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OptStrain: A computational framework for redesign
of microbial production systems
Priti Pharkya, Anthony P. Burgard, and Costas D. Maranas1

Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

This paper introduces the hierarchical computational framework OptStrain aimed at guiding pathway modifications,
through reaction additions and deletions, of microbial networks for the overproduction of targeted compounds.
These compounds may range from electrons or hydrogen in biofuel cell and environmental applications to complex
drug precursor molecules. A comprehensive database of biotransformations, referred to as the Universal database
(with >5700 reactions), is compiled and regularly updated by downloading and curating reactions from multiple
biopathway database sources. Combinatorial optimization is then used to elucidate the set(s) of non-native
functionalities, extracted from this Universal database, to add to the examined production host for enabling the
desired product formation. Subsequently, competing functionalities that divert flux away from the targeted product
are identified and removed to ensure higher product yields coupled with growth. This work represents an
advancement over earlier efforts by establishing an integrated computational framework capable of constructing
stoichiometrically balanced pathways, imposing maximum product yield requirements, pinpointing the optimal
substrate(s), and evaluating different microbial hosts. The range and utility of OptStrain are demonstrated by
addressing two very different product molecules. The hydrogen case study pinpoints reaction elimination strategies
for improving hydrogen yields using two different substrates for three separate production hosts. In contrast, the
vanillin study primarily showcases which non-native pathways need to be added into Escherichia coli. In summary,
OptStrain provides a useful tool to aid microbial strain design and, more importantly, it establishes an integrated
framework to accommodate future modeling developments.

[Supplemental material is available online at www.genome.org. The Universal database can be found at
http://fenske.che.psu.edu/Faculty/CMaranas/pubs.html.]

A fundamental goal in systems biology is to elucidate the com-
plete “palette” of biotransformations accessible to nature in liv-
ing systems. This goal parallels the continuing quest in biotech-
nology to construct microbial strains capable of accomplishing
an ever-expanding array of desired biotransformations. These
biotransformations are aimed at products that range from simple
precursor chemicals (Nakamura and Whited 2003; Causey et al.
2004) or complex molecules such as carotenoids (Misawa et al.
1991), to electrons in biofuel cells (Liu et al. 2004) or batteries
(Bond et al. 2002; Bond and Lovley 2003), to even microbes ca-
pable of precipitating heavy metal complexes in bioremediation
applications (Finneran et al. 2002; Lovley 2003; Methe et al.
2003). Recent developments in molecular biology and recombi-
nant DNA technology have ushered in a new era in the ability to
shape the gene content and expression levels for microbial pro-
duction strains in a direct and targeted fashion (Stephanopoulos
2002). The astounding range and diversity of these newly ac-
quired capabilities and the scope of biotechnological applica-
tions imply that now more than ever we need modeling and
computational aids to identify a priori the optimal sets of genetic
modifications for strain optimization projects.

The recent availability of genome-scale models of microbial
organisms has provided the pathway reconstructions necessary
for developing computational methods aimed at identifying
strain engineering strategies (Bailey 2001). These models, already

available for Helicobacter pylori (Schilling et al. 2002), Escherichia
coli (Edwards and Palsson 2000; Reed et al. 2003), Saccharomyces
cerevisiae (Forster et al. 2003), and other microorganisms (Van
Dien and Lidstrom 2002; David et al. 2003; Valdes et al. 2003),
provide successively refined abstractions of the microbial meta-
bolic capabilities. An automated process to expedite the con-
struction of stoichiometric models from annotated genomes
(Segre et al. 2003) promises further to accelerate the metabolic
reconstructions of several microbial organisms. At the same time,
individual reactions are deposited in databases such as KEGG,
EMP, MetaCyc, UM-BBD, and many more (Selkov Jr. et al. 1998;
Overbeek et al. 2000; Karp et al. 2002; Ellis et al. 2003; Kanehisa
et al. 2004; Krieger et al. 2004), forming encompassing and grow-
ing collections of the biotransformations for which we have di-
rect or indirect evidence of existence in different species. Already
many thousands of such reactions have been deposited; how-
ever, unlike organism-specific metabolic reconstructions (Ed-
wards and Palsson 2000; Schilling et al. 2002; Forster et al. 2003;
Reed et al. 2003), these compilations include reactions from not
a single but many different species in a largely uncurated fashion.
This means that currently there exists an ever-expanding collec-
tion of microbial models and at the same time ever more encom-
passing compilations of non-native functionalities. This newly
acquired plethora of data has brought to the forefront several
computational and modeling challenges that form the scope of
this article. Specifically, how can we systematically select from
the thousands of functionalities cataloged in various biological
databases, the appropriate set of pathways/genes to recombine
into existing production systems such as E. coli so as to endow
them with the desired new functionalities? Subsequently, how
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can we identify which competing functionalities to eliminate to
ensure high product yield as well as viability?

