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Abstract

This paper addresses the inference of the transcriptional regulatory network ofBacillus subtilis. Two inference approaches, a linear,
additive model and a non-linear power-law model, are used to analyze the expression of 747 genes fromB. subtilisobtained using Affymetrix
GeneChip® arrays under three different experimental conditions. A robustness analysis is introduced for identifying confidence levels for
all inferred regulatory connections. Both the linear and non-linear methods produce candidate networks that share a scale-free or a “hub-
and-spoke” topology with a small number of global regulator genes influencing the expression of a large number of target genes. The two
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omputational approaches in tandem are able to identify known global regulators with a high level of confidence. The linear mo
o identify the interactions of highly expressed genes, particularly those involved in genetic information processing, energy metab
ignal transduction. Conversely, the non-linear power-law approach tends to capture development regulation and specific carbon
egulatory interactions.

2004 Elsevier Ltd. All rights reserved.
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. Introduction

The data explosion currently overwhelming biology
resents a challenging paradox: “you can see everything, but
nderstand very little”. Sequencing a genome, which only a

ew years ago was a tremendous feat, is now routine. Many
xamples of transcript array analysis can be found in the lit-
ratures (Chu et al., 1998; Cohen, Pilpel, Mitra, & Church,
002; Gardner, di Bernardo, Lorenz, & Collins, 2003; Lee,
inaldi, & Robert, 2002; Spellman et al., 1998; Wen et al.,
998); an exponential increase since the ground breaking
ork of Brown and co-workers onS. cerevisiae(DeRisi, Iyer,
Brown, 1997). Genomics, proteomics and metabolomics

re now the cutting edge of physiological analysis (Gill et
l., 2002; Herrgard, Covert, & Palsson, 2003; Ideker et al.,
001; Misra et al., 2002; Oh, Rohlin, Kao, & Liao, 2002;
tephanopoulos, Hwang, Schmitt, Misra, & Stephanopoulos,

∗ Corresponding author. Tel.: +1 814 863 9958; fax: +1 814 865 7846.
E-mail address:costas@psu.edu (C.D. Maranas).

2002). These technologies when married with physiol
cal measurements, genome-wide transcription measure
and genetic sequence generate huge tracts of integrate
Buried inside this vast amount of interconnected informa
lay the output of millions of years of evolution. Gene exp
sion, the process by which a genetic blueprint is turned
a working component of the organism through an inter
diate mRNA message, is a meticulously managed ende
Understanding the control of gene expression has long
an important challenge because its understanding is c
to our ability to steer an organism in directions other than
which it was programmed. Expression data alone doe
hold the answer to this puzzle. However, if no transcrip
present, there will be no protein (the reverse is not alw
true). Thus, understanding the regulation of gene expre
networks is a necessary though not sufficient first step tow
elucidating the flow of information in biological systems

A number of studies have been conducted and framew
proposed for the purpose of extracting regulatory netw
from gene expression data. Most early network infere
098-1354/$ – see front matter © 2004 Elsevier Ltd. All rights reserved.
oi:10.1016/j.compchemeng.2004.08.030
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methods relied primarily on clustering genes on the basis
of their expression profiles (D’Haeseleer, Wen, Fuhrman, &
Somogyi, 1999; Dougherty et al., 2002; Eisen, Spellman,
Brown, & Botstein, 1998; Wen et al., 1998). Recently, there
has been considerable interest in developing computational
tools that go beyond answering the question of whether two
or more genes have similar expression profiles. Instead, the
central question that is being raised is whether we can un-
cover, hidden within gene expression data, the signature,
extent and directionality of interactions between different
genes. In other words, rather than simply grouping genes
with similar expression profiles, new methods attempt to
learn gene regulatory patterns from expression data. Broadly,
these methods can be classified into two distinct categories
based on their fundamental treatment of gene interactions.
Deterministic model-basedmethods assume there exists a
deterministic formalismY = f(X) that captures the effect
of expression level of geneX on geneY. Different choices
for the functionf(·) (e.g., linear, sigmoidal, etc.) give rise
to many versions of model-based methods (D’Haeseleer et
al., 1999; Gardner et al., 2003; Holter, Maritan, Cieplak,
Fedoroff, & Banavar, 2001; Weaver, Workman, & Stormo,
1999; Zak, Gonye, & Schwaber, 2003). Conversely,stochas-
tic model-basedmethods start by postulating that experimen-
tally observed gene expression profiles correspond to samples
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functions (such as AND, OR, NOT, etc.). More recently,
an extension of this approach to account for uncertainty in
expression data has been proposed in the form of probabilis-
tic Boolean networks (Akutsu, Miyano, & Kuhara, 2000;
Shmulevich, Dougherty, Kim, & Zhang, 2002; Shmulevich,
Lahdesmaki, Dougherty, Astola, & Zhang, 2003). How-
ever, in most real gene expression settings, Boolean ideal-
izations may not be appropriate as genes are expressed at
continuously varying intermediate expression levels (Jong,
2002). Consequently, more general approaches have been
proposed which model mRNA expression level as a contin-
uously varying quantity. These include linear weight mod-
eling (D’Haeseleer et al., 1999; Weaver et al., 1999), ordi-
nary differential equations (Chen, He, & Church, 1999) and
S-systems (Akutsu et al., 2000; Kikuchi, Tominaga, Arita,
Takahashi, & Tomita, 2003; Maki, Tominaga, Okamoto,
Watanabe, & Eguchi, 2001; Savageau, 1998). In this work,
we use a continuous description of gene expression since we
do not observe any natural threshold values in our experi-
mental data that can be used to unambiguously discretize the
expression states.

