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Abstract

This paper addresses the inference of the transcriptional regulatory netw8dciius subtilis Two inference approaches, a linear,
additive model and a non-linear power-law model, are used to analyze the expression of 747 geBesttuitisobtained using Affymetrix
GeneChifl arrays under three different experimental conditions. A robustness analysis is introduced for identifying confidence levels for
all inferred regulatory connections. Both the linear and non-linear methods produce candidate networks that share a scale-free or a “hub-
and-spoke” topology with a small number of global regulator genes influencing the expression of a large number of target genes. The two
computational approaches in tandem are able to identify known global regulators with a high level of confidence. The linear model is able
to identify the interactions of highly expressed genes, particularly those involved in genetic information processing, energy metabolism and
signal transduction. Conversely, the non-linear power-law approach tends to capture development regulation and specific carbon and nitrogen
regulatory interactions.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction 2002. These technologies when married with physiologi-
cal measurements, genome-wide transcription measurements
The data explosion currently overwhelming biology and genetic sequence generate huge tracts of integrated data.
presents a challenging paradox: “you can see everything, butBuried inside this vast amount of interconnected information
understand very little”. Sequencing a genome, which only a lay the output of millions of years of evolution. Gene expres-
few years ago was a tremendous feat, is now routine. Many sion, the process by which a genetic blueprint is turned into
examples of transcript array analysis can be found in the lit- a working component of the organism through an interme-
eratures Chu et al., 1998Cohen, Pilpel, Mitra, & Church,  diate mMRNA message, is a meticulously managed endeavor.
2002 Gardner, di Bernardo, Lorenz, & Collins, 2Q03ee, Understanding the control of gene expression has long been
Rinaldi, & Robert, 2002Spellman et al., 1998; Wen et al., an important challenge because its understanding is central
1998; an exponential increase since the ground breaking to our ability to steer an organism in directions other than for

work of Brown and co-workers dB. cerevisiaéDeRisi, lyer, which it was programmed. Expression data alone does not
& Brown, 1997. Genomics, proteomics and metabolomics hold the answer to this puzzle. However, if no transcript is

are now the cutting edge of physiological analysisli(et present, there will be no protein (the reverse is not always
al., 2002 Herrgard, Covert, & Palsson, 200@leker et al., true). Thus, understanding the regulation of gene expression