Existing strategies and methods for accomplishing this goal
include database queries to explore all feasible bioconversion
routes from a substrate to a target compound from a given list of
biochemical transformations (Seressiotis and Bailey 1988; Mavro-
vouniotis et al. 1990). More recently, elegant graph theoretic
concepts (e.g., P-graphs [Fan et al. 2002] and k-shortest paths
algorithm [Eppstein 1994]) were pioneered to identify novel bio-
transformation pathways based on the tracing of atoms (Arita
2000, 2004), enzyme function rules, and thermodynamic feasi-
bility constraints (Li et al. 2004). Also, an interesting heuristic
search approach that uses the enzymatic biochemical reactions
found in the KEGG database (Kanehisa et al. 2004) to construct a
connected graph linking the substrate and the product metabo-
lites was recently proposed (McShan et al. 2003). Most of these
approaches, however, generate linear paths that link substrates to
final products without ensuring that the rest of the metabolic
network is balanced and that metabolic imperatives on cofactor
usage/generation and energy balances are met.

In this paper, we introduce a hierarchical optimization-
based framework, OptStrain, to identify stoichiometrically bal-
anced pathways to be generated upon recombination of non-
native functionalities into a host organism to confer the desired
phenotype. Candidate metabolic pathways are identified from an
ever-expanding array of thousands (currently 5734) of reactions
pooled together from different stoichiometric models and pub-
licly available databases such as KEGG (Kanehisa et al. 2004).
Note that the identified pathways satisfy maximum yield con-
siderations whereas the choice of substrates can be treated as
optimization variables. Important information pertaining to the
cofactor/energy requirements associated with each pathway is
deduced enabling the comparison of candidate pathways with
respect to the aforementioned criteria. Production host selection
is examined by successively minimizing the reliance on heter-
ologous genes while satisfying the performance targets identified
above. A gene set that encodes for all the enzymes needed to
catalyze the identified non-native functionalities is then com-
piled by accounting for isozymes and multi-subunit enzymes.
Subsequently, gene deletions are identified (Burgard et al. 2003;
Pharkya et al. 2003) in the augmented host networks to improve
product yields by removing competing functionalities that de-
couple biochemical production and growth objectives. The
breadth and scope of OptStrain are demonstrated by addressing
in detail two different product molecules (i.e., hydrogen and van-
illin) that lie at the two extremes in terms of product molecule
size. Briefly, computational results in some cases match existing
strain designs and production practices whereas in others they
pinpoint novel engineering strategies.

The OptStrain procedure

The first challenge addressed in this paper is to develop a system-
atic computational framework to identify which functionalities
to add to an organism-specific metabolic network (e.g., E. coli
[Edwards and Palsson 2000; Reed et al. 2003], S. cerevisiae [Forster
et al. 2003], Clostridium acetobutylicum [Papoutsakis 1984; Desai
et al. 1999], etc.) to enable a desired biotransformation. Our
group has already contributed toward this objective on a much
smaller scale (Burgard and Maranas 2001). Using this work as a
starting point here, we aim to pinpoint gene additions identified
from a Universal database composed of ∼4000 elementally bal-

anced reactions as well as to investigate multiple hosts and sub-
strate choices (see Supplemental material at www.genome.org
and http://fenske.che.psu.edu/Faculty/CMaranas/pubs.html).
Note that the gene additions are identified by fulfilling both
criteria of maximal product yield and minimum usage of non-
native reactions. Because of the extremely large size of the com-
piled database and the presence of multiple and sometimes con-
flicting objectives that need to be simultaneously satisfied, we
developed the OptStrain procedure illustrated in Figure 1. Each
step introduces different computational challenges arising from
the specific structure and size of the optimization problems that
need to be solved.

Step 1. Automated downloading and curation of the reactions
in our Universal database to ensure stoichiometric balance.

Step 2. Calculation of the maximum theoretical yield of the

Figure 1. Pictorial representation of the OptStrain procedure. Step 1
involves the curation of database(s) of reactions to compile the Universal
database, which comprises only elementally balanced reactions. Step 2
identifies a maximum-yield path enabling the desired biotransformation
from a substrate (e.g., glucose, methanol, xylose) to product (e.g., hy-
drogen, vanillin) without any consideration for the origin of reactions.
Note that the white arrows represent native reactions of the host and the
yellow arrows denote non-native reactions. Step 3 minimizes the reliance
on non-native reactions, and Step 4 incorporates the non-native func-
tionalities into the microbial host’s stoichiometric model and applies the
OptKnock procedure to identify and eliminate reactions competing with
the targeted product. The red �s pinpoint the deleted reactions.
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product given a substrate choice without restrictions on the
reaction origin (i.e., native or non-native).

Step 3. Identification of a stoichiometrically balanced path-
way(s) that minimizes the number of non-native functional-
ities in the examined production host given the maximum
theoretical yield and the optimum substrate(s) found in Step 2.
Alternative pathways that meet both criteria of maximum
yield and minimum number of non-native reactions are gen-
erated along with comparisons between different host choices.
Information pertaining to the cofactor/energy usage associated
with each pathway is also determined at this stage. Finally, one
or multiple gene sets that ensure the presence of the targeted
biotransformations by encoding for the appropriate enzymes
are derived at this stage.