2. Systems and methods
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rawn from an unknown multivariate probability distrib
ion. Bayesian networks provide a popular alternative
chieving this objective by postulating a multivariate jo
onditional probability model that explains the observed
ression data (Friedman, Linial, Nachman, & Pe’er, 200;
e’er, Regev, Elidan, & Friedman, 2001).
Both deterministic and stochastic models have thei

pective advantages and disadvantages. The relative si
ty and computational tractability of deterministic mod

akes them amenable to inference of large-scale gen
ide transcriptional networks. However, these models
ensitive to over-fitting and prediction artifacts. Stocha
nference models such as Bayesian networks, becaus
ake a probabilistic view of gene expression, are less sen
o over-fitting. However, the application of Bayesian netw
odels is limited due to their cumbersome treatment o

les and their relatively large computational requirement
he light of the advantages/limitations of the two approac
deterministic model-based approach is adopted to infe
nderlying regulatory network ofBacillus subtilison a globa
cale.

In addition to classifying gene network inference m
ds based upon the mathematical formalism used to m

he regulation process, a further distinction can be m
ased upon how gene expression is handled within thes
alisms. Boolean networks were among the first formal
roposed to model gene interactions (Akutsu, Miyano, &
uhara, 1999; Ideker, Thorsson, & Karp, 2000; Somogy
Sniegoski, 1996). In this approach, genes are assum

o be either ON or OFF and the input–output relations
etween them are modeled through deterministic lo
.1. Scope of investigation

The regulatory network formed by 747 genes invol
n the central metabolism ofB. subtilisduring fed-batch pro
ease production is resolved from time series gene expre
ata collected from three different experimental condit
ia two different deterministic model-based approacheB.
ubtilis and relatedBacilli are industrial workhorse orga
sms used for, among other things, protein production.B. sub-
ilis is arguably the best characterized gram-positive bac
t has been sequenced (Kunst et al., 1997) and a large numbe
f quantitative physiological studies ofB. subtilisand related
acilli are present in the literature (Christiansen, Christense
Nielsen, 2002; Christiansen, Michaelsen, Wumpelmann
ielsen, 2003; Dauner & Sauer, 2000, 2001; Dauner, Bailey
Sauer, 2001a; Dauner, Storni, & Sauer, 2001b; Dauner e

l., 2002; Sauer et al., 1997).
The three experimental conditions used for inference

loy Affymetrix GeneChip® arrays for obtaining genom
ide expression data for: (i) a cradle-to-grave experim

20 time points taken over the entire course of the ferme
ion); (ii) an amino acid pulse experiment (9 time points ta
mmediately after an amino acid pulse in mid-expone
rowth); and (iii) an exponential growth phase experim
5 time points taken during exponential growth). The us
ffymetrix arrays implies that our expression data are ti

esolved absolute (non-condition scaled) transcript sig
s opposed to the relative expression changes typically
ured with cDNA arrays. The gene list includes genes
olved in primary metabolism in addition to some kno
ranscriptional regulators.
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Two alternative model formulations, with different levels
of computational complexity, are used to identify regulatory
connections. The first approach, based upon modeling the
dynamics of gene expression as a first-order, linear process
(D’Haeseleer et al., 1999), assumes the expression level of a
gene at a particular time-point is modeled as a linear combi-
nation of the concentration of all other genes at the previous
time-point. The network connectivity, encoded by the coeffi-
cients in the linear combinations, is determined by minimiz-
ing the error between the predicted and experimental gene
expression values. The second methodology generalizes the
linear approach by postulating a non-linear differential equa-
tion model (Varner, 2000). In the non-linear framework a
feedback law representing the control instructions governing
expression is identified using tools from non-linear control
theory. Putative connections between genej and genek are
captured using a power-law expansion of the identified con-
trol function where the power-law exponents are determined
directly from time-resolved gene expression data. A robust-
ness analysis is carried out on the identified connections of
both models to determine their level of confidence. The un-
derlying principle of the robustness analysis is to assign a
confidence level to each inferred connection by comparing
the likelihood of inferring a regulatory coefficient of a given
magnitude from real versus randomized data. We first explore
t ng a
n
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Note that a discrete (forward) difference is employed for es-
timating the rate of change of expression (D’Haeseleer et
al., 1999; Yeung et al., 2002). Alternatively, we also used an
interpolation procedure for estimating the rate of change of
gene expression. However, no significant differences in the
results were observed over the simpler, forward difference
approach. Eq.(2.2) is recast into matrix notation to yield

ŻN×(T−1) = WN×NZN×(T−1) (2.3)

For most microarray time course experiments, the total num-
ber of genes investigatedN, is much larger than the number
of time-pointsT. This implies that the above system of equa-
tions is underdetermined because there areN(T − 1) equa-
tions andN2 variables leading to multiple solutions. Singular
value decomposition (SVD) is used to obtain the entire fam-
ily of solutions that is consistent with the hypothesized linear
model (Yeung et al., 2002). To this end, the transpose of Eq.
(2.3) is taken in order to recast the system of equations in
standard form (i.e.,Ax = b):

(ZT)(T−1)×N(WT)N×N = (ZT)(T−1)×N (2.4)

Subsequently, SVD is applied toZT yielding

(
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he linear model followed by a complementary study usi
on-linear model.