2001; Misra et al., 20020h, Rohlin, Kao, & Liao, 2002 networks is a necessary though not sufficient first step towards
Stephanopoulos, Hwang, Schmitt, Misra, & Stephanopoulos, elucidating the flow of information in biological systems.
A number of studies have been conducted and frameworks
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methods relied primarily on clustering genes on the basis functions (such as AND, OR, NOT, etc.). More recently,
of their expression profilef(Haeseleer, Wen, Fuhrman, & an extension of this approach to account for uncertainty in
Somogyi, 1999 Dougherty et al., 20Q2Eisen, Spellman,  expression data has been proposed in the form of probabilis-
Brown, & Botstein, 1998Wen et al., 1998 Recently, there  tic Boolean networksAkutsu, Miyano, & Kuhara, 2000
has been considerable interest in developing computationalShmulevich, Dougherty, Kim, & Zhang, 2003hmulevich,
tools that go beyond answering the question of whether two Lahdesmaki, Dougherty, Astola, & Zhang, 2003 ow-
or more genes have similar expression profiles. Instead, theever, in most real gene expression settings, Boolean ideal-
central question that is being raised is whether we can un-izations may not be appropriate as genes are expressed at
cover, hidden within gene expression data, the signature,continuously varying intermediate expression levéisng,
extent and directionality of interactions between different 2002. Consequently, more general approaches have been
genes. In other words, rather than simply grouping genesproposed which model mRNA expression level as a contin-
with similar expression profiles, new methods attempt to uously varying quantity. These include linear weight mod-
learn gene regulatory patterns from expression data. Broadly,eling (D’'Haeseleer et al., 1999; Weaver et al., 199%di-
these methods can be classified into two distinct categoriesnary differential equationsdhen, He, & Church, 199%nd
based on their fundamental treatment of gene interactions.S-systemsAkutsu et al., 2000Kikuchi, Tominaga, Arita,
Deterministic model-basethethods assume there exists a Takahashi, & Tomita, 20Q03Maki, Tominaga, Okamoto,
deterministic formalismY = f(X) that captures the effect Watanabe, & Eguchi, 2005avageau, 1998In this work,
of expression level of gen¥ on geneY. Different choices we use a continuous description of gene expression since we
for the functionf() (e.g., linear, sigmoidal, etc.) give rise do not observe any natural threshold values in our experi-
to many versions of model-based methoBdHaeseleer et mental data that can be used to unambiguously discretize the
al., 1999 Gardner et al., 20Q3Holter, Maritan, Cieplak, expression states.
Fedoroff, & Banavar, 20Q1Weaver, Workman, & Stormo,
1999 Zak, Gonye, & Schwaber, 20D onverselystochas-
tic model-basedhethods start by postulating that experimen- 2. Systems and methods
tally observed gene expression profiles correspond to samples
drawn from an unknown multivariate probability distribu- 2.1. Scope of investigation
tion. Bayesian networks provide a popular alternative for
achieving this objective by postulating a multivariate joint The regulatory network formed by 747 genes involved
conditional probability model that explains the observed ex- in the central metabolism &. subtilisduring fed-batch pro-
pression dataHriedman, Linial, Nachman, & Pe’er, 2000 tease production is resolved from time series gene expression
Pe’er, Regeyv, Elidan, & Friedman, 2001 data collected from three different experimental conditions
Both deterministic and stochastic models have their re- via two different deterministic model-based approaciies.
spective advantages and disadvantages. The relative simplicsubtilis and relatedBacilli are industrial workhorse organ-
ity and computational tractability of deterministic models ismsused for,among other things, protein productsub-
makes them amenable to inference of large-scale genomedilis is arguably the best characterized gram-positive bacteria.
wide transcriptional networks. However, these models are It has been sequenceinst et al., 199¥and a large number
sensitive to over-fitting and prediction artifacts. Stochastic of quantitative physiological studies Bf subtilisand related
inference models such as Bayesian networks, because theacilli are presentin the literatur€firistiansen, Christensen,
take a probabilistic view of gene expression, are less sensitive& Nielsen, 2002Christiansen, Michaelsen, Wumpelmann, &
to over-fitting. However, the application of Bayesian network Nielsen, 2003Dauner & Sauer, 2000, 200Dauner, Bailey,
models is limited due to their cumbersome treatment of cy- & Sauer, 2001aDauner, Storni, & Sauer, 2001bauner et
cles and their relatively large computational requirements. In al., 2002; Sauer et al., 1997
the light of the advantages/limitations of the two approaches, The three experimental conditions used for inference em-
a deterministic model-based approach is adopted to infer theploy Affymetrix GeneChiff arrays for obtaining genome-
underlying regulatory network @acillus subtilison a global wide expression data for: (i) a cradle-to-grave experiment
scale. (20 time points taken over the entire course of the fermenta-
In addition to classifying gene network inference meth- tion); (ii) an amino acid pulse experiment (9 time points taken
ods based upon the mathematical formalism used to modelimmediately after an amino acid pulse in mid-exponential
the regulation process, a further distinction can be made growth); and (iii) an exponential growth phase experiment
based upon how gene expression is handled within these for«5 time points taken during exponential growth). The use of
malisms. Boolean networks were among the first formalisms Affymetrix arrays implies that our expression data are time-
proposed to model gene interactiosk(tsu, Miyano, & resolved absolute (non-condition scaled) transcript signals
Kuhara, 1999 Ideker, Thorsson, & Karp, 200GBomogyi as opposed to the relative expression changes typically mea-
& Sniegoski, 199% In this approach, genes are assumed sured with cDNA arrays. The gene list includes genes in-
to be either ON or OFF and the input—output relationships volved in primary metabolism in addition to some known
between them are modeled through deterministic logical transcriptional regulators.
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Two alternative model formulations, with different levels Note that a discrete (forward) difference is employed for es-
of computational complexity, are used to identify regulatory timating the rate of change of expressidiHaeseleer et
connections. The first approach, based upon modeling theal., 1999; Yeung et al., 2002Alternatively, we also used an
dynamics of gene expression as a first-order, linear procesdnterpolation procedure for estimating the rate of change of
(D’'Haeseleer et al., 1999%assumes the expression level of a gene expression. However, no significant differences in the
gene at a particular time-point is modeled as a linear combi- results were observed over the simpler, forward difference
nation of the concentration of all other genes at the previous approach. Eq(2.2)is recast into matrix notation to yield
time-point. The network connectivity, encoded by the coeffi-
pients in the linear combinationg is determined .by minimiz- ZNse(T-1) = WNxNZNx(T_1) (2.3)
ing the error between the predicted and experimental gene
expression values. The second methodology generalizes th
linear approach by postulating a non-linear differential equa-
tion model {arner, 200Q. In the non-linear framework a
feedback law representing the control instructions governing
expression is identified using tools from non-linear control
theory. Putative connections between ggaad genek are
captured using a power-law expansion of the identified con-
trol function where the power-law exponents are determined
directly from time-resolved gene expression data. A robust-
ness analysis is carried out on the identified connections of
both models to determine their level of confidence. The un-
derlying principle of the robustness analysis is to assign a T - T
confidence level to each inferred connection by comparing (Z)r-2xNW nxen = (Z7) -« (2.4)
the likelihood of inferring a regulatory coefficient of a given
magnitude from real versus randomized data. We first explore Subsequently, SVD is applied B yielding
the linear model followed by a complementary study using a