Step 4. Incorporation of the identified non-native biotransfor-
mations into the stoichiometric models, if available, of the
examined microbial production hosts. The OptKnock frame-
work is next used (Burgard et al. 2003; Pharkya et al. 2003) on
these augmented models to suggest gene deletions that ensure
the production of the desired product becomes an obligatory
byproduct of growth by “shaping” the connectivity of the
metabolic network.

Curation of the database

The first step of the OptStrain procedure begins with the down-
loading and curation of reactions acquired from various sources
in our Universal database. Specifically, given the fact that new
reactions are incorporated in the KEGG database on a monthly
basis, we have developed customized scripts using Perl (Brown
1999) to download all reactions in the database automatically on
a regular basis and convert them into a format readable by the
GAMS (Brooke et al. 1998) optimization environment. A differ-
ent script is then used to parse the number of atoms of each
element in every compound. The number of atoms of each type
among the reactants and products of all reactions is calculated,
and reactions that are elementally unbalanced are excluded from
consideration. In addition, compounds with an unspecified
number of repeat units [e.g., trans-2-Enoyl-CoA represented by
C25H39N7O17P3S(CH2)n] or unspecified alkyl groups R in their
chemical formulas are removed from the downloaded sets. This
step enables the automated downloading of reactions present in
genomic databases and the subsequent verification of their el-
emental balance abilities forming large-scale sets of functional-
ities to be used as recombination targets.

Determination of the maximum yield

Once the reaction sets are determined, the second step is geared
toward determining the maximum theoretical yield of the target
product from a range of substrate choices, without restrictions on
the number or origin of the reactions used. The maximum theo-
retical product yield is obtained for a unit uptake rate of substrate
by maximizing the sum of all reaction fluxes producing minus
those consuming the target metabolite, weighted by the stoichio-
metric coefficient of the target metabolite in these reactions. The
maximization of this yield subject to stoichiometric constraints
and transport conditions yields a linear programming (LP) prob-
lem (see Appendix for mathematical formulation). Given the
computational tractability of LP problems, even for many thou-
sands for reactions, a large number of different substrate choices
can thoroughly be explored here.

Identification of the minimum number of non-native reactions
for a host organism

The next step in OptStrain uses the knowledge of the maximum
theoretical yield to determine the minimum number of non-
native functionalities that need to be added into a specific host
organism network. Mathematically, this is achieved by first in-
troducing a set of binary variables yj that serve as switches to turn
the associated reaction fluxes vj on or off.

vj
min � yj � vj � vj

max � yj

Note that the binary variable yj assumes a value of 1 if reaction j
is active and a value of 0 if it is inactive. This constraint is im-
posed only on reactions associated with genes heterologous to
the specified production host. The parameters vj

min and vj
max are

specified to be very low and high values unattainable by the
reaction flux vj. This leads to a Mixed Integer Linear Program-
ming (MILP) model for finding the minimum number of genes to
be added into the host organism network while meeting the yield
target for the desired product. This formulation (see Appendix for
details) enables the exploration of trade-offs between the re-
quired numbers of heterologous genes versus the maximum
theoretical product yield and also the iterative identification of
all alternate optimal solutions using integer cut constraints. The
end result of this step is a set of distinct pathways and corre-
sponding gene complements that provide a ranked list of all al-
ternatives for the efficient conversion of the substrate(s) into the
desired product.

Incorporating the non-native reactions into the host organism’s
stoichiometric model

Upon identification of the appropriate host organism, the analy-
sis proceeds with an organism-specific stoichiometric model aug-
mented by the set of the identified non-native reactions. How-
ever, simply adding genes to a microbial production strain will
not necessarily lead to the desired overproduction because mi-
crobial metabolism is primed to be as responsive as possible to
the imposed selection pressures (e.g., outgrow its competition).
These survival objectives are typically in direct competition with
the overproduction of targeted biochemicals. To combat this, we
use our previously developed bilevel computational framework,
OptKnock (Burgard et al. 2003; Pharkya et al. 2003) to eliminate
those functionalities that uncouple the cellular fitness objective,
typically exemplified as the biomass yield, from the maximum
yield of the product of interest.

Results
Computational results for microbial strain optimization focus on
the production of hydrogen and vanillin. The hydrogen produc-
tion case study underscores the importance of investigating mul-
tiple substrates and microbial hosts to pinpoint the optimal pro-
duction environment as well as the need to eliminate competing
functionalities. In contrast, in the vanillin study, identifying the
smallest number of non-native reactions is found to be the key
challenge for strain design. A common database of reactions, as
outlined in Step 1, was constructed for both examples by pooling
together metabolic pathways from the methylotroph Methylobac-
terium extorquens AM1 (Van Dien and Lidstrom 2002) and the
KEGG database (Kanehisa et al. 2004) of reactions.