.2. Linear model

The linear model considered here was first employe
D’Haeseleer et al., 1999) and has been subsequently u
y a number of other researchers (Alter, Brown, & Botstein
000; Gardner et al., 2003; Holter et al., 2000, 2001; We
t al., 1999; Yeung, Tegner, & Collins, 2002). In this ap-
roach, the rate of change of concentration of the mR
peciesi is given by

dzi(t)

dt
=

N∑
j=1

wijzj(t) ∀i = 1,2, . . . , N (2.1)

herezi(t) (pmol/gdw) is the concentration of mRNA spec
as measured at time-pointt andwij is the regulatory coe
cient capturing the regulatory effect of genej on genei. If
ij > 0 then genej up-regulates (activates) genei while if
ij < 0 then, genej down-regulates (inhibits) the express
f genei. If wij = 0, then no regulatory connection is impl
etween genesi andj. Given the discrete nature of the ge
xpression time series data, Eq.(2.1) can be approximate
y the following set of linear algebraic equations:

zi(t + 1) − zi(t)

�t
=

N∑
j=1

wijzj(t) ∀ i = 1,2, . . . , N,

t = 1,2, . . . , T − 1 (2.2)
ZT)(T−1)×N = U(T−1)×(T−1)�(T−1)×N(VT)N×N (2.5)

here� is a diagonal matrix containing theT− 1 non-zero
ingular valuesσ1, σ2, . . . , σT−1 andV an orthogonal matri
ontaining the singular vectorsv1, v2, . . . , vN correspondin
oall (both zero and non-zero) singular values. The partic
olution for Eq.(2.4) that minimizes the L2-norm is then
iven by

Ŵ
T
)N×N = VN×N�−1

N×(T−1)U
T
(T−1)×(T−1)(Ż

T
)(T−1)×N

(2.6)

here �−1 is a diagonal matrix with value
−1
1 , σ−1

2 , . . . , σ−1
T−1 (Yeung et al., 2002). The genera

olution for the underdetermined system of equat
epresented by Eq.(2.4) is given by

WT)N×N = (Ŵ
T
)N×N + CN×(N−T+1)(V̂

T
)(N−T+1)×N

(2.7)

hereV̂ is the null-space matrix andC a matrix of arbitrary
calars (Yeung et al., 2002). All possible alternate netwo
onfigurations that are consistent with the experimental
re embedded within Eq.(2.7). From this family, the spar
st network is determined by choosing the scalar coeffi
atrixC such that the number of zero entries inWT is max-

mized. This is achieved by solving the Linear Programm
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(LP) problem:

minimize
∑
i,j

(w+
ij + w−

ij )

subject toŵij +
N−T+1∑
k=1

cjkv̂ki = w+
ij − w−

ij ∀i = 1,2, . . . , N,

j = 1,2, . . . , N, w+
ij ≥ 0, w−

ij ≥ 0

∀i = 1,2, . . . , N, j = 1,2, . . . , N

whereŵij is the (i,j)th element ofŴ
T
, v̂ki the (k,i)th element

of V̂
T

andw+
ij + w−

ij is the (i,j)th element ofWT. The right-
hand side of the equality constraint quantifies the absolute
deviation of the (i,j)th element ofWT from zero. The objec-
tive function minimizes the total of all such deviations so that
sparsity can be achieved. A key feature of the LP optimiza-
tion model as formulated above is that it decomposes over the
j index. This implies that instead of solving one large-scale
optimization problem involving all genes, it can be solved
sequentially for each gene. This decomposable structure of
the problem can be exploited for (a) parallelizing the solu-
tion algorithm and (b) limiting the amount of computational
resources expended if only a sub-network involving a sub-set
of all genes needs to be inferred (Yeung et al., 2002).

Using basic LP principles, it can be shown that at the
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degradation are unknown and are assumed to be randomly
distributed within physiologically possible ranges. These dis-
tributions are sampled through a Monte Carlo procedure (see
Section3). The specific growth rate is measured from fermen-
tation data. The quantityyM

zj
(t) denotes the raw array signal

for transcriptj at timet andfzj (z(t), k) represents the rela-
tionship between intracellular concentration and array signal
for transcriptj, wherek denotes a vector of parameters con-
tained in the functionfzj (z(t), k).

