen-
dently without any sequence bias. A key advantage is the
flexibility that they afford to predetermine the number and
positions of “smart” crossover sites (Bogarad and Deem, 1999)
that hopefully preserve functionality throughout the library.

All DNA recombination methods described so far involve
the swapping and concurrent reassembly of parental nucleotide
segments either obtained through DNA fragmentation or syn-
thesis (GeneReassembly, SCOPE). However, using only nu-
cleotide segments for diversity generation causes blocks of
closely spaced polymorphisms to be swapped as a group,
limiting library diversity (Ostermeier, 2003a). Synthetic oligo-
nucleotide (nucleotide fragments with lengths of about 20–100
bases) recombination methods overcome this restriction by
incorporating degenerate oligonucleotides into the reassembly
procedure. The term degenerate refers to the synthesis of a
mixture of oligonucleotides with different nucleotides (i.e.,
degeneracies) at certain prespecified positions. The oligonucle-
otides are designed to include coding information for the poly-
morphisms present in the parental set, while also including
“customized” sequence identity enabling annealing-based re-
combination between the oligonucleotides. So far, degenerate
oligonucleotides have been reassembled by PCR-based reac-
tions (synthetic shuffling (Ness et al., 2002) and Assembly of
Designed Oligonucleotides (ADO) (Zha et al., 2003)), as well
as a single sequence of annealing, gap-filling, and ligation steps
(degenerate homoduplex recombination (DHR) (Coco et al.,
2002)). In all of these methods, increasing the corresponding
oligonucleotide population in the mixture can boost the occur-
rence of rare mutations. Furthermore, the oligonucleotides can
be designed to be consistent with the codon usage of a specific
host organism. Synthetic oligonucleotide recombination can
yield a very high crossover density (up to 1 crossover per 12.4
bp (Coco et al., 2002)); however, there is some concern that the
high crossover density may disrupt vital interactions through-
out the structure. In fact, a lower average library activity has
been observed when comparing a synthetic shuffling library
with one generated by family DNA shuffling (Ness et al.,
2002). In general, the use of synthetic oligonucleotides has
been more expensive and time-consuming than the recombina-
tion of parental DNA sequences.

Table 1 summarizes some of the advantages and disadvan-
tages of each of the protocol types discussed. Recent develop-
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ments in experimental techniques have made it clear that, given
sufficient resources, a protocol can be set up to create the
desired level of diversity. However, what is less clear is what
is the optimal level and type of diversity for a given protein
engineering task. Although diversity is required to discover
new variants, the average activity of the library tends to drop
off as diversity increases (Ness et al., 2002; Ostermeier,
2003a). Ultimately, screening capacity limits and defines the
optimal library diversity that needs to be considered. Recently,
many exciting advances in high-throughput screening technol-
ogies have been made (see excellent reviews by Olsen et al.
(2000a), Chen and Georgiou (2002), Lin and Cornish (2002)).
For instance, phage display (Fernandez-Gacio et al., 2003) and
ribosome display (Dower and Mattheakis, 2002) systems can
be used to screen libraries with as many as 1012 members. The
use of Fluorescence-Activated Cell Sorting (FACS) coupled
with the cell-surface display of proteins and customized, Flu-
orescence Resonance Energy Transfer (FRET)- enabled sub-
strates can be used to sort library members on the basis of kcat

or Km at a rate of 109 per hour (Olsen et al., 2000b).

Computational Challenges at the DNA Level

Although the screening step in directed evolution probes for
enhanced protein variants, the diversity generation step (i.e.,
combinatorialization) is performed via DNA manipulation.
Without sufficient diversity in the underlying combinatorial
DNA library, the encoded diversity within the protein library
will be lacking as well, and the often expensive and labor-
intensive screening step will underperform. Thus, being able to
predict how alternate protocol setups affect the level and type
of diversity generated can ultimately determine the success or
failure of a directed evolution project. In this section, we
describe efforts at developing predictive modeling frameworks
for error-prone PCR and DNA shuffling protocols, followed by

methods for optimizing combinatorial DNA library generation
to target desired regions of sequence space.