In sil ico microbial strain redesign
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Hydrogen production case study

An efficient microbial hydrogen production strategy requires the
selection of an optimal substrate and a microbial strain capable of
forming hydrogen at high rates. First we solve the maximum
yield LP formulation (Step 2) using all cataloged reactions that
are balanced with respect to hydrogen, oxygen, nitrogen, sulfur,
phosphorus, and carbon (∼3000 reactions) as recombination can-
didates. Note that OptStrain allows for different substrate choices
such as pentose and hexose sugars as well as acetate, lactate,
malate, glycerol, pyruvate, succinate, and methanol. The highest
hydrogen yield obtained for a methanol substrate is equal to
0.126 g/g substrate consumed, which is not surprising given that
the hydrogen-to-carbon ratio for methanol is the highest at four
to one. A comparison of the yields for some of the more efficient
substrates is shown in Figure 2. We decided to explore methanol
and glucose further, motivated by the high yield on methanol
and the favorable costs associated with the use of glucose.

The next step in the OptStrain procedure entails the deter-
mination of the minimum number of non-native functionalities
for achieving the theoretical maximum yield in a host organism.
We examine three different uptake scenarios: (1) glucose as the
substrate in E. coli (an established production system), (2) glucose
in C. acetobutylicum (a known hydrogen producer), and (3)
methanol in M. extorquens (a known methanol consumer).

E. coli

The MILP framework (described in Step 3) correctly verifies that
with glucose as the substrate no non-native functionalities are
required by E. coli for hydrogen production. Interestingly, hydro-
gen production is possible through either the ferredoxin hydrog-
enase reaction (E.C.# 1.12.7.2), which reduces protons to form
hydrogen, or via the hydrogen dehydrogenase reaction (E.C.#
1.12.1.2), which converts NADH into NAD+ while forming hy-
drogen through proton association. Subsequently, the upper and
lower limits of maximum hydrogen formation are explored for
the E. coli stoichiometric model (Reed et al. 2003) as a function of
biomass formation rate (i.e., growth rate) for both aerobic and
anaerobic conditions and a basis glucose uptake rate of 10 mmol/
gDW per hour (see Fig. 3). Notably, the maximum theoretical
hydrogen yield is higher under aerobic conditions. However,
only under anaerobic conditions is hydrogen formed at maxi-
mum growth (see point A in Fig. 3), leading to a growth-coupled
production mode. Note that hydrogen production takes place
through the formate hydrogen lyase reaction, which converts
formate into hydrogen and carbon dioxide under anaerobic con-

ditions, in agreement with experimental observations (Nandi
and Sengupta 1998).

Moving to phenotype restriction to curtail byproduct for-
mation (Step 4), we explored whether the production of hydro-
gen in the wild-type E. coli network could be enhanced by re-
moving functionalities from the network that were in direct or
indirect competition with hydrogen production. To this end, we
used the OptKnock framework to pinpoint gene deletion strate-
gies that couple hydrogen production with growth. Here we
highlight two of the identified strategies shown in Table 1. The
first (double deletion) removes both enolase (E.C.# 4.2.1.11) and
glucose-6-phosphate dehydrogenase (E.C.# 1.1.1.49). The re-
moval of the enolase reaction strongly promotes hydrogen for-
mation by directing the glycolytic flux toward the 3-phospho-
glycerate branching point into the serine biosynthesis pathway.
Subsequently, serine participates in a series of reactions in one-
carbon metabolism to form 10-formyltetrahydrofolate, which
eventually is converted to formate and tetrahydrofolate. The de-
hydrogenase elimination prevents the shunting of glucose-6-
phosphate flux into the pentose phosphate pathway. The second
strategy, a three-reaction deletion study, involves the removal of
ATP synthase (E.C.# 3.6.3.14), �-ketoglutarate dehydrogenase,
and acetate kinase (E.C.# 2.7.2.1). The removal of the first reac-
tion enhances proton availability, whereas the other two dele-
tions ensure that maximum carbon flux is directed toward pyru-
vate, which is then converted into formate through pyruvate
formate lyase. Formate is catabolized into hydrogen and carbon
dioxide through formate hydrogen lyase. Computationally de-
rived (not measured) flux distributions for both strategies are
shown in Figure 4.

A comparison of the hydrogen production limits as a func-
tion of growth rate for both the wild-type and mutant networks
is shown in Figure 3. The transport rates of carbon dioxide for the
mutant networks are fixed at the values suggested by OptKnock
(see Table 1), thus setting the operational imperatives (Pharkya et
al. 2003). Note that whereas the two-reaction deletion mutant
has a theoretical hydrogen production rate of 22.7 mmol/gDW

Figure 2. Maximum hydrogen yield on a weight basis for different
substrates.