The quantityuzj (t) in Eq. (2.8)denotes the control input
put forth by the organism to regulate the expression of gene
j. If a mechanistic understanding of the regulation of genej
were known, it could be used to capture how the state of the
organism affects the expression of genej. Many examples of
this approach exist in the literature for both deterministic as
well as stochastic gene expression scenarios (Arkin, Ross, &
McAdams, 1998; Bailey et al., 1983; Lee & Bailey, 1984a,
1984b; McAdams & Arkin, 1997, 1998, 1999; Rao & Arkin,
2001; Rao, Wolf, & Arkin, 2002; Wolf & Arkin, 2002; Wong,
Gladney, & Keasling, 1997). However, we assume that we do
not have the control mechanism and as such are not able to
build a mechanistic-based representation ofuzj (t). Rather, we
use the transcript profiling data to identify a feedback control
law uM

zj
(t) that is guaranteed to produce a model estimated

array signal that tracks the measured value (Csete & Doyle,
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ptimal solution of the LP model, each gene can be regu
y at most (T − 1) genes. This is because for a givenj, the

otal number of equations in the LP model isN, while the
otal number of variables is2N + (N − T + 1). Since eac
asic feasible solution for the LP must haveNbasic variables
f which (N − T + 1) will be thecjk variables (since the
re free variables and are not being directly forced in
articular direction by the objective function), the remain
T− 1) variables will be the absolute deviations. Note tha
given (i,j)th element, only one of the two deviation variab
an be non-zero as otherwise the basis would have lin
ependent columns. Thus, a particular regulatory conne
ill be inferred exclusively as being activating or inhibitin

.3. Non-linear model

The mass balance equations governing the specific
entration of the jth mRNA species, denoted aszj(t)
pmol/gdw) is given by

dzj(t)

dt
= rT,zj (t)uzj (t) − (r̂g(t) + βzj )zj(t),

M
zj

(t) = fzj (z(t), k), j = 1,2, . . . , N (2.8)

hererT,zj (t) denotes the maximum specific rate of exp
ion of genej (specific expression rate in the absenc
ontrol input),βzj the rate constant governing the spec
egradation of transcriptj (specific rate of degradation a
umed to be first-order with transcript concentration)

ˆg(t) the specific growth rate. The maximum specific
f transcription and the rate constants governing mR
002).
Define the error between the experimental array signa

ranscriptj at time t (yE
zj

(t)) and the model predicted arr

ignal for transcriptj at timet yM
zj

(t) as

j(t) ≡ yM
zj

(t) − yE
zj

(t) (2.9)

e propose the prediction error be governed by the li
ynamics:

dεj
dt

= −λjεj(t) ∀j (2.10)

hereλj ≥ 0 for everyj. Differentiating Eq.(2.9) and sub
tituting Eqs.(2.8) and (2.10)yields

N

q=1

∂fj

∂zq
[rT,zq (t)uzq (t) − (r̂g(t) + βzq )zq(t)] =

dyE
j

dt

− λjεj(t) ∀j (2.11)

q. (2.11)describes the relationship between the contro
ut governing the expression of genej and the error betwee

he estimated and measured array signals.
It is possible to solve foruzj (t) as a function of the pre

iction error if the relationship between the array signal
RNA concentration were known for each gene, i.e.,

unction fzj (z(t), k). The exact relationship relating arr
ignal to concentration is not known. However, in all ca
n vitro transcripts consisting of a cocktail of five differe

RNA species of known concentration ranging from 0.
60 pM were added to all samples directly before the ana
his internal standard (referred to as IVTs) provides avery
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Fig. 1. IVT probe set signals vs. chip concentration for the cradle-to-grave experiment. The open circles denote a probe set signal for a given concentration at
each time point. For example, at 40 pM, a single transcript species was measured at each time point (total of 20 measurements for the cradle-to-grave run). A
correction factor was introduced to convert chip concentration to intracellular concentration.

approximate means of determining the relationship between
chip concentration and array signal (once we have an esti-
mate of chip concentration it is possible to back calculate an
approximate physiological concentration). As there is con-
siderable variance amongst the 5 IVT species at a single
concentration (seeFig. 1), we use a Monte Carlo approach
to estimate a set of possiblefzj (z(t), k)’s. We approximate
fzj (z(t), k) as a set of piece-wise linear functions:

yM
zj

(t) = m(θzj(t)) + b,

(m, b) =




(m1, b1), 0 ≤ yE
zj

(t) ≤ S1
...

...
(mn, bn), Sn−1 < yE

zj
(t) ≤ Sn

(2.12)

where the slope andy-intercept (mj ,bj) are determined by
fitting a line between sequential IVT concentration pairs and
their corresponding signals (one line per signal region per
iteration) andθ denotes the conversion between physiological
and chip concentration. Given Eq.(2.12)we can solve Eq.
(2.11)for uzq (t)

uM
zj

(t) = 1

rT,zj (t)

{
δzj (t)

(
yM
j (t) − b

mθ

)
+ 1

mθ(
yE(t + �t) − yE(t − �t)

)}

δ

A central difference is used to approximate the array sig-
nal derivative using interpolated array data (step size is�t =
0.1 h). Eq.(2.13)represents the feedback input that is guar-
anteed to produce a simulated array signal that will converge
to the experimental signal ast → ∞. Thus, it approximates
the control input used by the organism to produce the tran-
scriptional program captured in the experiment.