Models for error-prone PCR have focused on predicting
mutation rate for a given PCR setup (e.g., cycle number,
annealing temperature, primer/template concentrations). This
requires the consideration of (a) the plateau effect (where
replication efficiency diminishes as the cycle number in-
creases), (b) the propagation of mutations over a number of
PCR cycles with nucleotide-dependent frequencies, and (c) the
ability of nucleotides to back mutate to their original identity
given that mutation rates are typically high in error-prone PCR.
Some success has been achieved in modeling the plateau effect
using kinetic parameters (Weiss and von Haeseler, 1995; Stolo-
vitzky and Cecchi, 1996; Schnell and Mendoza, 1997a,b; Vali-
kanov and Kapral, 1999). Moore and Maranas (2000) tracked
mutations from cycle to cycle considering nucleotide-depen-
dent mutation rates while allowing back mutation, but only
with constant replication efficiency. Weiss and von Haeseler
(1997) tracked mutations in combination with the plateau effect
but did not include back mutation. Wang et al. (2000) devel-
oped a model that utilizes a branching process to track muta-
tions and incorporates empirical information on the plateau
effect. While quite a bit of progress has been achieved towards
modeling error-prone PCR, a truly predictive model is still
lacking.

Moving next to DNA recombination, Sun first considered
models for DNA shuffling of parental sequences with single
(Sun, 1998) and multiple (Sun, 1999) point mutations. How-
ever, these models did not consider sequence information, and
their applicability was limited. Work in our group (Moore et
al., 2001) examined for the first time how fragmentation length,
annealing temperature, sequence identity, and number of shuf-
fled parental sequences affect the number, type, and distribu-
tion of crossovers along the length of full-length reassembled

Table 1. Summary of Methods for Combinatorial DNA Library Generation

Library Generation Method Advantages Disadvantages

Saturation Mutagenesis � Complete assessment of all possible mutations
at a particular residue position

• Must predetermine residue position
• Very limited exploration of sequence diversity

Random Mutagenesis
Error-prone PCR, mutator
strains

� Easy, inexpensive setup • Sequence diversity explored only near parental
sequences

• Biased mutational frequencies

Annealing-based Recombination
DNA shuffling, StEP, RACHITT,
single-stranded shuffling

� Straightforward PCR-based protocol
� Large sets of parental sequences can be

recombined

• Crossover positions biased toward stretches of
sequence homology

• Severe bias toward parental sequence
reassembly when parents have less than 60%
sequence identity

Nonhomologous Recombination
ITCHY, SHIPREC, SCRATCHY,
SISDC, SCOPE, GeneReassembly

� No bias toward regions of sequence identity
� Multiple crossovers possible with

SCRATCHY, SISDC, SCOPE, and
GeneReassembly

� Can predetermine crossover sites for SISDC,
SCOPE, GeneReassembly

• More complicated protocols
• Only single-crossover hybrids generated with

ITCHY and SHIPREC

Synthetic Oligonucleotide
Recombination
Synthetic shuffling, ADO, DHR

� Crossovers can occur between closely spaced
mutations

� Rare mutations can be boosted with added
oligonucleotides

� Codon usage can be modified to comply with a
particular host

• Average library activity can be lower due to
broken couplings

• Generally more expensive, time-consuming to
design oligonucleotides
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sequences. In the eShuffle framework, annealing events during
reassembly were modeled as a network of reactions, and equi-
librium thermodynamics along with complete nucleotide se-
quence information was employed to quantify their conver-
sions and selectivities. Comparisons of eShuffle predictions
against experimental data revealed good agreement (Moore et
al., 2001), particularly in light of the fact that there were no
adjustable parameters. Specifically, we found that reducing
fragmentation length boosted crossover numbers and annealing
temperature and that crossovers tend to aggregate in regions of
near perfect sequence identity. The customization of eShuffle
for the SCRATCHY protocol led to the eSCRATCHY frame-
work (Lutz et al., 2001b). Using eSCRATCHY we found that
in SCRATCHY libraries (a) fragmentation length used for
reassembly does not influence the number or location of cross-
overs generated in full-length sequences, (b) the crossover
distribution is shaped by the crossover statistics of the ITCHY
library, and (c) crossovers are spread evenly throughout the
crossover region. The need to safeguard against the formation
of reassembled sequences with either truncated or duplicated
domains motivated us to further extend the eShuffle framework
to consider out-of-sequence annealing events (Moore and Ma-
ranas, 2002b). Instead of “locking” fragments into their align-
ment positions, the annealing free energy change was used to
determine the likelihood of duplex formation, allowing the
prediction of the relative frequency that fragments from differ-
ent sequence regions will anneal during reassembly.