Figure 3. Hydrogen production envelopes as a function of the biomass
production rate of the wild-type E. coli network under aerobic and an-
aerobic conditions as well as the two-reaction and three-reaction deletion
mutant networks. The basis glucose uptake rate is fixed at 10 mmol/gDW
per hour. These curves are constructed by finding the maximum and
minimum hydrogen production rates at different rates of biomass forma-
tion. Point A denotes the required theoretical hydrogen production rate
at the maximum biomass formation rate of the wild-type network under
anaerobic conditions. Points B and C identify the theoretical hydrogen
production rates at maximum growth for the two mutant networks, re-
spectively, after fixing the corresponding carbon dioxide transport rates
at the values suggested by OptKnock.
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per hour (0.025 g/g glucose) at the maximum growth rate (point
B in Fig. 3), the three-reaction deletion mutant produces a maxi-
mum of 29.5 mmol/gDW per hour (0.033 g/g glucose) (point C in
Fig. 3) at the expense of a reduced maximum growth rate. Inter-
estingly, in both mutant networks, maximum hydrogen produc-
tion requires the uptake of oxygen. This is in contrast to the
wild-type case in which the lack of oxygen is preferred for hy-
drogen formation. Notably, it has been reported (Nandi and Sen-
gupta 1996) that although formate hydrogen lyase can only be
induced in the absence of oxygen, its catalytic activity is not
affected in aerobic environments. This will have to be accounted
for in any experimental study conducted on the basis of these
results.

C. acetobutylicum

Ample literature evidence has identified the organisms of the
Clostridium species as natural hydrogen production systems
(Kataoka et al. 1997; Nandi and Sengupta 1998; Das and Veziro-
glu 2001; Chin et al. 2003). The reduction of protons into hy-
drogen through ferredoxin hydrogenase (E.C.# 1.12.7.2) is the
key associated reaction. Not surprisingly, using OptStrain (Step
3), we verified that no non-native reactions were required for
hydrogen production (Papoutsakis and Meyer 1985) in C. aceto-
bultylicum with glucose as a substrate. We next explored, as in the
E. coli case, whether hydrogen production could be enhanced by
judiciously removing competing functionalities using the Opt-
Knock framework. To this end, we used the stoichiometric model
for C. acetobutylicum developed by Papoutsakis and coworkers
(Papoutsakis 1984; Desai et al. 1999). OptKnock suggested the
deletion of the acetate-forming and butyrate-transport reactions.

This deletion strategy is reasonable in hindsight upon con-
sidering the energetics of the entire network. Specifically, in the
wild-type case, the formation and secretion of each butyrate mol-
ecule requires the consumption of two NADH molecules, thus
reducing the hydrogen production capacity of the network (see
Fig. 5). However, if butyrate is not secreted, but is instead re-
cycled to form acetone and butyryl CoA, then butyryl CoA can
again be converted to butyrate without any NADH consumption.
This is evident in the flux distribution for the mutant network
(see Fig. 5). The double deletion mutant has a theoretical hydro-
gen yield of 3.17 mol/mol glucose (0.036 g/g glucose) at the
expense of slightly lower growth rate (point C in Fig. 6). Notably,
in this case, biomass formation and hydrogen production are
tightly coupled, in contrast to that in the wild-type network,
where a range (1.38–2.96 mmol/gDW per hour) of hydrogen for-
mation rates is possible (line AB in Fig. 6) at the maximum
growth rate. Experimental results (Nandi and Sengupta 1998)

indicate that only up to 2 mol of hydrogen can be produced per
mol of glucose anaerobically in Clostridium. In fact, it has been
reported that inhibitory effects of butyrate directly on hydrogen
production and indirect effects of acetate on growth inhibition
(Chin et al. 2003) are responsible for the observed low hydrogen
yields. Interestingly, the suggested reaction eliminations directly
circumvent these inhibition bottlenecks.

M. extorquens AM1

Moving from glucose to methanol as the substrate, we next in-
vestigated hydrogen production in M. extorquens AM1, a faculta-
tive methylotroph capable of surviving solely on methanol as a
carbon and energy source (Van Dien and Lidstrom 2002). The
organism has been well studied (Anthony 1982; Chistoserdova et
al. 1998; Korotkova et al. 2002; Van Dien et al. 2003; Chistoser-
dova et al. 2004), and recently, a stoichiometric model of its
central metabolism was published (Van Dien and Lidstrom
2002). Using Step 3 of OptStrain, we identified that only a single
reaction needs to be introduced into the metabolic network of M.
extorquens to enable hydrogen production. Two such candidates
are hydrogenase (E.C.# 1.12.7.2), which reduces protons to hy-
drogen, or alternatively, N5, N10-methenyltetrahydromethanop-
terin hydrogenase, which catalyzes the following transforma-
tion:

E.C.# 1.12.98.2: 5,10-methylenetrahydromethanopterin ↔
5,10-methenyltetrahydromethanopterin + H2.

The need for an additional reaction is expected because the cen-
tral metabolic pathways in the methylotroph, as abstracted in
Van Dien and Lidstrom (2002), do not include any reactions that
convert protons into hydrogen such as the hydrogenases found
in E. coli and the anaerobes of the Clostridium species. Therefore,
it is not surprising that, to the best of our knowledge, no one has
achieved hydrogen production using methylotrophs such as
Pseudomonas AMI and P. methylica (Nandi and Sengupta 1998).
The identified reaction additions provide a plausible explanation
for this outcome by pinpointing the lack of a mechanism to
convert the generated protons to hydrogen.