To probe the connectivity of the expression network, we
expanduM

zj
(t) in terms of the estimated specific mRNA con-

centration vectorz. In contrast with the linear model that
looks for interactions that lie on or near a hyperplane in ex-
pression space, the non-linear model utilizes the power-law
expansion:

uzj (t) ≡ 1

zmax

N∏
q=1

z
γjq
q (t) (2.15)

which represents a curvilinear hypersurface. As was true in
the linear case, the expansion exponentγ jq denotes the sen-
sitivity of the control of expression of genej to the scaled
concentration of transcriptq, where the scaling factorzmax

denotes the maximum estimated concentration determined
over all expressed species and time. Taking the natural log of
Eq.(2.15)yields the linear function:

ntity
he
sitiv-
× j j

2�t
− λ(yM

j (t) − yE
j (t))

(2.13)

whereδzj (t) is defined as

zj (t) ≡ (r̂g(t) + βzj ) (2.14)
ûzj (t) = η +
N∑
q=1

γjqẑq(t) (2.16)

where ˆ· denotes the natural log of the corresponding qua
in Eq. (2.15). Eq.(2.16)represents a family of planes in t
log transformed control-transcript space where the sen
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ity coefficientsγ jq and interceptη can be determined using
multivariate regression.

Note that the networks inferred from both the linear and
non-linear models are correlational in nature and not causal.
This stems from the fact that the various regulatory relation-
ships as inferred by the two models are determined purely by
minimizing the error between the predicted expression pro-
files (under the particular model definition) and the experi-
mentally obtained expression profiles. No mechanistic detail
is taken into account in terms of whether a particular regula-
tory interaction is biologically feasible at the transcriptional
level. In the spirit of previous works on inferring gene net-
works from microarray data (Alter et al., 2000; D’Haeseleer
et al., 1999; Holter et al., 2000, 2001; Tegner, Yeung, Hasty,
& Collins, 2003; Weaver et al., 1999; Yeung et al., 2002),
our goal is to efficiently infer networks on a global scale
and generate a “rough draft” of the network topology, using
which more detailed and local analysis can be conducted in
the future.

2.4. Permutation-based significance analysis

Both modeling approaches, by minimizing the error
between the predicted gene expression value and the exper-
imental value, generate a list of putative gene–gene regula-
t red
c f the
i e lin-
e st (
− y is
e ical
j by
e s for
w ient
i dered
s y ad
h old is
e on-
n ence
e prob-
a ion
d ;
P een
g of
w

c

w of
r ized
d
F -
t ence
l the
a

Fig. 2. The distributions obtained for the actual and randomized data sets
are superimposed on top of each other. The confidence level for a given
regulatory coefficient valuew∗ is then determined by computing the ratio of
the number of inferred connections from the actual data that have a regulatory
coefficient value greater thanw∗ to the total (sum of actual and randomized)
number of regulatory connections with value greater thanw∗.

inferred transcriptional network would thus be characterized
by regulatory connections having different confidence levels.
The confidence level metric can be used as an additional de-
gree of freedom for studying the topological properties of the
inferred network. Increasing the confidence level and analyz-
ing the regulatory connections that survive yields hypotheses
regarding the biological processes being captured in the ex-
pression data on the time-scale of the sampling frequency.

3. Discussion

The network topology inferred for the three different ex-
perimental data sets using the linear model is shown inFig. 3.
These plots correspond to the sparsest regulatory networks.
Rows corresponding to genes with no regulatory effect have
been eliminated. The most striking feature of the inferred net-
works is the existence of regulatory bands, a characteristic,
which indicates the existence of a small number of global
regulators or “hubs” that influence a large number of other
genes. Such “hub-and-spoke” topologies (also referred to as
scale-free) have been observed for metabolic networks (Fell
& Wagner, 2000; Jeong, Tombor, Albert, Oltvai, & Barabasi,
2000) and protein–protein interaction networks (Jeong,
Mason, Barabasi, & Oltvai, 2001). Two key features of such
n e of
t be-
t
t lysis
f ents
w nfi-
d of
a ex-
p rved
i ven
t evel
r net-
ory interactions. However, it is unclear which of the infer
onnections are real and which are simply artifacts o
nference process. For instance, it can be shown for th
ar model, that each gene will be regulated by at moT
1). Clearly, this property arises from the way sparsit

nforced through the LP model and there is no biolog
ustification for it. Such model bias is typically addressed
nforcing threshold (cut-off) values whereby connection
hich the absolute value of the inferred regulatory coeffic

s higher than some pre-specified threshold are consi
ignificant. The choice of the threshold value is usuall
oc and symmetric in the sense that the same thresh
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ections. To address this issue, we calculate a confid
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esarin, 2001). Thus, the confidence of a connection betw
enesi andj with an inferred regulatory coefficient value
∗, denoted ascij(w∗), is defined as

ij(w
∗) = Na(wij ≥ w∗)

