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Abstract

In this paper, a discrete event based mechanistic simulation platform DEMSIM is developed for testing and validating putative

regulatory interactions. The proposed framework models the main processes in gene expression, which are transcription, translation

and decay processes, as stand-alone modules while superimposing the regulatory circuitry to obtain an accurate time evolution of

the system. The stochasticity inherent to gene expression and regulation processes is captured using Monte Carlo based sampling.

The proposed framework is applied to the extensively studied lac operon system, the SOS response system and the araBAD operon

system of Escherichia coli. The results for the lac gene system demonstrate the simulation framework’s ability to capture the

dynamics of gene regulation, whereas the results for the SOS response system indicate that the framework is able to make accurate

predictions about system behavior in response to perturbations. Finally, simulation studies for the araBAD system suggest that the

developed framework is able to distinguish between different plausible regulatory mechanisms postulated to explain observed gene

expression profiles. Overall, the obtained results highlight the effectiveness of DEMSIM at describing the underlying biological

processes involved in gene regulation for querying alternative regulatory hypotheses.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Gene expression is the primary method through which
a living organism processes the information stored in its
DNA to form all functional cellular components.
Elucidation of regulation mechanisms has been an
important challenge for understanding the fundamental
organization and functioning of biological systems. To
date, many data-driven approaches have been developed
that use DNA microarray data to unravel the under-
lying network of genetic interactions. These broadly
include clustering approaches (Spellman, 1998; Ang
et al., 2001; Helmann et al., 2003), Boolean networks
(Akutsu and Miyano, 2000; Ideker et al., 2000),
differential equations (Chen et al., 1999; D’haeseleer
e front matter r 2004 Elsevier Ltd. All rights reserved.
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et al., 1999; Hoon et al., 2003; Dasika et al., 2004),
Bayesian networks (Friedman et al., 2000) and neural
networks (Vohradsky, 2001). We refer to these class of
methods as ‘‘top-to-bottom’’ approaches as they
attempt to elucidate the complex web of DNA, protein
and metabolite interactions by using ‘‘snap-shot’’ data
(top layer) to infer the inner workings (bottom layer).
Alternatively, as illustrated in Fig. 1, ‘‘bottom-to-top’’
approaches rely on detailed mechanistic descriptions of
the underlying molecular processes to construct a
predictive model of interaction parameterized to comply
with experimental observations. In this paper, we
introduce such a ‘‘bottom-to-top’’ simulation platform
that accounts for the mechanistic detail of various
processes underlying gene expression and regulation.

The fundamental processes that govern the flow of
information from the DNA to a working component
(proteins, ribosomes, etc.) in a cell are transcription and
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Fig. 1. Alternative approaches employed to investigate regulatory networks. The ‘‘top-to-bottom’’ approach uses snap-shot experimental data such

as those obtained from microarrays to explain the inner workings of the regulatory networks. On the other hand, ‘‘bottom-to-top’’ approaches take

into account the molecular mechanisms of the underlying processes to develop a predictive model.
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translation. These processes, coupled with decay me-
chanisms and various regulatory interactions, largely
control the level of gene expression in a cell. Many
researchers have attempted to model the gene regulation
process by abstracting these underlying processes using
ordinary differential equations. Specifically, Agger and
Nielsen (1999) modeled the regulation dynamics of a
genetic system using equilibrium kinetics, Cheng et al.
(1999, 2000) developed a model to describe the inhibi-
tion of lac operon by triplex forming oligos. Shea and
Ackers (1985) developed a model for the OR control
system of bacteriophage l. Other differential equation
models include efforts by Goutsias and Kim (2004) and
Hatzimanikatis and Lee (1999).

The research cited above utilizes differential equations
to represent systems that are essentially discrete in
nature. Dynamics of gene expression and regulation in
many cases involve interactions between relatively small
numbers of molecules. For example, the number of
available RNA polymerase molecules is estimated to be
approximately 35 in E. coli, while the number of
available ribosomes is estimated to be approximately
350 (Kierzek et al., 2001). In such discrete systems, rates
of reaction are no longer deterministic; the reactions
occur in a stochastic and discontinuous fashion,
rendering the differential equation representation only
a coarse approximation (Carrier and Keasling, 1997).
Under these conditions, stochastic fluctuations become
important resulting in significant variability in the
number of molecules of the species around their average
value. Many experimentally verified instances of sto-
chastic variability of genetic systems have been reported
in literature. For example, the expression of plasmids
containing araBAD promoter at subsaturating levels of
inducer revealed the existence of both induced and
uninduced cells in the population (Siegele and Hu,
1997). Elowitz and Leibler (2000) have reported that the
expression of a synthetically constructed oscillating
network exhibits noisy behavior. On the theoretical/
computational front, Monte Carlo based simulation
methods have been employed by a number of research-
ers for studying the stochastic evolution of genetic
systems (McAdams and Arkin, 1997; Arkin et al., 1998;
Kepler and Elston, 2001; Kastner et al., 2002; Kurata et
al., 2003). These methods largely employ the stochastic
simulation algorithm developed by Gillespie (1976,
1977; Gibson and Bruck, 2000). Alternatively, Carrier
and Keasling proposed a Monte Carlo based algorithm
to study the expression of prokaryotic systems (Carrier
and Keasling, 1997, 1999).