Vanillin production case study

Vanillin is an important flavor and aroma molecule. The low
yields of vanilla from cured vanilla pods have motivated efforts
for its biotechnological production. In this case study, we iden-
tify metabolic network redesign strategies for the de novo pro-
duction of vanillin from glucose in E. coli. Using OptStrain, we
first determined the maximum theoretical yield of vanillin from

Table 1. Deletion mutants for enhanced hydrogen production in E. coli

No. of
knockouts ID Reaction Enzyme

Growth
rate (L/h)

Secretion per hour

(mmol/gDW)

CO2 H2

2 A 1. 2PG ↔ H2O + PEP
2. G6P + NADP ↔ 6PGL + H+ + NADPH

Enolase
Glucose-6-phosphate

0.227 32.7 22.8

3 B 1. ADP + 4 H+ + PI ↔ ATP + 3 H+ + H2O
2. AC + ATP ↔ ACTP + ADP
3. AKG + CoA + NAD → CO2 + NADH + SUCCoA

ATP synthase
Acetate kinase
2-Oxogluterate dehydrogenase

0.174 40.9 29.5

A basis glucose uptake rate of 10 mmol/gDW per hour is assumed.
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glucose to be 0.63 g/g glucose by considering ∼4000 candidate
reactions balanced with respect to all elements but hydrogen
(Step 2). We next identified that the minimum number of non-
native reactions that must be recombined into E. coli to endow it
with the pathways necessary to achieve the maximum yield is
three (Step 3). Numerous alternative pathways, differing only in
their cofactor usage, which satisfy both the optimality criteria of
yield and minimality of recombined reactions, were identified.
We then calculated the maximum theoretical yields of each of
these gene addition strategies upon their incorporation into the
E. coli stoichiometric model (Reed et al. 2003). Notably, for all
these strategies, the yields are almost identical even though the
stoichiometric model enforces a global balancing on cofactor us-
age. Therefore, for the sake of economy of presentation, only the
following gene addition is discussed:

(1) E.C.# 1.2.1.46: Formate + NADH + H+ ↔ formalde-
hyde + NAD+ + H2O,

(2) E.C.# 1.2.3.12: 3,4-dihydroxybenzoate (or protocatechu-
ate) + NAD+ + H2O + formaldehyde ↔ vanillate + O2 + NADH,
and

(3) E.C.# 1.2 .1 .67: vani l late + NADH + H+ ↔ vani l -
lin + NAD+ + H2O.

Interestingly, these steps are essentially the same as those used in
the experimental study by Li and Frost (1998) for the conversion
of glucose into vanillin using recombinant E. coli cells and the
biocatalyst aryl aldehyde dehydrogenase extracted from Neuros-
pora crassa, demonstrating that OptStrain can recover existing
engineering strategies. Note, however, that the reported experi-
mental yield of 0.15 g/g glucose is far from the maximum theo-
retical yield (i.e., 0.63 g/g glucose) of the network indicating the
potential for considerable improvement.

Figure 4. Calculated flux distributions at the maximum growth rates in
the (A) two and (B) three deletion E. coli mutant networks for overpro-
ducing hydrogen. A basis glucose uptake rate of 10 mmol/gDW per hour
was assumed.

Figure 5. Calculated flux distributions at the maximum growth rates
for the wild-type (light gray) and the two-reaction deletion mutant (dark
gray) C. acetobutylicum networks. The �s denote reactions that were
selected for elimination in the mutant network. The wild-type network
flux values are for the minimum hydrogen production scenario, corre-
sponding to point A in Figure 6.

Figure 6. Hydrogen formation limits of the wild-type (solid) and mu-
tant (dotted) Clostridium acetobutylicum metabolic network for a basis
glucose uptake rate of 1 mmol/gDW per hour. Line AB denotes different
alternate yield solutions that are available to the wild-type network at
maximum biomass production rates. Point C pinpoints the hydrogen
yield of the mutant network at maximum growth. This can be contrasted
with the reported experimental hydrogen yield (2 mol/mol glucose) in C.
acetobutylicum (Nandi and Sengupta 1998).
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This motivates examining whether it is possible to reach
higher yields of vanillin by systematically pruning the metabolic
network using OptKnock (Step 4). Here the genome-scale model

of E. coli metabolism, augmented with the three functionalities
identified above, is integrated into the OptKnock framework to
determine the set(s) of reactions whose deletion would force a

Figure 7. Calculated flux distributions at the maximum growth rates in the (A) one, (B) two, and (C) four deletion E. coli mutant networks for
overproducing vanillin. Non-native reactions are denoted by the thicker gray arrows. A basic glucose uptake rate of 10 mmol/gDW per hour was
assumed.
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strong coupling between growth and vanillin production. The
highest vanillin-yielding single, double, and quadruple knockout
strategies are discussed next for a basis glucose uptake rate of 10
mmol/gDW per hour. In all cases, anaerobic conditions are se-
lected by OptKnock as the most favorable for vanillin produc-
tion. Flux distributions corresponding to the proposed knockout
strategies are shown in Figure 7. It is worth emphasizing that, in
general, the deletion strategies identified by OptStrain are depen-
dent on the specific gene addition strategy fed into Step 4 of
OptStrain. Accordingly, we tested whether alternative and possi-
bly better, deletion strategies would accompany some of the
other candidate addition strategies alluded to above. For the van-
illin case study, we found the deletion suggestions and antici-
pated vanillin yields at maximal growth to be quite similar re-
gardless of the gene addition strategy used.