Na(wij ≥ w∗) + Nr(wij ≥ w∗)
(2.17)

hereNa(wij ≥ w∗), Nr(wij ≥ w∗) denote the number
egulatory connections inferred from the actual/random
ata with a regulatory coefficient value greater thanw∗ (see
ig. 2). For instance, if for a given value ofw∗, no connec

ions are inferred from the randomized data, then a confid
evel of 100% is assigned to all connections inferred from
ctual data with a regulatory coefficient higher thanw∗. The
etworks are (i) their robustness to the random failur
he nodes of the network and (ii) relatively short paths
ween any two nodes in the network.Figs. 4 and 5highlight
he results of the permutation-based significance ana
or the linear and non-linear model. Regulatory coeffici
ith higher absolute value are inferred with higher co
ence as shown inFig. 4. Fig. 5 indicates the number
rcs that are inferred for a given confidence level. As
ected, the fraction of inferred connections that are prese

s inversely proportional to confidence level. However, e
hough fewer number of arcs survive strict tolerance l
equirement, the underlying scale-free topology of the
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Fig. 3. Network topology inferred for the three experiments using the linear model. White signifies activation or positive regulation whereas grey denotes
inhibition or negative regulation. Note that rows corresponding to genes not regulating any other genes are eliminated for clarity of presentation.

Fig. 4. Permutation-based significance analysis results for the linear model. For a given confidence level, asymmetric thresholds are obtained for activation and
inhibition. For instance, for a minimum confidence level of 90% for the cradle-to-grave experiment, the activation and inhibition regulation thresholds are 0.416
and−0.324, respectively. Such thresholds are expected to be different for different experimental conditions as shown in the figure. However, the inhibition
regulation threshold is seen to be smaller in absolute value than the activation regulation threshold for all three experiments.

work is still preserved as shown inFig. 6. Also, the scale-free
topology that is observed in the real expression data is not
preserved when the data is randomized. The degree distribu-
tions for the randomized data sets for all three experimen-
tal conditions are closer to uniform distributions rather than
exponential distributions implying that the observed scale-

Fig. 5. Fraction of regulatory connections preserved as minimum confidence
level is increased. A relatively small fraction of the total inferred connections
(15% for cradle-to-grave, 8% for amino acid pulse and 3% for exponential
growth phase) survive when a high level of confidence (>90%) is imposed.

free topologies are not artifacts of the proposed inference
procedure.

Table 1lists some of the global regulators identified by
the linear model from the cradle-to-grave study. All the reg-
ulator genes identified in the base case regulatory network
are retained even at higher confidence levels though with re-
duced out-degrees. A number of genes involved in amino acid
metabolism are identified as regulator genes. These include
gbsA, argG, ytcF, trpE, rocF, ysiB and cysK. In addition,
genes participating in carbohydrate metabolism, in particu-
lar glycolysis/gluconeogenesis and the citrate cycle (TCA)
are also inferred as regulatory genes. The glycolysis genes
includepdhC, gap, andacoLwhile the TCA cycle genes in-
cludesucC, citB, sdhA, odhBandpckA. A number of genes
that are involved in more than one functional category are also
uncovered by the linear model. For instance, thegap gene
is involved in both glycolysis and amino acid metabolism
while acoL is involved in the TCA cycle as well as amino
acid metabolism in addition to glycolysis. Energy metabolism
genes involved in oxidative phosphorylation such asctaE,
atpB and sdhAare also inferred as regulator genes. Vari-
ous genetic information processing genes are also inferred as
regulator genes. These includesecE(protein export, sorting
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Fig. 6. Number of connectionsK vs. the normalized probability of at leastK connections for the network inferred from the cradle-to-grave expression
time series using the linear model (top panel) and non-linear model (bottom panel). The parameterK is the total-degree (sum of in- and out-degrees) of a
particular node andp(K) is the probability of finding a node with at leastK connections (total-degree). The linear inference appears approximately linear on
a log–log scale for all confidence levels suggesting a power-law relationship that is characteristic of scale-free networks. The non-linear distribution exhibits
agreement with a power-law distribution for <10 connections after which the probability plateaus and then decays for a large number of connections. The
probability of finding a connection in the non-linear regime is almost always lower than the sparse linear model, with the majority of genes having lessthan
10 connections.

Table 1
Identified global regulators inferred from the cradle-to-grave data set by the
linear model

Gene Function

secE Preprotein translocase SecE subunit
phrE Regulator of the activity of phosphatase rapE
ctaE Cytochrome caa3 oxidase subunit III
gbsA Glycine betaine aldehyde dehydrogenase
sucC Succinyl-CoA synthetase beta chain
argG Argininosuccinate synthase
atpB ATP synthase a chain
pdhC Pyruvate dehydrogenase
sigW RNA polymerase ECF-type sigma factor
ytcF S-adenosylmethionine decarboxylase
gapA Glyceraldehyde 3-phosphate dehydrogenase
trpE Anthranilate synthase component 1
citB Aconitate hydratase
sdhA Succinate dehydrogenase flavoprotein subunit
csn Chitosanase
rocF Arginase
odhB 2-Oxoglutarate dehydrogenase
pckA Phosphoenolpyruvate carboxykinase
hpr Transcriptional regulator for sporulation initiation
acoL Acetoin dehydrogenase E3 component
rbsK Ribokinase
ysiB Enoyl-CoA hydratase
phrA Phosphatase rapA inhibitor
ald Stage V sporulation protein N
cysK Cysteine synthetase A
rapA Response regulator aspartate phosphatase
sigH Sporulation-specific sigma factor

and degradation),sigW(RNA polymerase sigma factor),hpr
(transcriptional regulator for peptide transport and sporula-
tion initiation) andald (stage V sporulation protein N).