A systems engineering view reveals that gene expres-
sion dynamics are governed by processes that are
essentially event driven, i.e. many events have to take
place in a predetermined order with uncertain start and
execution times to accomplish a certain task. Fig. 2
highlights the many parallels between gene expression
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Fig. 2. As in manufacturing processes, gene expression is also event driven implying that many events have to take place in a predetermined order to

accomplish a certain task.
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and manufacturing systems. In analogy to a manufac-
turing facility which produces a certain amount of
finished product at a particular time with a certain
probability, the transcription process produces mRNA
transcripts with probability determined by the cellular
environment and availability of required components.
Similarly, accumulating mRNA and protein levels in the
cell are akin to product inventory held in warehouses in
a manufacturing system. Motivated by the numerous
parallels between these two seemingly different settings,
we propose the use of discrete event simulation, which is
a powerful tool employed to model and simulate supply
chains and manufacturing systems, to model and
simulate gene expression systems.

To this end, in this work we describe the discrete event
based mechanistic simulation platform DEMSIM that
we have developed for testing and hypothesizing
putative regulatory interactions. The key feature of the
DEMSIM platform is the event-based modeling and
integration of the fundamental processes underlying
gene expression (such as transcription, translation and
species decay) with system-specific regulatory circuitry.
In the next section, we outline the level of mechanistic
detail that is accounted for in the various biological
processes followed by a description of the computa-
tional and algorithmic issues that arise while implement-
ing the simulation framework. Subsequently, the scope
of the simulation framework to answer biologically
relevant questions is investigated through three exam-
ples. The extensively studied lac operon system is
simulated for verifying that the developed tool can
indeed be trained to generate the experimentally
obtained biological response of a genetic system. Then,
the predictive capabilities of DEMSIM are probed by
applying it to simulate the SOS response in E. coli.
Finally, the sensitivity of the proposed approach to
discriminate between alternative regulatory hypotheses
is examined using the araBAD system of E. coli as a
benchmark.
2. Methods

Effective simulation of gene expression and regulation
dynamics entails the detailed modeling and integration
of the underlying biochemical processes with the
regulatory machinery. To this end, we have modeled
each of the underlying transcription, translation and
decay processes as stand-alone modules. Each module is
characterized by physical and model parameters. Physi-
cal parameters correspond to parameters which are
known a priori from literature sources and are fixed
within the simulation framework (e.g. length of gene,
transcription rate, etc.). In contrast, model parameters
are regression parameters that are fitted using the
available experimental data. Subsequently, the simula-
tion is driven by communication between these modules
in accordance with the specifics of the regulatory
circuitry of the biological system being investigated.
Furthermore, the mechanistic detail of the underlying
processes is represented as a sequence of discrete events
within the modules. The sequence of events that govern
a given module and the associated parameters are
described below.

2.1. Description of discrete event modules

2.1.1. Transcription module

The mechanism of transcription is fairly well under-
stood compared to other biological processes (Alberts et
al., 1994; Hardinson, 2002a, b). The physical parameters
required for this module include the length of the open
reading frame (ORF) Li

ORF [nucleotides] for each gene i,
the foot print size of the RNAP enzyme LRNAP

[nucleotides] and the rate of transcriptional elongation
aTp [nucleotides/s]. The foot print size LRNAP is the
number of nucleotides that the RNAP has to transcribe
before it clears the promoter for the subsequent
transcription process. The model parameter associated
with this module is the gene specific RNAP binding
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parameter ðKbi
RNAPÞ which quantifies the probability of

the RNAP successfully binding to the promoter site. The
discrete events constituting the transcription module
are schematically shown in Fig. 3A. The transcription
module begins with the transcription initiation event. A
Monte Carlo based description is used to account for
the inherent randomness associated with all stochastic
events, including the binding events. Specifically, a
uniformly distributed random number between 0 and 1
is generated and compared to the binding parameter
associated with the event. If the magnitude of the
generated random number is less than the binding
parameter, then successful binding is assumed to have
taken place otherwise the binding is assumed to have
failed. If binding is successful, then the elongation phase
is initiated, otherwise, promoter binding is reattempted
as shown in Fig. 3A. The elongation phase consists of
sequential elongation events whereby the mRNA
transcript is produced one nucleotide at a time. Once
the RNAP has transcribed LRNAP nucleotides, the
promoter is declared to be cleared and made available
for additional transcription initiation events. This allows
for the possibility of multiple RNAP molecules simulta-
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neously transcribing a gene. We also account for the
concurrent translation of an incomplete transcript,
which is a well-known characteristic of prokaryotic
systems, by checking for the formation of the nascent
ribosome-binding site (RBS). This is achieved by
comparing the length of the elongating mRNA to the
ribosome footprint size LRib [nucleotides]. If the length
of elongating mRNA is equal to LRib; then the newly
formed RBS is made available for either initiation of
translation or mRNA decay.