The first deletion strategy identified by OptStrain suggests
removing acetaldehyde dehydrogenase (E.C.# 1.2.1.10) to pre-
vent the conversion of acetyl-CoA into ethanol. Vanillin produc-
tion in this network, at the maximum biomass production rate of
0.205 h�1, is 3.9 mmol/gDW per hour or 0.33 g/g glucose based
on the assumed uptake rate of glucose. In this deletion strategy,
flux is redirected through the vanillin precursor metabolites,
phosphoenolpyruvate (PEP) and erythrose-4-phosphate (E4P), by
blocking the loss of carbon through ethanol secretion. The sec-
ond (double) deletion strategy involves the additional removal of
glucose-6-phosphate isomerase (E.C.# 5.3.1.9) essentially block-
ing the upper half of glycolysis. These deletions cause the net-
work to place a heavy reliance on the Entner-Doudoroff pathway
to generate pyruvate and glyceraldehyde-3-phosphate (GAP),
which undergoes further conversion into PEP in the lower half of
glycolysis. Fructose-6-phosphate (F6P), produced through the
nonoxidative part of the pentose phosphate pathway, is subse-
quently converted to E4P. Vanillin production, at the expense of
a reduced maximum growth rate of 0.06 h�1, is increased to 4.78
mmol/gDW per hour or 0.40 g/g glucose. A substantially higher
level of vanillin production is predicted in the four-reaction de-
letion mutant network without imposing a high penalty on the
growth rate. This strategy leads to the production of 6.79 mmol/
gDW per hour of vanillin or 0.57 g/g glucose at the maximum

growth rate of 0.052 h�1. The OptKnock framework suggests the
deletion of acetate kinase (E.C.# 2.7.2.1), pyruvate kinase (E.C.#
2.7.1.40), the PTS transport mechanism, and fructose 6-phos-
phate aldolase. The first three deletions prevent leakage of flux
from PEP and redirect it instead to vanillin synthesis. The elimi-
nation of fructose 6-phosphate aldolase prevents the direct con-
version of F6P into GAP and dihydroxyacetone (DHA). Note that
both F6P and GAP are used to form E4P in the nonoxidative
branch of the pentose phosphate pathway. DHA can be further
reacted to form dihydroxyacetone phosphate (DHAP) with the
consumption of a PEP molecule. Thus, elimination of fructose
6-phosphate aldolase prevents the utilization of both F6P and
PEP, which are required for vanillin synthesis. Furthermore, a
surprising network flux redistribution involves the employment
of a group of reactions from one-carbon metabolism to form
10-formyltetrahydrofolate, which is subsequently converted to
formaldehyde. Figure 8 compares the vanillin production enve-
lopes, obtained by maximizing and minimizing vanillin forma-
tion at different biomass production rates for the wild-type and
mutant networks. These deletions endow the network with high
levels of vanillin production under any growth conditions.

Discussion
The OptStrain framework is aimed at systematically suggesting
how to reshape whole-genome-scale metabolic networks of mi-
crobial systems for the overproduction of not only small but also
complex molecules. We have so far examined several different
products (e.g., 1,3-propanediol, inositol, pyruvate, electron
transfer, etc.) using a variety of hosts (i.e., E. coli, C. acetobutyli-
cum, M. extorquens). The two case studies, hydrogen and vanillin,
discussed earlier show that OptStrain can address the range of
challenges associated with strain redesign allowing for the gen-
eration of multiple redesign strategies to be screened by experts
and evaluated experimentally. At the same time, it is important
to emphasize that the validity and relevance of the results ob-
tained with the OptStrain framework are dependent on the level
of completeness and accuracy of the reaction databases and mi-
crobial metabolic models considered. We have identified numer-
ous instances of unbalanced reactions, especially with respect to
hydrogen atoms, and ambiguous reaction directionality in the
reaction databases that we mined. Careful curation of the down-
loaded reactions preceded all of our case studies. Whenever the
elemental balance of a reaction could not be restored, the reac-
tion was removed from consideration. We expect that this step
will become less time-consuming as automated tools for reaction
database testing and verification (Segre et al. 2003) are becoming
available. Furthermore, the purely stoichiometric representation
of metabolic pathways in microbial models used can lead to un-
realistic flux distributions by not accounting for kinetic barriers
and regulatory interactions (e.g., allosteric regulation). To allevi-
ate this, we are currently working toward incorporating regula-
tory information in the form of Boolean constraints (Covert and
Palsson 2002) into the stoichiometric model of E. coli and the use
of kinetic expressions on an as-needed basis (Tomita et al. 1999;
Varner and Ramkrishna 1999; Castellanos et al. 2004). Despite
these simplifications, OptStrain has already provided useful in-
sight into microbial host redesign in many cases and, more im-
portantly, established for the first time an integrated framework
open to future modeling improvements.