For most microarray time course experiments, the total num-
ber of genes investigated is much larger than the number
of time-pointsT. This implies that the above system of equa-
tions is underdetermined because thereN{e — 1) equa-
tions and\? variables leading to multiple solutions. Singular
value decomposition (SVD) is used to obtain the entire fam-
ily of solutions that is consistent with the hypothesized linear
model (Yeung et al., 200R To this end, the transpose of Eq.
(2.3) is taken in order to recast the system of equations in
standard form (i.e Ax = b):

non-linear model. EZNa-1xn = Ua-px - ET-1xNV Nxn (2.5)
2.2. Linear model whereX is a diagonal matrix containing thie— 1 non-zero
singular values, o, ..., or—1 andV an orthogonal matrix
The linear model considered here was first employed by containing the singular vectors, vy, . . ., vy corresponding
(D'Haeseleer et al., 199%nd has been subsequently used to all (both zero and non-zero) singular values. The particular
by a number of other researche#dter, Brown, & Botstein,  solution for Eq.(2.4) that minimizes the p-norm is then

200Q Gardner et al., 2003; Holter et al., 2000, 2001; Weaver given by
et al., 1999 Yeung, Tegner, & Collins, 2002 In this ap-

proach, the rate of change of concentration of the mRNA . T 1 T T
species is given by (WONxN = VNN EN - Yr- -1 (Z )T-1xn
(2.6)
dL(t):XN:wz(t) Vi=1,2,...,N 2.1)
dr = v U ' where 1 is a diagonal matrix with values
ort oyt ... o7k, (Yeung et al., 200R The general

wherez (t) (pomol/gyy) is the concentration of mMRNA species  solution for the underdetermined system of equations
i as measured at time-poinandw;; is the regulatory coef-  represented by Eq2.4)is given by

ficient capturing the regulatory effect of gepen gend. If
w;; > 0 then gene} up-regulates (ac_tivgtgs) genghile if_ (WT)NXN _ (WT)NXN + CN><(N—T+1)(\7T)(N—T+1)><N

w;j < Othen, geng¢down-regulates (inhibits) the expression

ofgend. If w;; = 0, then no regulatory connection is implied (2.7)
between geneisandj. Given the discrete nature of the gene

expression time series data, 8.1) can be approximated  whereV is the null-space matrix ar@ a matrix of arbitrary

by the following set of linear algebraic equations: scalars Yeung et al., 200R All possible alternate network
configurations that are consistent with the experimental data
are embedded within E@2.7). From this family, the spars-
est network is determined by choosing the scalar coefficient
matrix C such that the number of zero entriesAff is max-
t=12,...,T—-1 (2.2) imized. This is achieved by solving the Linear Programming

zi(t +1) — zi(¢)

N
Ar =Zw,~jzj(t) Vi=12,...,N,

=1
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(LP) problem: degradation are unknown and are assumed to be randomly
L N _ distributed within physiologically possible ranges. These dis-
minimize Z(wij +wy) tributions are sampled through a Monte Carlo procedure (see

Y vl SectiorB). The specific growth rate is measured from fermen-
subjecttan;; + Y. cudy = w;; —w; Vi=12...,N, tation data. The quantltyM (r) denotes the raw array signal
k=1 for transcriptj at timet and fz;(2(1), k) represents the rela-

j=12....N, wf>=0, w;>0 tionship between intracellular concentration and array signal

for transcript, wherek denotes a vector of parameters con-
tained in the functiory; (z(1), k).

The quantityu,;(¢) in Eq. (2.8) denotes the control input
whereiiy; is the {,j)th element of¥", i; the ii)th element  Put forth by the organism to regulate the expression of gene
of VT andw™ 4w is the {,j)th element ofv/T. The right- j. Ifa mechamshc understanding of the regulation of gene

Y ij . . - were known, it could be used to capture how the state of the
hand side of the equality constraint quantifies the absolute . . :
- o T . organism affects the expression of géndany examples of
deviation of the ij)th element ot/ " from zero. The objec- this approach exist in the literature for both deterministic as
tive function minimizes the total of all such deviations so that PP

sparsity can be achieved. A key feature of the LP optimiza- well as stochastic gene expression scenaAosif, Ross, &

tion model as formulated above is that it decomposes overtheMCAdamS' 1998Balley et al., 1983Lee & Bailey, 1984a,
.. . . . . P 1984k McAdams & Arkin, 1997, 1998, 199%Rao & Arkin,
j index. This implies that instead of solving one large-scale

S , . ; 2001 Rao, Wolf, & Arkin, 2002 Wolf & Arkin, 2002; Wong,
optimization problem involving all genes, it can be solved .