2.1.2. mRNA decay module

The complete mechanism of mRNA decay is still
unresolved and many theories have been put forward to
explain it (Marianne, 1999). However, it is largely
accepted that mRNA decay is initiated when the enzyme
RNase E endonuclease (RNase E) binds to the
transcript (Carrier and Keasling, 1997). In view of this
relatively well established hypothesis, we have modeled
the decay process as a competitive binding event where
the RNase E and the ribosomal assembly both compete
for the free RBS on the elongating or complete mRNA
transcript (see Fig. 3B). The gene specific RNase E
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binding parameter ðKbi
RNaseÞ quantifies the probability

of successful binding of the RNase E to an mRNA
transcript. If RNase E binds to the RBS, then the
mRNA transcript is cleaved, otherwise the ribo-
somal assembly binds to the RBS and translation is
initiated.
2.1.3. Translation module

Upon successful initiation by ribosome binding, a
series of elongation events is executed through which the
protein polypeptide chain is formed through the discrete
addition of amino acid molecules (Fig. 3B) at the rate
determined by the translation elongation rate parameter
aTr [codons/s]. RBS clearance is checked after each
elongation event by comparing the number of nucleo-
tides translated by the ribosome to LRib: If the ribosome
has cleared the RBS, then the RBS is made available for
the competitive binding of the RNase E and ribosomal
assembly.
2.1.4. Protein decay module

Protein decay is modeled by the binding of the
proteasomal assembly to the fully translated
protein molecule (Alberts et al., 1994) as shown in
Fig. 3C. The gene specific proteasome binding para-
meter Kbi

Proteasome determines the frequency with
which the proteasomal assembly binds to a protein
molecule and cleaves it into its constituent amino
acids. Table 1 summarizes all the modules described
above along with the associated physical and model
parameters.
Table 1

Modules and associated parameters

Module Value

Transcription

Physical

LRNAPðntÞ 60 nt (Kierzek et al., 2001)

LRibðntÞ 33 nt (Carrier and Keasling, 1997)

Li
ORF ðntÞ KEGG Database

aTpðnt s�1Þ 50 nt/s (Hardinson, 2002a, b)

Model

Kbi
RNAP

Fitted

mRNA decay

Model

Kbi
RNase

Fitted

Translation

Physical

LRibðntÞ 33 nt (Carrier and Keasling, 1997)

aTrðcodons s�1Þ 10 codons/s (Hardinson, 2002a, b)

Protein decay

Model

Kbi
Proteasome

Fitted
2.2. Modeling of gene regulation

Regulation of gene expression occurs at varying
degrees at all steps of the transcription through
translation cascade. In DEMSIM, we assume that
transcriptional initiation is the key step in gene
regulation. This hypothesis has been put forth by a
number of other researchers and supported by both
experimental (Helmann et al., 2003) and computational
investigations (Shen-Orr et al., 2002). The regulatory
logic thus directly or indirectly alters the binding
interactions of the RNAP with the promoter region of
the DNA. In the context of our modeling framework,
this is captured as the effect of the regulatory machinery
on the probability of successful RNAP binding to the
promoter region. Note that here the term regulatory
logic is employed to describe a wide range of regulatory
mechanisms which can be readily accounted for in our
simulation framework. For example, a regulatory
protein might regulate a target gene only if the
concentration of the regulatory protein is beyond
a threshold. In that case, the implementation of
the regulatory criterion would entail checking if the
concentration of the regulatory protein is above the
specified threshold and subsequently making Kbi

RNAP

dependent on the output of the regulatory logic.
Separate RNAP binding parameters are assigned to
binding events that represent alternative outcomes of
the regulatory logic. The relative magnitude of these
parameters quantifies the nature and strength of
regulation (upregulation/down regulation). The regula-
tory logic employed for the test systems considered in
this study are discussed in the results section.

2.3. Implementation of simulation framework

The DEMSIM software implementation consists of
the following three key components: (i) an event list that
contains all the events that need to be executed along
with their respective execution times, (ii) a global

simulation clock that records the progress of simulation
time as events are sequentially executed, and (iii) a set of
state variables that characterize the system and which
are updated every time an event is executed. At every
time step, events corresponding to all active (non-
terminated) modules in the system are included in the
event list. Subsequently, the event list is sorted and the
event having the smallest execution time is executed. The
simulation clock is advanced and the execution time of
all other events is updated. Such a sequential procedure
prevents the occurrence of ‘‘causality errors’’ by ensur-
ing that an event with a later time stamps is not executed
before an event with an earlier time stamp (Tropper,
2002). Furthermore, since the execution of certain events
leads to the creation of new modules and the termina-
tion of existing ones, the number of active modules in
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Table 2

Events and execution times

Module Execution time (s) Value

Transcription

Initiation event tbind 0.1 s

Elongation event 1=aTp 0.02 s

mRNA decay

Initiation event tbind 0.1 s

Translation

Elongation event 1=aTr 0.1 s

Protein decay

Initiation event tbind 0.1 s
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the system is updated and new events are included in the
event list. This procedure is then repeated for the
duration of the simulation horizon and state variables
such as number of mRNA and protein molecules are
recorded.