Figure 8. Vanillin production envelope of the augmented E. coli meta-
bolic network for a basic 10 mmol/gDW per hour uptake rate of glucose.
Points A, B, and C denote the maximum growth points associated with
the one, two, and four reaction deletion mutant networks, respectively.
Note that the level “augmented” refers to the E. coli wild-type network
augmented with the three non-native reactions. An anaerobic mode of
growth is suggested in all cases.
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Appendix

Mathematical formulation
The redesign of microbial metabolic networks to enable en-
hanced product yields by using the OptStrain procedure requires
the solution of multiple types of optimization problems. The first
optimization task (Step 2) involves the determination of the
maximum yield of the desired product in a metabolic network
comprised of a set N = {1, …, N} of metabolites and a set M =
{1, …, M} of reactions. The linear programming (LP) problem for
maximizing the yield on a weight basis of a particular product P
(in the set N) from a set ℜ of substrates is formulated as:

Max
vj

MWi ��
j=1

M

Sijvj, i = P

subject to �
j=1

M

Sijvj � 0, � i ∈ N, i ∉ ℜ (1)

�
i∈ℜ

�MWi ��
j=1

M

Sijvj� = −1 (2)

where MWi is the molecular weight of metabolite i, vj is the molar
flux of reaction j, and Sij is the stoichiometric coefficient of me-
tabolite i in reaction j. In our work, the metabolite set N was
comprised of ∼4800 metabolites, and the reaction set M consisted
of >5700 reactions. The inequality in constraint 1 allows only for
secretion and prevents the uptake of all metabolites in the net-
work other than the substrates in ℜ. Constraint 2 scales the re-
sults for a total substrate uptake flux of one unit of mass. The
reaction fluxes vj can either be irreversible (i.e., vj � 0) or revers-
ible, in which case they can assume either positive or negative
values. Reactions that enable the uptake of essential-for-growth
compounds such as oxygen, carbon dioxide, ammonia, sulfate,
and phosphate are also present.

In Step 3 of OptStrain, the minimum number of non-native
reactions needed to meet the identified maximum yield from
Step 2 is found. First the Universal database reactions that are
absent in the examined microbial host’s metabolic model are
flagged as “non-native.” This gives rise to the following Mixed
Integer Linear Programming (MILP) problem:

Min
vj,yj

�
j∈Mnon-native

yj

subject to �
j=1

M

Sijvj � 0, � i ∈ N, i ∉ ℜ (1)

�
i∈ℜ

�MWi ��
j=1

M

Sijvj� = −1, (2)

MWi ��
j=1

M

Sijvj � Yieldt arg et, i = P (3)

vj � vj
max � yj, � j ∈ Mnon-native (4)

vj� vj
min � yj, � j ∈ Mnon-native (5)

yj ∈ �0,1�, � j ∈ Mnon-native (6)

The set Mnon-native comprises the non-native reactions for the
examined host and is a subset of the set M. MILP constraints 1
and 2 are identical to those in the product yield maximization
problem. MILP constraint 3 ensures that the product yield meets
the maximum theoretical yield, Yieldtarget, calculated in Step 2.
The binary variables yj in constraints 4 and 5 serve as switches to
turn reactions on or off. A value of 0 for yj forces the correspond-
ing flux vj to be 0, and a value of 1 enables it to take on nonzero
values. The parameters vj

min and vj
max can either assume very low

and very high values, respectively, or they can be calculated by
minimizing and maximizing every reaction flux vj subject to stoi-
chiometric constraints.

Alternative pathways that satisfy both optimality criteria of
maximum yield and minimum non-native reactions are ob-
tained by the iterative solution of the MILP formulation upon the
accumulation of additional constraints referred to as integer cuts.
Integer cut constraints exclude from consideration all sets of re-
actions previously identified. For example, if a previously iden-
tified pathway uses reactions 1, 2, and 3, then the following
constraint prevents the same reactions from being simulta-
neously considered in subsequent solutions: y1 + y2 + y3 � 2.
More details can be found in an earlier paper by Burgard and
Maranas (2001).

Step 4 of OptStrain identifies which reactions to eliminate
from the network augmented with the non-native functional-
ities, using the OptKnock framework developed previously (Bur-
gard et al. 2003; Pharkya et al. 2003). The objective of this step is
to constrain the phenotypic behavior of the network so that
growth is coupled with the formation of the desired biochemical,
thus curtailing byproduct formation. The envelope of allowable
targeted product yields versus biomass yields is constructed by
solving a series of linear optimization problems that maximize
and then minimize biochemical production for various levels of
biomass formation rates available to the network. More details
on the optimization formulation can be found in Pharkya et al.
(2003). All the optimization problems were solved in the order of
minutes to hours using CPLEX 7.0 accessed via the GAMS
(Brooke et al. 1998) modeling environment on an IBM RS6000-
270 workstation.
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