Subsequent work by Maheshri and Schaffer (2003) further
advanced the level of detail of DNA shuffling computational
models with the development of a simulation-based model
using nucleotide annealing kinetics and thermodynamics. This
simulation approach has the advantage of tracking and record-
ing the sequences of a computational ensemble of fragments
through multiple rounds of shuffling, and tracks the fate of all
reassembled fragments whether or not they are of parental
length. A three-step reassembly process was used: (a) single-
stranded fragments randomly collide; (b) on collision, a deci-
sion is made whether the molecules will hybridize and, if so, in
what arrangement; and (c) duplexes are extended. This process
is repeated until the fraction of unhybridized fragments remains
unchanged; this constitutes a round of shuffling. Tracking the
entire fragment pool allowed for the quantification of the
trade-off between reassembly efficiency (i.e., the fraction of
fragments that have reached parental length) and crossover
frequency while simultaneously following the production of
sequences with missing or repetitive regions. This work repre-
sented an important step in optimizing the recovery of diverse,
full-length reassembled sequences from a DNA shuffling reac-
tion mixture.

In addition to predictive frameworks for quantifying the
allocated library diversity for a given protocol setup, a
number of approaches have focused on the inverse problem.
Specifically, how should we adjust the protocol setup to
achieve the desired statistics of parental composition in the
combinatorial libraries? In our group, we have explored the
possibility of boosting or even specifically redirecting the
formation of crossovers in DNA shuffling by exploiting the
inherent redundancy in the codon representation (e.g., iso-
leucine has the following three synonymous codon repre-
sentations: ATA, ATC and ATT), while complying with
host preferences for specific patterns of codon usage (Moore

and Maranas, 2002a). The key motivation here is that it is
possible to optimize the underlying parental DNA sequence
codon representation for increasing and/or shaping diversity
while at the same time preserving the parental amino acid
encodings in the generated combinatorial protein libraries.
To this end, the framework named eCodonOpt was devel-
oped for exploring the limits of performance that can be
achieved through codon optimization.

While in eCodonOpt, the objective was to find a single-
codon representation for each of the parental protein se-
quences, Wang and Saven (2002) designed instead an en-
semble of nucleotide sequences that best “matches” a given
set of amino acid probabilities. These probabilities can be
derived from a multiple sequence alignment of protein fam-
ily members (e.g., Pfam database (Bateman et al., 2002)) or
statistical mechanics approaches that identify protein se-
quences likely to fit a given protein backbone (discussed in
the next section). A two-term objective function was used to
score the degree of correlation between the desired amino
acid probability distribution and the distribution expected
from the nucleotide ensemble. This objective accounts for
(a) the absolute difference between desired and designed
probabilities (based on the � 2 function) and (b) a relative
entropy term for quantifying the “distance” between the two
distributions (Wang and Saven, 2002). The formulation can
also be adapted to generate solutions in accordance with a
particular host organism’s codon preferences. Significant
progress towards predicting and subsequently steering the
statistics of unselected combinatorial DNA libraries has
been achieved in the last few years. Additional improve-
ments will require a more accurate description of hybridiza-
tion kinetics and rates of polymerase mediated DNA exten-
sions.

Computational Challenges at the Protein Level

Currently, two different paradigms are being pursued to
computationally aid the design and composition of combina-
torial protein libraries. The first involves the a priori design of
a protein or collection of proteins that best fits a given protein
fold. In this case, protein(s) are designed “from scratch” with
little guidance from protein family sequence data. The second
paradigm aims at elucidating what combinations of parental
sequence fragments to include or exclude from the recombina-
tion mixture to create a combinatorial library that is both
diverse and highly active. Proven diversity encoded here in the
form of functional parental sequences is used to assess how
well hybrid sequences fit the fold of interest.