Comparison of the networks inferred for the three experi-
mental conditions identified several consensus regulatory re-
lationships. Specifically, the two genesyloH andphrA are
identified as a global activator and inhibitor, respectively,
from all three datasets by the linear model.yloH is a key com-
ponent of the transcription machinery as it encodes for the
�-subunit of the RNA polymerase. This gene is found to ac-
tivate 22 other genes belonging to a wide range of functional
categories including amino acid metabolism, carbohydrate
and complex lipid metabolism and oxidative phosphoryla-
tion. In addition, this gene is found to up-regulate other ge-
netic information processing genes, particularly those coding
for aminoacyl-tRNA synthetases (serS,gltXandthrS) that are
required for translation and DNA polymerase subunits (dnaE
andyorL) that are required for DNA replication and repair.
ThephrAgene encodes for a 44 amino acid signaling protein
involved in extracellular signaling that is required for timing
the cell’s decision to choose a particular physiological state
such as growth or sporulation (Jiang, Grau, & Perego, 2000;
McQuade, Comella, & Grossman, 2001; Phillips & Strauch,
2002). This gene is found to down-regulate 18 other genes,
of which 4 genes (kinA, sigF, spo0Aandspo0F) are key par-
t ,
1 h the

icipants in the initiation of sporulation (Stragier & Losick
996). These consensus results indicate that even thoug
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Table 2
Identified global regulators of known function inferred from the cradle-to-
grave data set by the non-linear model

Gene Function

spo0J Stage 0 sporulation protein
spo0B Sporulation initiation phosphotransferase
spo0F Two-component response regulator involved in the

initiation of sporulation
spoIIID Transcriptional regulator of sigma-E and sigma-K

dependent genes
ynzD Hypothetical protein similar tospo0E
tnrA Transcriptional pleiotropic regulator involved in

global nitrogen regulation
phoR/phoP Two-component sensor histidine kinase. Potential

cognate response regulator is PhoP
cggR Repressor ofgapAexpression
ccpA Transcriptional regulator mediating carbon

catabolite repression (Lacl family)
kina Two-component sensor histidine kinase involved in

the initiation of sporulation
kinC Two-component sensor histidine kinase involved in

the initiation of sporulation
sigY RNA polymerase ECF-type sigma factor
rapG(F,K,D,I) Response regulator aspartate phosphatase
gerE Transcriptional regulator required for the expression

of late spore coat genes
lexA Transcriptional repressor of the SOS regulon
glnR Transcriptional repressor of the glutamine

synthetase gene
oppC(D,F,A) Oligopeptide transport system proteins
hprP P-Ser-HPr phosphatase
sinR Transcriptional regulator of post-exponential-phase

responses genes
ald Alanine dehydrogenase (stage V sporulation protein

N)
secE(F) Preprotein translocase subunit

linear model takes a relatively simplistic view of gene regu-
lation, it can indeed uncover biologically relevant regulatory
relationships.

The network topology recovered from the cradle-to-grave
experiment using the non-linear model as a function of con-
fidence level is shown inFig. 6. As in the linear case, the
inferred network is banded (indicative of a “hub-and-spoke”
architecture). The non-linear inference produces a network
in which the bulk of genes have less than 10 connections.

Fig. 7. Average concentrations of the reg

There is approximately a 10% chance of finding a gene with
more than 10 connections. The chance of finding a gene with
a total degree of >100 is small (seeFig. 6). The non-linear
model is able to capture regulatory interactions involved in
the initiation of sporulation as well as global nitrogen and
carbon metabolism. Some prominent regulatory genes in-
ferred from the cradle-to-grave experiment via the non-linear
model are listed inTable 2. Several known sporulation con-
trol genes,spo0J, spo0Band kinC are inferred as regula-
tors with high confidence (Sonenshein, 2000). In addition
to sporulation control, several potential nutritional regulators
are also identified such astnrA, a transcriptional pleiotropic
regulator involved in global nitrogen metabolism (Beier,
Nygaard, Jarmer, & Saxild, 2002; Brandenburg et al., 2002;
Ferson, Wray, & Fisher, 1996; Fisher, 1999; Fisher, Bran-
denburg, & Wray, 2002; Fisher & Wray, 2002; Robichon
et al., 2000; Wray, Ferson, & Fisher, 1997; Wray, Ferson,
Rohrer, & Fisher, 1996; Wray, Zalieckas, Ferson, & Fisher,
1998; Wray, Zalieckas, & Fisher, 2001) andahrC, a tran-
scriptional regulator involved in the metabolism of arginine
(Czaplewski, North, Smith, Baumberg, & Stockley, 1992;
Dennis, Glykos, Parsons, & Phillips 2002; Holtham et al.,
1999; Klingel, Miller, North, Stockley, & Baumberg, 1995;
Miller, Baumberg, & Stockley, 1997; Stockley et al., 1998).