We use a fixed-time step of 0.10 s for stepping forward
in time. This time interval corresponds to the duration
between two translation elongation events (since aTr ¼

10 codons/s) and five transcription elongation events
(since aTp ¼ 50 nt=s). Table 2 lists the events associated
with each module and the associated execution times.
This time step, which results in the lumping of 5
transcription elongation events into a compound ‘‘pseu-
do’’ transcription event, is chosen to balance computa-
tional accuracy and CPU time requirements. Other
assumptions include: (i) transcription and translation
machinery are present in excess so that dilution by cell
growth and gene expression can be neglected (Carrier
and Keasling, 1997); and (ii) post transcriptional and
post translational modifications take place instanta-
neously (Albert and Othmer, 2003; Goutsias and Kim,
2004). The DEMSIM framework is implemented using
the C programming language on a 16 node linux cluster
with dual Intel 3.4 Ghz Xeon processors.
3. Results

To highlight and probe its capabilities, the DEMSIM
framework is applied to three different test systems.
Given the stochastic nature of the underlying processes,
multiple simulation runs are needed to glean a
statistically complete picture of the temporal evolution
of the system. The simulation runs are averaged out to
extract the mean trajectory and the standard deviation
is estimated at each time point. The results of the
simulations are presented by plotting the mean trajec-
tory and the 71s regions, where s denotes the standard
deviation.
3.1. Example I—lac operon system of E. coli

The lac operon of E. coli has been extensively studied
as a model system for understanding prokaryotic gene
regulation (Kennell and Riezman, 1977; Wong et al.,
1997; Vilar et al., 2003). We use this relatively simple
genetic system to verify that the various model para-
meters embedded within DEMSIM can indeed be tuned
using experimental data. In particular, we focus our
attention on the expression of lacZ gene, the first within
the operon which also includes genes lacY and lacA.
Transcription from the lac operon is inhibited by the
product of lacI gene located upstream of the operon.
However, in the presence of lactose, the gene product of
lacI combines with lactose to form an inactive product,
thus turning the operon ON. This enables transcription
of the lacY gene which encodes the protein responsible
for transport of lactose into the cell.

In addition to the basic modules described earlier, the
simulation of the lac operon system requires a model for
transport of lactose into the cell. To this end, the kinetic
model developed by Wong et al. (1997) is used. This
model relates the rate of change of intracellular lactose
to the amount of extracellular lactose and the amount of
lacY protein. The mathematical form of the model is
described in the appendix. All simulation runs begin
with no lactose present inside the cell and the copy
number/cell of mRNA and protein of all the genes is
assumed to be zero (i.e. cold start). The regulatory logic
is modeled by making the RNAP binding parameter for
the lac operon conditionally dependent on the relative
amounts of the inducer (lactose) and repressor (lacI

protein) in the cell. This is achieved by utilizing the
following rule based representation within the simula-
tion framework.

Kb
RNAP ¼

a if lacI½ �p Lactose½ �;

b if lacI½ �4 Lactose½ �;

�

where [lacI] and [Lactose] are the number of lacI protein
and lactose molecules respectively and a4b in accor-
dance with the inducer/repressor role of lactose/lacI. In
addition to these RNAP binding parameters, two other
model parameters that need to be tuned are the RNase E
and proteasome binding parameter for lacZ. These
parameters are estimated by applying DEMSIM within
a predictive–corrective loop whereby the parameters are
tuned such that the simulation results match experimen-
tally reported data. Specifically, we use the following
experimental data for fitting (Kennell and Riezman,
1977): lacZ mRNA half-life (1.3 min); average rate of
production of lacZ protein (20 molecules/s); steady-state
number of lacZ mRNA transcripts (62 molecules/cell).
The values of the fitted model parameters are listed
in Table 3. Figs. 4A and B show the simulated profiles
for the number of lacZ mRNA and protein
molecules, respectively. The simulated values for the
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three quantities used for fitting are: lacZ mRNA half-life
(1.5 min); average rate of production of lacZ protein
(2972 molecules/s); steady-state number of lacZ

mRNA transcripts (6076 molecules/cell). These results
for the lac operon system clearly suggest that the
DEMSIM framework is able to reproduce the dynamics
of gene expression using appropriately tuned model
parameters.