Ab initio design of a protein or collection of proteins in-
volves finding the amino acid sequence that best fits a given
protein fold. The protein fold is represented by the Cartesian
coordinates of its backbone atoms, which are usually fixed in
space so that the degrees of freedom associated with backbone
movement are neglected (some notable exceptions to the “fixed
backbone” design paradigm include the work of Harbury et al.
(1995), Harbury et al. (1998), Keating et al. (2001), Larson et
al. (2002), Klepeis et al. (2003), and Kraemer-Pecore et al.
(2003)). Candidate protein designs are generated by selecting
amino acid side chains (at atomistic detail) along the backbone
design scaffold. For simplicity, side chains are usually only
permitted to assume a discrete set of statistically preferred
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conformations called rotamers (see (Dunbrack Jr., 2002) for a
review of current rotamer libraries). Thus, a protein design
consists of both a residue and rotamer assignment. To evaluate
how well a possible design fits a given fold, rotamer/backbone
and rotamer/rotamer interaction energies for all of the rotamers
in the chosen library are tabulated. These potential energies can
then be approximated using any of many standard force fields
(e.g., CHARMM (MacKerell et al., 1998); DREIDING (Mayo
et al., 1990); AMBER (Cornell et al., 1995); GROMOS (Scott
et al., 1999)). Alternatively, energy/scoring functions that have
been customized for protein design (Chiu and Goldstein, 1998;
Kuhlman and Baker, 2000; Looger and Hellinga, 2001) are
used. Protein design potentials (see Gordon et al., (1999) for a
review) typically include van der Waals interactions, hydrogen
bonding, electrostatics, solvation, and even entropy-based pen-
alties for flexible side-chains (e.g., arginine).

Even for a small 50-residue protein, an enormous number
(i.e., 15350 � 10109 assuming the Lovell et al., (2000) 153-
rotamer library) of designs are possible. Both stochastic and
deterministic search strategies have been used to tackle the
computational challenge of finding the best design within this
vast search space. Because activity level is very difficult to
assess computationally, an alternative surrogate for hybrid fit-
ness, namely stability, is employed in most studies. The key
justification here is that stability is a prerequisite, although not
necessarily a monotonic descriptor of functionality. Use of this
indirect objective further necessitates the need of designing a
combinatorial library, rather than a single design to improve
the chances of success. Stochastic strategies search through the
space of feasible designs by making a series of random and/or
directed moves. Monte Carlo (Kuhlman and Baker, 2000;
Kuhlman et al., 2002; Dantas et al., 2003), genetic algorithms
(Desjarlais and Handel, 1995; Johnson et al., 1999; Raha et al.,
2000), simulated annealing (Jiang et al., 2000; Xu and Farid,
2001), and many other heuristics (Wernisch et al., 2000; Jara-
millo et al., 2002; Ogata et al., 2003) have been used in protein
design with various levels of success. Although stochastic
techniques can be used for problems of very large complexity
with relatively small CPU/memory requirements, they are not
guaranteed to converge to the optimal solution and require
extensive tuning of parameters controlling the convergence rate
(Desjarlais and Clarke, 1998; Voigt et al., 2000).

Conversely, deterministic algorithms are guaranteed to con-
verge to the global minimum energy conformation; however,
they tend to be long-running and become intractable for large-
scale design problems. The most frequently used deterministic
technique is dead-end elimination (Desmet et al., 1992), a
pruning method in which rotamers and rotamer pairs that
cannot be part of the optimal protein design are eliminated over
a number of computational cycles. Recent innovations to ac-
celerate rotamer elimination include the use of upper-bounding
information (Gordon and Mayo, 1999), conformational split-
ting (Pierce et al., 2000), the “magic bullet” metric (Gordon
and Mayo, 1998), and background optimization (Looger and
Hellinga, 2001). Dead-end elimination has been used to design
the full sequence of a 28-residue zinc finger (Dahiyat and
Mayo, 1997); the cores of T4 lysozyme (26 residues) (Mooers
et al., 2003), thioredoxin (32 residues) (Bolon et al., 2003), and
the �M�2 integrin I domain (45 residues) (Shimaoka et al.,
2000); small molecule receptors based on periplasmic binding

proteins (Looger et al., 2003); and metal binding proteins
(Dwyer et al., 2003).