The non-linear model is able to capture known regula-
t Con-
s
n ed
w . Of
t mino
a other
p
c lism
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p ns to
n con-
n
B 00
W
p
k .,
ulator genes inferred by the two models.

ory interactions at a confidence level above random.
ider the nitrogen metabolism regulatorstnrAandahrC. The
on-linear model estimates thattnrAexpression is connect
ith 61 genes (out-degree) at a confidence level of 60%

he 61, 20 genes are involved in nitrogen metabolism/a
cid biosynthesis or peptidoglycan biosynthesis, 7 are
robable regulatory genes (rapG, rapF, spo0E, oppC, lexA,
omPandcomX) and the remainder are carbon metabo
enes, for example,glcK, gapB, PTS system genes or DN
olymerases and ribosomal genes. Of the connectio
itrogen/amino acid biosynthetic genes, three predicted
ections are known (ureB, gltA and glnA (Fisher, 1999;
elitsky, Wray, Fisher, Bohannon, & Sonenshein, 20;
ray et al., 1996, 1997, 1998)) with a fourth gene,gabD,

utatively linked togabP, a permease downstream ofgabD,
nown to be very strongly regulated bytnrA (Ferson et al
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1996; Wray et al., 1996, 1998). Consistent with the litera-
ture,ahrC is predicted to act as both an activator and repres-
sor of arginine metabolism but also appears to be involved
with the regulation of the metabolism of other amino acids
(Czaplewski et al., 1992; Dennis et al., 2002; Holtham et al.,
1999; Klingel et al., 1995; Miller et al., 1997; Stockley et al.,
1998). ahrC is predicted to up-regulateargD, pheA, hisBand
gltA and down-regulateargG, tyrA, hisF, cysE, hisH, glyQ
andtrpA.

Both models arrive at the same putative banded or “hub-
and-spoke” architecture for the gene expression network of
B. subtilis. However, the genes identified as hubs in the net-
work by the respective models are quite different. The linear
model seems much better able to capture interactions that
occur among highly expressed genes (seeFig. 7). Moreover,
the linear model is better able to capture self-regulatory in-
teractions. By contrast, the non-linear model is better able
to capture developmental regulation as well as specific car-
bon and nitrogen regulatory interactions, most of which take
place by genes expressed at much lower levels. Hence, there
seems to be gene expression regions where each inference
approach performs best.

4. Conclusions
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was decomposed into the transcriptional program through
the application of systems-theoretic tools and multivariate
regression.

A robustness analysis was introduced for assigning con-
fidence levels to all inferred regulatory connections. The un-
derlying idea of this analysis was that by randomizing the
expression data and then using the scrambled data in the in-
ference procedure, any underlying model bias could be de-
tected and eliminated. This bias elimination was achieved by
imposing systematic, as opposed to arbitrary, cut-offs on the
values of the inferred regulatory interactions.

Both inference methodologies were shown to result in
transcriptional networks that exhibited scale-free, “hub-and-
spoke” topologies. This corresponded to the existence of a
relatively small number of global regulator genes that regu-
lated the expression of a large number of target genes. The
scale-free topology was found to be preserved even when very
high confidence level requirements were imposed. The two
modeling approaches were identified to be complementary
with respect to their applicability in different gene expression
regimes. Specifically, the linear model was able to identify
interactions between highly expressed genes while the non-
linear model was able to resolve the interactions between
low expression genes. This observation highlights the fact
that a number of alternative inference methodologies should
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In this work, the large-scale inference of the transc
ional regulatory network ofB. subtiliswas addressed usi
wo alternative computational methodologies; a linear, a
ive model and a non-linear, power-law model. The dat
hich the two inference techniques were applied cons
f a selected set of 747 genes whose expression was tr
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ifferent experimental conditions. The three time series
ets with 5, 9 and 20 time points, spanned a wide ran
ampling frequencies.

The linear model extracted network connectivity by
roximating the gene expression dynamics with a linear

em of ordinary differential equations (ODEs). Discret
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ime points resulted in an underdetermined system of li
quations. A two-step procedure was employed for so

his system of equations. First, singular value decompos
SVD) was performed on the gene expression matrix in o
o construct a general formalism satisfied by all possible
orks that were consistent with both the experimental
nd the chosen linear model. Subsequently, a sparsit
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ased model for obtaining a particular network configura

n contrast, a power-law model was used to explicitly tr
he non-linearities and their evolution through time in
. subtilis transcriptional system. In addition to model
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ariability in the kinetic parameters and the relationship
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Monte Carlo procedure. The control input of the organ
e used in tandem for uncovering the wide spectrum of
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