3.2. Example II—SOS response system of E. coli

In this example, we expand both the scale of the
system under consideration, in terms of the number of
genes whose expression is simulated, as well as the scope
Table 3

Fitted parameter values for lacZ gene

Parameter Condition Value

Kbi
RNAP

½lacI �X½Lactose� 1.0	 10�3

Kbi
RNAP

½lacI �p½Lactose� 7.125	 10�1

Kbi
RNase

— 8.0	 10�3

Kbi
Proteasome

— 9.0	 10�5

Fig. 4. (A) The fitted profile for the lacZ mRNA copy number. (B)

The fitted profile for lacZ protein copy number. The center solid line

shows the mean profile of 50 simulation runs and the shaded region

represents the 71s regions.
of issues addressed using DEMSIM. We explore the
capabilities of DEMSIM to not only reproduce experi-
mental data with which it was trained but also its ability
to predict the de novo response of the system to an
externally imposed perturbation. To this end, the
specific system that we investigate is the SOS response
of E. coli. Irradiation of cells with UV light produces
DNA lesions that transiently block the process of
replication. It is now known that cells respond to this
stress by upregulating the expression of several genes
that function to repair the DNA lesions (Kuzminov,
1999; Henestrosa et al., 2000; Janion, 2001). This
response is termed as the SOS response (see Fig. 5).
Many of the genes involved in the repair of DNA
damage are negatively regulated by the lexA repressor
protein, which binds to a consensus sequence located
upstream of the promoter. Upregulation of these genes
occurs when the recA protein binds to the single
stranded DNA created at replication forks. This
introduces a conformational change in the recA protein,
turning it into a coprotease that cleaves the lexA

repressor. As soon as the cellular concentration of lexA

diminishes, the genes suppressed by lexA are more
frequently transcribed. Following repair of DNA
damage, the coproteolytic activity of recA diminishes
leading to an increase in the lexA concentration and
thus returning the cell to its original state as shown in
Fig. 5 (Brent and Ptashne, 1981; Betrand-Burggraf
et al., 1987; Sassanfar and Roberts, 1990; Rehrauer
et al., 1996). From the larger set of about 30 genes which
are known to be regulated by the lexA repressor, we
selected a subset of six genes to simulate (Courcelle
et al., 2001; Khil and Camerini-Otero, 2002). In addition
to lexA, the genes that we considered are: polB

(production of DNA polymerase II); uvrA, uvrB

(nucleotide excision repair); ruvA (recombination pro-
cess); and dinI (inhibitor of umuD).
3.2.1. Modeling of gene regulation

The regulatory logic for this system is formulated as
follows. The probability of successful binding of the
lexA protein to the protein-binding region of a gene is
postulated to be given by

Kbi
lexA ¼ 1 �

2eð�FðiÞ�½lexA�Þ

1 þ eð�FðiÞ�½lexA�Þ

for i ¼ lexA; dinI ; polB; uvrA; uvrB; ruvA:

Here, FðiÞ is a gene specific regulatory constant and
½lexA� is the number of molecules of lexA protein. Fig. 6
shows the dependence of Kbi

lexA on ½lexA� for different
values of FðiÞ: Parameter FðiÞ quantifies the relative
binding strength of the lexA repressor to a particular
gene i with a higher value of FðiÞ implying a higher
magnitude for Kbi

lexA (and hence higher probability of
repression). Note that the above formulation ensures
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that the probability of repression given by Kbi
lexA is

between 0 and 1 for all values of FðiÞand ½lexA� with
Kbi

lexA ! 0 as ½lexA� ! 0 and Kbi
lexA ! 1 as ½lexA� ! 1:

Fig. 7 pictorially depicts the regulatory logic for the SOS
response system. The lexA repressor binds to the
operator region of the genes with a probability given
by Kbi

lexA: If the repressor binds, then the gene is
repressed otherwise the gene is unrepressed. The
magnitude of Kbi

RNAP is made contingent on the out-
come of the regulatory logic as illustrated in Fig. 7
with the relative magnitudes of ðKbi

RNAPÞRepressed and
ðKbi

RNAPÞUnrepressed quantifying the strength of repression
for each of the genes. Enhanced lexA cleavage
under irradiated conditions is simulated by increas-
ing Kbi

Proteasome for lexA gene by a factor of X lexA(41):

ðKb lexA
ProteasomeÞ

Irradiated
¼ X lexAðK

b lexA
ProteasomeÞ

Unirradiated :

As a result of enhanced cleavage, the number of lexA

molecules in the cell decrease reducing the magnitude of
Kbi

lexA: This decreases the probability of repression of the
genes in the system and the genes are more frequently
transcribed. After the repair time ðTRepairÞ has elapsed,
the value of Kbi

Proteasome for lexA is restored to its initial
value thus gradually returning the cell to its original
state.

3.2.2. Parameter estimation

The gene specific mRNA decay parameter Kbi
RNase is

estimated by matching the simulated decay of mRNA
level in the absence of transcription to the experimen-
tally observed mRNA half-life. For a given value of the
decay parameter, the simulations are run by ‘‘arresting’’
the processes of transcription. In the context of the
simulation framework, this is accomplished by setting
the value of Kbi

RNAP to zero. The simulated value of half-
life corresponding to the assumed decay parameter is
then estimated by measuring the time needed for the
initial mRNA level to drop by half. Kbi

Proteasome is fitted
similarly by ‘‘arresting’’ both the transcription and
translation processes. Fig. 8 shows the average values of
the simulated mRNA (Fig. 8A) and protein (Fig. 8B)
half-lives as a function of the Kbi

RNase and Kbi
Proteasome;

respectively. Subsequently, the factor X LexA; which
accounts for the enhanced lexA cleavage post irradia-
tion, is similarly fitted by adjusting its value to
reproduce the experimentally observed post-irradiation
half-life of approximately 1–2 min (Sassanfar and
Roberts, 1990). The time required to repair the damage
to DNA is set at 45 min based on the observations of
Courcelle et al. (2001).