In practice, more important than finding the mathematical
solution to the protein design problem is the ability to generate
in silico an ensemble of computational designs that subse-
quently will form the basis for constructing the combinatorial
protein library. Furthermore, because the most active proteins
are often only marginally stable, examining sub-optimal de-
signs can yield greater insight into a fold’s plasticity. Sub-
optimal designs may be collected by storing intermediate steps
of stochastic searches (e.g., Monte Carlo as in (Hayes et al.,
2002)); however, the top 105 or even 106 designs are not
sufficient to completely characterize the vast sequence space
associated with large proteins. Alternatively, statistical me-
chanics based methods can be used to construct, equilibrate,
and query ensembles of all possible residue/rotamer states (see
Saven (2001) for a review). Mean-field theory allows the
extraction of individual rotamer site probabilities (first-order;
(Koehl and Delarue, 1994; Lee, 1994; Mendes et al., 1999;
Voigt et al., 2001)) or rotamer-rotamer joint probabilities (sec-
ond-order; (Moore and Maranas, 2003)) after the free energy of
the ensemble is minimized. The probabilities represent how
well a particular rotamer (or rotamer pair) fits at a particular
sequence position (or pair of positions). Equivalently, Saven
and co-workers have introduced a method for extracting rota-
mer site probabilities from a maximal-entropy ensemble (Zou
and Saven, 2000; Kono and Saven, 2001).

The methods described so far followed the first paradigm
that aims to design proteins and/or libraries “from scratch” that
best fit the fold of interest. However, directed evolution exper-
iments have a natural starting point—the original parental
sequences. Following the second paradigm, a number of strat-
egies have been developed that utilize the sequence and struc-
ture information encoded in the parental sequences to guide the
design of combinatorial protein libraries. Typically, this in-
volves the scoring of libraries of hybrid protein sequences
against the parental sequences. This idea was first demon-
strated with the SCHEMA algorithm (Voigt et al., 2002),
which hypothesized structural disruption whenever a contact-
ing residue pair (within 4.5 Å) in a hybrid has differing parental
origins. Hybrids are scored for stability by counting the number
of disruptions. SCHEMA also uses the information on residue
pair disruptions to partition the protein into blocks that should
not be interrupted by crossovers (analogous to the schema
theory of genetic algorithms (Holland, 1975)). The algorithm
was then used to show that crossover distributions in a number
of experiments were preferentially allocated to avoid disrupting
these blocks (Voigt et al., 2002). Alhough quite successful so
far, this approach cannot differentiate between hybrids with
different directionality also known as “mirror” chimeras (i.e.,
A-B vs. B-A arrangement of segments), which have been
shown to often have very different functional crossover profiles
(Lutz et al., 2001b).

In our group, we have reevaluated the effect of having
contacting residue pairs with different parental origins. Instead
of always counting them as unfavorable, we view such pairs as
places where potential clashes may occur between contacting
residues. In the Second-order mean-field Identification of Res-
idue-residue Clashes in protein Hybrids (SIRCH) (Moore and
Maranas, 2003) procedure for evaluating protein hybrids, an
extended, second-order mean-field description is used to elu-
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cidate the probabilities of all possible residue-residue combi-
nations in a minimum Helmholtz free energy ensemble. The
pairwise substitution patterns uncovered by the second-order
mean-field description are then used to detect clashes in po-
tential hybrids. SIRCH has been used to analyze pairwise
substitution patterns in the dihydrofolate reductase (DHFR)
enzyme and to assess the result of the recombination of E. coli
and human glycinamide ribonucleotide (GAR) transformylases
(Ostermeier et al., 1999b; Lutz et al., 2001ab). Results dem-
onstrate that experimentally determined functional crossover
positions for the GAR transformylases are consistent with the
predicted residue-residue clashes. Analysis of these predicted
clashes revealed that they primarily arise due to (a) the intro-
duction of repulsive residue pairs such as �/� or -/-, (b) the
disruption of hydrogen bonds due to the formation of donor/
donor or acceptor/acceptor pairs, and (c) the generation of
steric clashes or cavities (Saraf and Maranas, 2003).