. . Gladney, & Keasling, 1997However, we assume that we do
sequentially for each gene. This decomposable structure ofnot have the control mechanism and as such are not able to
the problem can be exploited for (a) parallelizing the solu- build a mechanistic-based representati /). Rather, we
tion algorithm and (b) limiting the amount of computational X - prese _auﬂ ' '

4 : . use the transcript profiling data to identify a feedback control
resources expended if only a sub-network involving a sub-set M . X
law u?' () that is guaranteed to produce a model estimated

of all genes needs to be inferredeing et al., 200R .
Using basic LP principles, it can be shown that at the gggg signal that tracks the measured vallsete & Doyle,

optimal solution ofthe LP model, each gene can be regulated Define the error between the experimental array signal for

by at most T — 1) genes. This is because for a gijethe o . £ .
total number of equations in the LP modelNs while the transcriptj at timet (yz (©)) and the model predicted array

total number of variables i8N + (N — T + 1). Since each  signal for transcrip} at timet Y (1) as

basic feasible solution for the LP must hdWbasic variables, M E

of which (N — T + 1) will be thecy variables (since they ~ £i() =¥z;(1) = yz,(1) (2.9)

are free variables and are not being directly forced in any we propose the prediction error be governed by the linear
particular direction by the objective function), the remaining  gynamics:

(T — 1) variables will be the absolute deviations. Note that for
agiven (,j)th element, only one of the two deviation variables
can be non-zero as otherwise the basis would have linearly d
dependent columns. Thus, a particular regulatory connectionwherex ; > 0 for everyj. Differentiating Eq.(2.9) and sub-
will be inferred exclusively as being activating or inhibiting.  stituting Eqs(2.8) and (2.10yields

Vi=12....,N, j=12,....N

=i = i) Vi (2.10)

. N E
2.3. Non-linear model af . i
D 5 e (us, () = Go) + Bz, )eq (] = 5
— q

The mass balance equations governing the specific con-7=1
centration of thejth mRNA species, denoted az(t) — Ajej(t) Vj (2.11)

(pmol/g) is given by Eq.(2.11)describes the relationship between the control in-

dz;(z) . put governing the expression of ggrend the error between
a1 (uz; (1) = (olt) + Be;)25(0): the estimated and measured array signals.

M : It is possible to solve for,.(¢) as a function of the pre-
V50 = f;@0.K). j=1.2.... N (2.8) diction Error if the relationsh?f)(b)etween the array signF;I and
whererr, (1) denotes the maximum specific rate of expres- mRNA concentration were known for each gene, i.e., the
sion of genej (specific expression rate in the absence of function f;;(z(r), k). The exact relationship relating array
control input), 8;; the rate constant governing the specific signal to concentration is not known. However, in all cases
degradation of transcrigt(specific rate of degradation as- in vitro transcripts consisting of a cocktail of five different
sumed to be first-order with transcript concentration) and mRNA species of known concentration ranging from 0.5 to
Fg(t) the specific growth rate. The maximum specific rate 160 pMwere added to all samples directly before the analysis.
of transcription and the rate constants governing mRNA This internal standard (referred to as IVTs) providesey
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Fig. 1. IVT probe set signals vs. chip concentration for the cradle-to-grave experiment. The open circles denote a probe set signal for a gregioc@icent
each time point. For example, at 40 pM, a single transcript species was measured at each time point (total of 20 measurements for the cradig-ta-grave ru
correction factor was introduced to convert chip concentration to intracellular concentration.

approximate means of determining the relationship betweenA central difference is used to approximate the array sig-
chip concentration and array signal (once we have an esti-nal derivative using interpolated array data (step siz&tis
mate of chip concentration it is possible to back calculate an 0.1 h). Eq.(2.13) represents the feedback input that is guar-
approximate physiological concentration). As there is con- anteed to produce a simulated array signal that will converge
siderable variance amongst the 5 IVT species at a singleto the experimental signal &s-> oco. Thus, it approximates
concentration (sekig. 1), we use a Monte Carlo approach the control input used by the organism to produce the tran-
to estimate a set of possiblg;(z(7), k)'s. We approximate  scriptional program captured in the experiment.

fz;(2(r), k) as a set of piece-wise linear functions: To probe the connectivity of the expression network, we
" expandug"j(t) in terms of the estimated specific MRNA con-
yz; (1) = m(0z;(1)) + b, centration vectorz. In contrast with the linear model that

E looks for interactions that lie on or near a hyperplane in ex-
(m1, k1), 0=)y5(0) =51 pression space, the non-linear model utilizes the power-law
(m, b) = : ; (2.12)  expansion:
(ml’lv bn)’ Sn—l < yZE](t) S Sn

N
— 1 Yiq
where the slope angkintercept (n,bj) are determined by u; (1) = zmax l_llz” ® (2:15)
q:

fitting a line between sequential IVT concentration pairs and

their corresponding signals (one line per signal region per which represents a curvilinear hypersurface. As was true in
iteration) and) denotes the conversion between physiological the jinear case, the expansion exponggtdenotes the sen-
and chip concentration. Given E(.12)we can solve Ed.  sitivity of the control of expression of gerjeo the scaled