The remaining parameters are gene specific RNAP
binding parameter under repressed state
ðKbi

RNAPÞRepressed ; RNAP binding parameter under un-
repressed state ðKbi

RNAPÞUnrepressed and the gene specific
regulatory constant F(i). Since these parameters account
for the generation of the mRNA transcripts and protein
molecules in the cell, we refer to this set of parameters as
generation parameters. The generation parameters are
fitted by simultaneously adjusting their values to match
the experimentally observed mRNA fold changes in
both irradiated and unirradiated cells and the protein
levels in the unirradiated cells. This procedure relies on
the assumption that a direct correspondence exists
between the mRNA transcript level and the fluorescence
intensity measured in the microarray experiments. Fig. 9
highlights the procedure employed to estimate the
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Fig. 7. The regulatory logic employed to simulate the SOS response system.
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generation parameters. Beginning with an initial guess
for the values of the generation parameters, simulations
are run using the previously estimated values for the
decay parameters. After the simulation equilibrates
(simulation warm-up time), the mRNA and protein
levels in the cells are recorded for 5000 s. These
measurements correspond to the mRNA and protein
levels under unirradiated conditions. Subsequently, the
cleavage of lexA repressor is enhanced for a duration of
TRepair seconds, by multiplying KbLexA

Proteasome with the
previously estimated factor X LexA; and the mRNA
levels are recorded for a period of 5000 s as shown in
Fig. 9. These measurements correspond to the mRNA
levels under irradiated conditions. The unirradiated and
irradiated mRNA levels are compared to experimentally
observed mRNA fold changes reported by Courcelle
et al. (2001). Also, the recorded protein levels are
compared to experimentally reported protein levels in
unirradiated cell cultures (Kuzminov, 1999). The gen-
eration parameters are adjusted until the simulated
measurements are in reasonable agreement with experi-
mental observations. Table 4 summarizes the para-
meters for the SOS response system and the
experimental data used to estimate the parameters.
The values for the estimated parameter values are
provided in Table 5. The simulated mRNA fold changes
under unirradiated conditions are plotted in Fig. 10. The
experimentally reported values are also plotted for
comparison. Fig. 11 shows similar comparisons for the
irradiated conditions. Similarly, the simulated and the
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Fig. 9. This figure illustrates how the parameters of the SOS response system are fitted to reproduce experimental data. The gene specific mRNA and

protein decay parameters are estimated from the experimental mRNA and protein half lives, respectively. Subsequently, the generation parameters

are adjusted until the simulation results match experimental data for mRNA fold changes in unirradiated and irradiated cultures and the protein

levels in unirradiated cultures.

Table 4

Parameters for SOS response system

Parameter Reference

Adjusted to match

ðKbi
RNAPÞUnrepressed ; ðK

bi
RNAPÞRepressed ; F(i) (i) mRNA fold changes in unirradiated cells (Courcelle et al., 2001)

(ii) mRNA fold changes in irradiated cells (Courcelle et al., 2001)

(iii) Protein levels in unirradiated cells (Kuzminov, 1999)

Kbi
RNase

Selected to reproduce experimentally observed mRNA half-life (Bernstein et al., 2002)

Kbi
Proteasome

Selected to reproduce experimentally observed protein half-life; 60 min for lexA (Sassanfar and

Roberts, 1990) 10–30 min for other genes (Typical Value)

X LexA Selected to reproduce the lexA protein half-life of about 1–2 min post irradiation (Sassanfar and

Roberts, 1990)

TRepair Set at 45 min (Courcelle et al., 2001)

Table 5

Fitted parameter values for SOS response system

Gene ðKbi
RNAPÞRepressed ðKbi

RNAPÞUnrepressed
F(i) Kbi

RNase Kbi
Proteasome

X LexA

lexA 9.5	 10�5 4.75	 10�4 3.7	 10�3 3.5	 10�3 2.4	 10�5 30.0

uvrA 9.5	 10�5 2.85	 10�4 2.7	 10�3 3.5	 10�3 5.0	 10�4

dinI 9.5	 10�5 4.75	 10�4 5.7	 10�3 3.8	 10�3 6.0	 10�5

polB 9.5	 10�5 4.75	 10�4 1.5	 10�3 3.8	 10�3 7.0	 10�4

uvrB 9.5	 10�5 9.50	 10�4 4.7	 10�3 4.8	 10�3 7.0	 10�5

ruvA 9.5	 10�5 9.50	 10�4 1.7	 10�3 3.2	 10�3 1.0	 10�4
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experimentally estimated values for the protein levels in
unirradiated cell cultures are listed in Table 6. In line
with the observations for the lac system, the fitted
parameter values are able to accurately reproduce the
experimental data used to train the model.