SCHEMA, SIRCH, and residue clash maps are increasingly
being used to predict “smart” crossover sites (Meyer et al.,
2003) for experimental protocols that require preset crossover
positions, such as SISDC, Gene Reassembly, and synthetic
oligonucleotide recombination methods. In addition, clash map
information can be used in conjunction with protein design
algorithms to suggest site-directed mutagenesis strategies for
alleviating clashes in either parental sequences (upstream) or
promising hybrids (downstream).

Future Perspectives

As we enter the post-genomic era, we have in our hands an
abundance of protein designs, experimental techniques, and
computational approaches. By creatively applying the ever-
growing palette of molecular biology techniques, a variety of
protocols are currently available for constructing combinatorial
libraries with customized statistics of mutations and/or parental
fragments. Future protocol developments are likely to be
driven by the need to navigate around the increasingly com-
plicated intellectual property landscape. To this end, the use of
synthetic oligomers, taking advantage of substantial reductions
in price, is likely to dominate, thus providing the means for
exquisite control of combinatorial library diversity.

These enabling technology developments, along with the
emerging trend of recombining more distant homologues, will
further stress the need to computationally assess protein hy-
brids for stability and even functionality. The key dilemma of
computational developments lies at establishing the proper
trade-off between modeling accuracy and evaluation speed.
Force fields are increasingly becoming more elaborate and
customized to the task of protein engineering. However, there
is almost unanimous agreement that their accuracy is still
limited. For instance, an adequate and computationally tracta-
ble description of electrostatics remains elusive. Notable con-
tributions in this direction include the recent work of Hellinga’s
group (Wisz and Hellinga, 2003). In response to the inherent
difficulty of designing potentials with a firm grounding on
biophysics fundamentals, a number of researchers are increas-
ingly developing and successfully making use of scoring func-
tions heavily parameterized to predict existing folds (Kuhlman
and Baker, 2000). A recent impressive contribution along these
lines is the in silico design and verification of a novel fold by
Baker’s group (Kuhlman et al., 2003).

Even though ample experimental evidence shows that pro-
teins have not evolved to maximize their stability, most com-
putational approaches have aimed to design proteins with this
as an objective. This is primarily a manifestation of our inabil-
ity to a priori predict functionality rather than an affirmation
that stability and functionality are always correlated. Clearly,
there is a need to move beyond stability as a monolithic
surrogate for functionality. To this end, sequence information
gleaned from protein family databases (e.g., Pfam (Bateman et
al., 2002)) can indirectly provide some answers. In the same
way that protein structures in the Protein Data Bank (Berman
et al., 2000) have been used to design potential energy func-
tions for protein design, protein family sequence data, spanning
all of nature’s known solutions, can be used to constrain the
solutions for various protein engineering problems. In fact,
Lockless and Ranganathan (1999) have found that statistical
sequence database-derived coupling energies correlate with
thermodynamic coupling free energies (i.e., ��G from double
mutant cycle analysis) in a small protein domain.

Furthermore, it is important to stress that current protein
design methods rely on a static picture for proteins. However,
it is increasingly being accepted that proteins require the co-
ordinated motion of an extensive network of interacting resi-
dues for correct catalytic function (see Benkovic and Hammes-
Schiffer (2003) for review). Hybrid quantum-classical
molecular dynamics (MD) simulations of wild-type and mutant
dihydrofolate reductases uncovered a network of coupled pro-
moting motions that occur as the wild-type hydride transfer
reaction progresses (Agarwal et al., 2002). The network was
found to be disrupted in the mutant, reflecting its reduced
reaction rate. In addition, recent MD simulations have revealed
a link between thermostability and the fluctuations of surface
loops away from the native state (Wintrode et al., 2003).
Incorporating dynamic information into protein design frame-
works is likely to be challenging but may prove necessary to
design proteins with novel functions.

The ever-accelerating rate of searching sequence space,
driven by increased computational speed and clever algorithm
design, is likely to continue. Particularly promising will be
methods that can effectively combine the ability of stochastic
methods (e.g., genetic algorithms and simulated annealing) to
scan vast amounts of sequence space with deterministic algo-
rithms (e.g., dead-end elimination) that can produce provably
optimal solutions. Motivated by the need to design protein-
based therapeutics and proteins with novel functionalities, ex-
citing developments are likely to be forthcoming fueled by the
inventiveness and constrained only by the imagination of ex-
perimentalists and theoreticians.
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