(2.11)for u,, (1) concentration of transcrig, where the scaling facta™a*

M b denotes the maximum estimated concentration determined
uM(@t) = 8..(f) i () - + 1 over all expressed species and time. Taking the natural log of
N r (@) | mo mo Eq.(2.15)yields the linear function:
E E
yi(t+ A1) — yi(t — A1) " e N
x ( 2Ac =070 =5 0) B, () =0+ Vi) (2.16)
(2.13) q=1
wheres. (1) is defined as where-"denotes the natural log of the corresponding quantity

in Eq.(2.15) Eg.(2.16)represents a family of planes in the
8., (1) = (Fg(r) + B2;) (2.14) log transformed control-transcript space where the sensitiv-
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ity coefficientsyjq and intercepy) can be determined using
multivariate regression.

Note that the networks inferred from both the linear and
non-linear models are correlational in nature and not causal.
This stems from the fact that the various regulatory relation-
ships as inferred by the two models are determined purely by
minimizing the error between the predicted expression pro-
files (under the particular model definition) and the experi-
mentally obtained expression profiles. No mechanistic detall
is taken into account in terms of whether a particular regula-
tory interaction is biologically feasible at the transcriptional
level. In the spirit of previous works on inferring gene net-
works from microarray data)(ter et al., 2000; D’'Haeseleer
etal., 1999; Holter et al., 2000, 200legner, Yeung, Hasty,

& Collins, 2003 Weaver et al., 1999; Yeung et al., 2002
our goal is to efficiently infer networks on a global scale
and generate a “rough draft” of the network topology, using
which more detailed and local analysis can be conducted in
the future.

2.4. Permutation-based significance analysis

Both modeling approaches, by minimizing the error
between the predicted gene expression value and the expe

imental value, generate a list of putative gene—gene regula-

tory interactions. However, it is unclear which of the inferred
connections are real and which are simply artifacts of the
inference process. For instance, it can be shown for the lin-
ear model, that each gene will be regulated by at mdst (
— 1). Clearly, this property arises from the way sparsity is
enforced through the LP model and there is no biological
justification for it. Such model bias is typically addressed by
enforcing threshold (cut-off) values whereby connections for
which the absolute value of the inferred regulatory coefficient

-
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Fig. 2. The distributions obtained for the actual and randomized data sets
are superimposed on top of each other. The confidence level for a given
regulatory coefficient value* is then determined by computing the ratio of
the number ofinferred connections from the actual data that have aregulatory
coefficient value greater thas to the total (sum of actual and randomized)
number of regulatory connections with value greater th&n

inferred transcriptional network would thus be characterized
by regulatory connections having different confidence levels.
The confidence level metric can be used as an additional de-
gree of freedom for studying the topological properties of the
inferred network. Increasing the confidence level and analyz-
ing the regulatory connections that survive yields hypotheses
regarding the biological processes being captured in the ex-
pression data on the time-scale of the sampling frequency.

3. Discussion
The network topology inferred for the three different ex-

perimental data sets using the linear model is showv#ign3.
These plots correspond to the sparsest regulatory networks.

is higher than some pre-specified threshold are considered?OWS corresponding to genes with no regulatory effect have

significant. The choice of the threshold value is usually ad

hoc and symmetric in the sense that the same threshold is"

enforced on both activating and inhibiting regulatory con-
nections. To address this issue, we calculate a confidenc

estimate on the inferred connections based upon the prob-3€nes. Such

ability that the connection will arise in random expression
data, more exactly, row-column permuted d&ad@d, 2000;
Pesarin, 200 Thus, the confidence of a connection between
gened andj with an inferred regulatory coefficient value of
w*, denoted as;;(w*), is defined as

Na(w,-j > w*)

2.17
Na(w,-j > w*) + Nr(wij > w*) ( )

cij(w*) =

where N3 (w;; > w*), N'(w;; > w*) denote the number of
regulatory connections inferred from the actual/randomized
data with a regulatory coefficient value greater than(see
Fig. 2). For instance, if for a given value of*, no connec-

been eliminated. The most striking feature of the inferred net-
orks is the existence of regulatory bands, a characteristic,
which indicates the existence of a small number of global

degulators or “hubs” that influence a large number of other

“hub-and-spoke” topologies (also referred to as
scale-free) have been observed for metabolic netwadrl (

& Wagner, 2000Jeong, Tombor, Albert, Oltvai, & Barabasi,
2000 and protein—protein interaction networksefng,
Mason, Barabasi, & Oltvai, 2001Two key features of such
networks are (i) their robustness to the random failure of
the nodes of the network and (ii) relatively short paths be-
tween any two nodes in the netwofkigs. 4 and Sighlight

the results of the permutation-based significance analysis
for the linear and non-linear model. Regulatory coefficients
with higher absolute value are inferred with higher confi-
dence as shown ifrig. 4. Fig. 5 indicates the number of
arcs that are inferred for a given confidence level. As ex-
pected, the fraction of inferred connections that are preserved

tions are inferred from the randomized data, then a confidenceis inversely proportional to confidence level. However, even
level of 100% is assigned to all connections inferred from the though fewer number of arcs survive strict tolerance level
actual data with a regulatory coefficient higher thein The requirement, the underlying scale-free topology of the net-
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Cradle-to-Grave Amino Acid Pulse
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Regulated Gene

Regulating Gene
Regulating Gene

Regulated ene

Fig. 3. Network topology inferred for the three experiments using the linear model. White signifies activation or positive regulation whereastgsey de
inhibition or negative regulation. Note that rows corresponding to genes not regulating any other genes are eliminated for clarity of presentation.