3.2.3. Model validation

Next, the trained model is validated by comparing its
predictions of protein levels in irradiated cultures to
experimentally reported values. Table 7 lists the
simulated peak protein levels estimated from the average
of 120 simulation runs and the corresponding experi-
mentally obtained values. While good agreement with
experimental estimates is observed for uvrB, polB and
uvrA genes, some deviation is observed for dinI and ruvA

genes. One possible reason for these deviations could be
that the simulation framework might not account for all
regulatory interactions involving these genes. In addi-
tion to the peak protein levels, the dynamics of the
temporal response of lexA protein on induction of SOS
response are also found to be in good agreement with
experimental observations of Sassanfar and Roberts
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Fig. 10. Fitted mRNA profiles under unirradiated conditions: The simulation results are the average of 120 simulation realizations. Both the mean

trajectory and the 71s regions are plotted, where s denotes the standard deviation. The balck squares are experimentally reported values (Courcelle

et al., 2001).

Fig. 11. Fitted mRNA profiles irradiated conditions: The simulation results are the average of 120 simulation realizations. Both the mean trajectory

and the 71s regions are plotted, where s denotes the standard deviation. The black squares are experimentally reported values (Courcelle et al.,

2001).
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Table 7

Comparison between experimental and the simulation predictions for

the protein levels under irradiated conditions

Gene No of copies/cell

Predicted Experimentala

lexA 143 130

uvrA 112.5 250

dinI 1120 2300

polB 175 300

uvrB 1421 1200

ruvA 2158 5600

The protein numbers are represented as number of copies of the

protein per cell.
aBased on Kuzminov (1999).

Table 6

Comparison between experimental and the fitted values of the protein

levels under unirradiated conditions

Gene No of copies/cell

Fitted Experimentala

lexA 1306 1300

uvrA 49 20

dinI 384 500

polB 72 40

uvrB 243 250

ruvA 669 700

The protein numbers are represented as number of copies of the

protein per cell.
aBased on Kuzminov (1999).
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(1990) as shown in Fig. 12. These results highlight how,
given adequate experimental data, the DEMSIM frame-
work can first be trained and then be used as a predictive
tool for generating responses of genetic systems.

3.3. Example III—Induction dynamics of araBAD

operon of E. coli

The ability of the simulation framework to discrimi-
nate between alternative regulatory hypotheses is
probed by applying it to the araBAD system in E. coli.

The araBAD operon has been extensively studied as it
serves as an excellent model for the feed forward loop
motif (Seabold and Schleif, 1998; Schleif, 2000, 2003;
Wu and Schleif, 2001). The crp gene activates both the
araBAD operon and the araC gene in presence of
inducer cAMP. The araC gene product transcriptionally
activates the araBAD operon in presence of inducer
L-arabinose resulting in a feed forward loop motif (see
Fig. 13A). In addition, since the nature of regulation
(i.e. activation) by the crp gene is the same for both the
operon and the araC gene, the motif is termed as a
coherent feed forward loop (FFL). Theoretical studies
(Shen-Orr et al., 2002) have suggested that this system
acts as a sign sensitive delay element. This implies that
while the motif delays the cells response to an ON step
in the stimulus, no delay in response is observed in the
case of the complementary OFF step. In addition,
Mangan et al. (2003) have investigated the responses of
the araBAD FFL motif to cAMP ON and cAMP OFF
steps. By comparing the response of the motif to that of
lac promoter, which is a model for the simple AND gate
motif, the authors have concluded that the araBAD

system exhibits sign sensitive delay kinetics.
We used the DEMSIM framework to simulate two

different regulatory mechanisms which both support the
experimentally observed enhanced expression of the
araBAD operon and the araC gene on addition of
cAMP to a system saturated with L-arabinose. The first
motif corresponds to a FFL (Fig. 13A) and the second
motif represents a parallel motif (Fig. 13B). A simple
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AND gate motif is also considered where both crp and
araC enhance the expression of the araBAD operon as
shown in Fig. 13C. Identical values are assigned to gene
specific decay parameters for all the three mechanisms
so that the decay dynamics exhibited by the motifs are
the same. Furthermore, the gene specific generation
parameters are fitted such that all three motifs exhibit
similar araBAD expression in systems which are
saturated and starved of the inducer cAMP. Subse-
quently, the response of the motifs to cAMP ON and
OFF steps is generated and the responses of the FFL
and parallel motif are compared to the response of the
simple AND gate response. Simulation results shown
in Fig. 14 indicate that the parallel motif model for
gene regulation fails to capture the sign sensitive delay
nature of the operon. In contrast, the FFL motif
correctly exhibits a delayed response to a cAMP ON
step (Fig. 14A) while no delay is observed in response to
cAMP OFF step (Fig. 14B), suggesting that FFL is
indeed the most plausible regulatory mechanism. These
results highlight the ability of the DEMSIM framework
to effectively discriminate between alternative regula-
tory mechanisms.
4. Discussion