— Cradle-to-Grave —— Amino Acid Pulse Exponential Growth Phase
100% <\ e
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3
-1 80% 1
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Regulatory Coefficient

Fig. 4. Permutation-based significance analysis results for the linear model. For a given confidence level, asymmetric thresholds are olitedrtied ncc
inhibition. For instance, for a minimum confidence level of 90% for the cradle-to-grave experiment, the activation and inhibition regulataddiaresh416

and —0.324, respectively. Such thresholds are expected to be different for different experimental conditions as shown in the figure. Howeveipthe inhibit
regulation threshold is seen to be smaller in absolute value than the activation regulation threshold for all three experiments.

work is still preserved as shownkig. 6. Also, the scale-free  free topologies are not artifacts of the proposed inference

topology that is observed in the real expression data is notprocedure.

preserved when the data is randomized. The degree distribu- Table llists some of the global regulators identified by

tions for the randomized data sets for all three experimen- the linear model from the cradle-to-grave study. All the reg-

tal conditions are closer to uniform distributions rather than ulator genes identified in the base case regulatory network

exponential distributions implying that the observed scale- are retained even at higher confidence levels though with re-
duced out-degrees. A number of genes involved in amino acid
metabolism are identified as regulator genes. These include

5 — Cradle-to-Grave —— Amino Acid Pulse Exponential Growth Phase ngA argG, thF, trpE, I'OCF, ySiB and cysK In addition,

£ 100% 7 genes participating in carbohydrate metabolism, in particu-

5 90% 1 . h .

2 80% | lar glycolysis/gluconeogenesis and the citrate cycle (TCA)

a 70% 1 are also inferred as regulatory genes. The glycolysis genes

g gg; ] includepdhC gap andacolL while the TCA cycle genes in-

B 0% 1 cludesucG citB, sdhA odhBandpckA A number of genes

g 30% 1 that are involved in more than one functional category are also

Log g uncovered by the linear model. For instance, ga@ gene

S 0% T T T T ] is involved in both glycolysis and amino acid metabolism
50% 60% 70% 80% 90% 100% while acoL is involved in the TCA cycle as well as amino

Minimum Confidence Level acid metabolism in addition to glycolysis. Energy metabolism

_ _ _ N _ genes involved in oxidative phosphorylation suchctesE
Fig. 5. Fraction of regulatory connections preserved as minimum confidence atpB and sdhAare also inferred as regulator genes. Vari-

levelisincreased. Arelatively small fraction of the total inferred connections tic inf ti . IS0 inf d
(15% for cradle-to-grave, 8% for amino acid pulse and 3% for exponential Ous genetic Information processing genes are also Iniérreéd as

growth phase) survive when a high level of confidence (>90%) is imposed. 'egulator genes. These inclusecE(protein export, sorting
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Fig. 6. Number of connectionk vs. the normalized probability of at leakt connections for the network inferred from the cradle-to-grave expression
time series using the linear model (top panel) and non-linear model (bottom panel). The pakaisetes total-degree (sum of in- and out-degrees) of a
particular node ang(K) is the probability of finding a node with at leastconnections (total-degree). The linear inference appears approximately linear on

a log—log scale for all confidence levels suggesting a power-law relationship that is characteristic of scale-free networks. The non-lingan @islithits
agreement with a power-law distribution for <10 connections after which the probability plateaus and then decays for a large number of corrections. T
probability of finding a connection in the non-linear regime is almost always lower than the sparse linear model, with the majority of genes hhang less
10 connections.

Table 1 and degradationsigW(RNA polymerase sigma factofpr
Identified global regulators inferred from the cradle-to-grave data set by the (transcrlptlonal regulator for peptlde transport and sporula-

linear model tion initiation) andald (stage V sporulation protein N).

Gene function Comparison of the networks inferred for the three experi-
secE Preprotein translocase SecE subunit mental conditions identified several consensus regulatory re-
phrE Regulator of the activity of phosphatase rapE lationships. Specifically, the two geng®H and phrA are
CLasEA gftgﬁgzr:t;f\za;gg‘die dse“hb%r:g ”énase identified as a global activator and inhibitor, respectively,
SucC Su)gcinyLCoA Symhetgse betaycha?n from all three datasets by the linear mogd#bH is a key com-
argG Argininosuccinate synthase ponent of the transcription machinery as it encodes for the
atpB ATP synthase a chain w-subunit of the RNA polymerase. This gene is found to ac-
pdhC Pyruvate dehydrogenase tivate 22 other genes belonging to a wide range of functional
;'tg\év E_Na'gg:cl)f;z:fhfoiﬂzggfaﬂ)gor:;;z‘:or categories including amino acid metabolism, carbohydrate
gapA Glyceraldehyde 3-phosphate dehydrogenase and complex lipid metabolism and oxidative phosphoryla-
trpE Anthranilate synthase component 1 tion. In addition, this gene is found to up-regulate other ge-
cit Aconitate hydratase netic information processing genes, particularly those coding
sdhA Su_ccinate dehydrogenase flavoprotein subunit for aminoacyl-tRNA synthetasesdrS gltX andthrS) that are

gl igfszzgase required for translation and DNA polymerase suburitsaE
odhB 2-Oxoglutarate dehydrogenase andyorl) that are required for DNA replication and repair.
pckA Phosphoenolpyruvate carboxykinase ThephrAgene encodes for a 44 amino acid signaling protein
hpr Transcriptional regulator for sporulation initiation  involved in extracellular signaling that is required for timing
acol. Acetoin dehydrogenase E3 component the cell’s decision to choose a particular physiological state
”;TE': EL%OTE%SAeh dratase such as growth or sporulatiodiéng, Grau, & Perego, 2000
),;hrA phoiphataseyrapA inhibitor McQuade, Comella, & Grossman, 2Q®hillips & Strauch,

ald Stage V sporulation protein N 2002. This gene is found to down-regulate 18 other genes,
cysK Cysteine synthetase A of which 4 geneskinA, sigF, spo0AandspoOR are key par-
rapA Response regulator aspartate phosphatase ticipants in the initiation of sporulatiorSfragier & Losick,
sigH Sporulation-specific sigma factor

1996. These consensus results indicate that even though the
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Identified global regulators of known function inferred from the cradle-to-
grave data set by the non-linear model

Gene Function

spo0J Stage 0 sporulation protein

spo0B Sporulation initiation phosphotransferase

SspoOF Two-component response regulator involved in the
initiation of sporulation

spolllD Transcriptional regulator of sigma-E and sigma-K
dependent genes

ynzD Hypothetical protein similar tspoOE

tnrA Transcriptional pleiotropic regulator involved in
global nitrogen regulation

phoRphoP Two-component sensor histidine kinase. Potential
cognate response regulator is PhoP

cggR Repressor oflapAexpression

CCpA Transcriptional regulator mediating carbon
catabolite repression (Lacl family)

kina Two-component sensor histidine kinase involved in
the initiation of sporulation

kinC Two-component sensor histidine kinase involved in
the initiation of sporulation

sigY RNA polymerase ECF-type sigma factor

rapG(F,K,D,l) Response regulator aspartate phosphatase

gerE Transcriptional regulator required for the expression
of late spore coat genes

lexA Transcriptional repressor of the SOS regulon

ginR Transcriptional repressor of the glutamine
synthetase gene

oppQD,F,A) Oligopeptide transport system proteins

hprP P-Ser-HPr phosphatase

sinR Transcriptional regulator of post-exponential-phase
responses genes

ald Alanine dehydrogenase (stage V sporulation protein
N)

secHF) Preprotein translocase subunit

linear model takes a relatively simplistic view of gene regu-
lation, it can indeed uncover biologically relevant regulatory
relationships.

The network topology recovered from the cradle-to-grave
experiment using the non-linear model as a function of con-
fidence level is shown iifrig. 6. As in the linear case, the
inferred network is banded (indicative of a “hub-and-spoke”
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There is approximately a 10% chance of finding a gene with
more than 10 connections. The chance of finding a gene with
a total degree of >100 is small (sée. 6). The non-linear
model is able to capture regulatory interactions involved in
the initiation of sporulation as well as global nitrogen and
carbon metabolism. Some prominent regulatory genes in-
ferred from the cradle-to-grave experiment via the non-linear
model are listed iTable 2 Several known sporulation con-
trol genes,spo0J spoOBand kinC are inferred as regula-
tors with high confidenceSonenshein, 20Q0In addition
to sporulation control, several potential nutritional regulators
are also identified such &srA, a transcriptional pleiotropic
regulator involved in global nitrogen metabolisrBe(er,
Nygaard, Jarmer, & Saxild, 20pBrandenburg et al., 2002
Ferson, Wray, & Fisher, 1996-isher, 1999 Fisher, Bran-
denburg, & Wray, 2002Fisher & Wray, 2002 Robichon
et al., 2000 Wray, Ferson, & Fisher, 199%ray, Ferson,
Rohrer, & Fisher, 1996Wray, Zalieckas, Ferson, & Fisher,
1998 Wray, Zalieckas, & Fisher, 200Jand ahrC, a tran-
scriptional regulator involved in the metabolism of arginine
(Czaplewski, North, Smith, Baumberg, & Stockley, 1992
Dennis, Glykos, Parsons, & Phillips 200B0oltham et al.,
1999 Klingel, Miller, North, Stockley, & Baumberg, 1995
Miller, Baumberg, & Stockley, 1997Stockley et al., 1998