In this paper, we introduced a discrete event based
mechanistic simulation platform (DEMSIM) and used
it for testing and hypothesizing putative regulatory
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interactions. The key feature of the developed simula-
tion framework was the modeling of underlying
biological processes, such as transcription, translation
and decay, using stand-alone modules. Each module was
characterized by a sequence of discrete events in
accordance with the level of mechanistic detail con-
sidered. A rule based Monte Carlo procedure was
employed for capturing the randomness inherent to the
molecular binding events. Subsequently, communication
within the modules was driven by taking into account
system specific regulatory information. A distinction
was made between physical and model parameters, with
the former determined either from literature or online
databases and the latter determined by fitting simulation
results to experimental data.

The developed tool was benchmarked by applying it
to three biological systems with different levels of
complexity. The relatively simple lac operon was used
to verify that parameters embedded in DEMSIM can
indeed be trained using experimental data. Subse-
quently, the more complex SOS response system was
used to probe the predictive capabilities of the developed
framework. Simulation results indicated that the tool
was able to make fairly accurate predictions regarding
data that was not used for training the model
parameters. Finally, the araBAD system was used to
highlight the developed tool’s sensitivity to discriminate
between relatively ‘‘close’’ regulatory hypotheses.

The versatility of the DEMSIM framework allows us
to conduct numerous in silico experiments. For example,
the framework employed for SOS response system can
be used to make predictions regarding the gene
expression dynamics in a lexAdef genetic context, where
the genes are expressed constitutively (Quillardet et al.,
2003). If the model predictions are correct, then the
developed model can be used to ask more complex
questions regarding the biological system. For example,
one could investigate the timing of induction of SOS
response or the effect of single stranded DNA (ssDNA).
If the model predictions are incorrect, then the experi-
mental data can be used to refine the current model to
prepare a more accurate representation of the under-
lying physical interactions. This exercise can provide
valuable insights into the workings of the gene expres-
sion and regulatory interactions at a molecular level.

Many ‘‘top-to-bottom’’ computational frameworks
employ high-throughput biological data to infer plau-
sible regulatory hypotheses. For example, the GRAM
algorithm proposed by Joseph et al. (2003), utilizes gene
expression data and genome-wide location analysis for
DNA-binding regulators, to predict putative regulatory
interactions. In contrast the DEMSIM framework takes
into account the underlying mechanistic detail of the
gene expression and regulation processes to construct a
predictive model. Furthermore, the simulation results
demonstrate the ability of the framework to verify and
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also discriminate between relatively ‘‘close’’ regulatory
hypotheses. These observations suggest that DEMSIM,
which adopts a ‘‘bottom-to-top’’ approach, can be
employed in tandem with ‘‘top-to-bottom’’ computa-
tional frameworks such as GRAM to verify and
complete the candidate regulatory hypotheses generated
by the latter approaches. However, unlike ‘‘top-to-
bottom’’ approaches, extending the simulation frame-
work to simulate large-scale gene networks requires
enormous computational resources. One possible way of
addressing this problem is to exploit the modular
structure of large-scale regulatory networks. Recent
studies have indicated that the regulatory networks can
be decomposed into clusters of motifs (Shen-Orr et al.,
2002; Alon, 2003). Hence, the regulatory hypotheses
generated by the ‘‘top-to-bottom’’ approaches can be
investigated for their modularity and the generated sub-
networks/motifs can be simulated using the proposed
framework. Comparison of simulation predictions with
experimental data would then serve to verify, correct
and complete the inferred hypotheses.

Due to the underlying stochastic nature of the
simulation framework, extending the framework to
model systems with larger copy numbers of species
involved is difficult as the number of events increases by
many folds. In such systems we envision a hybrid
simulation framework that uses both differential equa-
tion based and stochastic methods in tandem (Kiehl
et al., 2004). While differential equations can be used
to model species with high copy number, DEMSIM
can be used selectively for only low copy number
species. We are currently working towards developing
an integrated computational framework that brings to
bear both ‘‘top-to-bottom’’ and ‘‘bottom-to-top’’ ap-
proaches to identify and verify candidate regulatory
networks.
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Appendix

In the kinetic model for transport of inducer (lactose)
developed by Wong et al. (1997) the rate of transport, V

of inducer into the cell is given by

V ¼ kin

½Lactose�ext

½Lactose�ext þ KT

� kout

½Lactose�in
½Lactose�in þ KT

� �

	½lacY �:
Here, ½lacY � is the available amount of protein
generated by the lacYgene (permease); kinis the specific
rate constant for transport of lactose into the cell and
has a value of 35.8 mol lactose/mol permease/s; kout is
the specific rate constant for transport of lactose out of
the cell and has a value of 1.19 mol lactose/mol
permease/s; KT is the saturation constant for lactose
transport and has a value of 2.6	 10�4 M; and
½Lactose�extis the external lactose concentration set at
0.001 M.
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