The non-linear model is able to capture known regula-
tory interactions at a confidence level above random. Con-
sider the nitrogen metabolism regulatoreA andahrC. The
non-linear model estimates thatA expression is connected
with 61 genes (out-degree) at a confidence level of 60%. Of
the 61, 20 genes are involved in nitrogen metabolism/amino
acid biosynthesis or peptidoglycan biosynthesis, 7 are other
probable regulatory genespG, rapF, spoOE oppC lexA
comPandcomX and the remainder are carbon metabolism
genes, for examplaglcK, gapB PTS system genes or DNA
polymerases and ribosomal genes. Of the connections to
nitrogen/amino acid biosynthetic genes, three predicted con-
nections are knownugeB, gltA and gIlnA (Fisher, 1999
Belitsky, Wray, Fisher, Bohannon, & Sonenshein, 2000
Wray et al., 1996, 1997, 1998with a fourth genegabD,

architecture). The non-linear inference produces a network putatively linked tagabP, a permease downstreamgabD,

in which the bulk of genes have less than 10 connections.
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Fig. 7. Average concentrations of the regulator genes inferred by the two models.
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1996; Wray et al., 1996, 1998Consistent with the litera- was decomposed into the transcriptional program through
ture,ahrCis predicted to act as both an activator and repres- the application of systems-theoretic tools and multivariate
sor of arginine metabolism but also appears to be involved regression.
with the regulation of the metabolism of other amino acids A robustness analysis was introduced for assigning con-
(Czaplewski et al., 1992; Dennis et al., 2002; Holtham et al., fidence levels to all inferred regulatory connections. The un-
1999; Klingel et al., 1995; Miller et al., 1997; Stockley etal., derlying idea of this analysis was that by randomizing the
1999. ahrCis predicted to up-regulasegD, pheA hisBand expression data and then using the scrambled data in the in-
gltA and down-regulatargG, tyrA, hisF, cysE hisH, glyQ ference procedure, any underlying model bias could be de-
andtrpA. tected and eliminated. This bias elimination was achieved by
Both models arrive at the same putative banded or “hub- imposing systematic, as opposed to arbitrary, cut-offs on the
and-spoke” architecture for the gene expression network of values of the inferred regulatory interactions.
B. subtilis However, the genes identified as hubs in the net-  Both inference methodologies were shown to result in
work by the respective models are quite different. The linear transcriptional networks that exhibited scale-free, “hub-and-
model seems much better able to capture interactions thatspoke” topologies. This corresponded to the existence of a
occur among highly expressed genes (Sige 7). Moreover, relatively small number of global regulator genes that regu-
the linear model is better able to capture self-regulatory in- lated the expression of a large number of target genes. The
teractions. By contrast, the non-linear model is better able scale-free topology was found to be preserved even when very
to capture developmental regulation as well as specific car-high confidence level requirements were imposed. The two
bon and nitrogen regulatory interactions, most of which take modeling approaches were identified to be complementary
place by genes expressed at much lower levels. Hence, theravith respect to their applicability in different gene expression
seems to be gene expression regions where each inferenceegimes. Specifically, the linear model was able to identify
approach performs best. interactions between highly expressed genes while the non-
linear model was able to resolve the interactions between
low expression genes. This observation highlights the fact
4. Conclusions that a number of alternative inference methodologies should
be used in tandem for uncovering the wide spectrum of reg-
In this work, the large-scale inference of the transcrip- ulatory interactions that can be expected to exist at various
tional regulatory network oB. subtiliswas addressed using concentration/temporal scales. In terms of future work, we
two alternative computational methodologies; a linear, addi- are currently investigating the reason(s) for the applicability
tive model and a non-linear, power-law model. The data on of the two models in the two distinct concentration regimes
which the two inference techniques were applied consistedby systematically probing the two model formalisms using
of a selected set of 747 genes whose expression was trackedrtificially generated data. Preliminary results indicate that
over time using Affymetrix GeneCHfparrays under three  the non-linear model is able to magnify the expression level
different experimental conditions. The three time series dataof lowly expressed genes to a larger extent than the linear
sets with 5, 9 and 20 time points, spanned a wide range ofmodel. Detailed computational and theoretical analyses of
sampling frequencies. the two models will form the focus of a future manuscript.
The linear model extracted network connectivity by ap-
proximating the gene expression dynamics with a linear sys-
tem of ordinary differential equations (ODEs). Discretiza- References
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