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Abstract: A hybrid optimization framework is introduced to identify enzyme sets and 
levels to meet overproduction requirements using kinetic models of metabolism. A 
customized Simulated Annealing Algorithm is employed to navigate through the discrete 
space of enzyme sets while a Sequential Quadratic Programming method is utilized to 
identify optimal enzyme levels. The framework is demonstrated on a model of E.coli 
central metabolism for serine biosynthesis. Computational results show that by 
identifying relatively small optimal enzyme sets, a substantial increase in serine 
production can be achieved. The proposed approach thus provides a versatile tool for the 
elucidation of controlling enzymes with implications in biotechnology and medicine. 
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1. INTRODUCTION 
 

The systematic development of optimal microbial 
strains in biotechnology and efficient therapeutic 
interventions in medicine is a fundamental challenge 
for metabolic engineering in the post-genomic era 
(Kholodenko and Westerhoff 2004). Mathematical 
modeling is an indispensable tool in this endeavor by 
providing a systematic quantitative description of 
how changes in the system’s properties (i.e., 
metabolic fluxes, concentrations, or cell growth) 
respond to changes in the system’s components and 
environment (i.e., gene knockouts, enzyme activities, 
or gene expression). A variety of modeling 
frameworks to study metabolism are available. 
Stoichiometric models have been extensively used in 
biotechnology (Stephanopoulos, et al., 1998; Palsson 
2004) due to their relative simplicity to devise 
strategies of genetic modifications for targeted 
overproductions (Burgard, et al., 2003; Pharkya, et 
al., 2003; Pharkya, et al., 2004). While successful in 
many instances (Ibarra, et al., 2002; Burgard, et al., 
2004), stoichiometric models cannot capture 
regulatory effects mediated by metabolite 
concentrations and modulated enzyme levels. 
Metabolic Control Analysis (MCA) is an alternative 

modeling approach that employs a local log-linear 
approximation around the original steady-state 
(Kacser and Burns 1973; Heinrich and Rapoport 
1974). MCA has been extensively used to provide 
deep insights as to how metabolism responds to small 
changes in metabolite concentrations or enzyme 
levels (Cornish-Bowden and Cardenas 1990; 
Heinrich and Schuster 1996; Fell 1997). 
Furthermore, MCA allows for the quantitative 
characterization of controlling enzymes and their 
activities, a crucial knowledge in biomedical 
applications (Cornish-Bowden and Cardenas 2000; 
Comin-Anduix, et al., 2001). Because MCA is based 
on a log-linear approximation of inherently nonlinear 
kinetic models, MCA-based predictions tend to be 
valid only locally. However, typically genetic 
manipulations cause metabolic networks to allocate 
flux distributions that depart significantly from the 
original steady states. In response to these 
limitations, a number of research groups are 
exploring Michaelis-Menten type kinetic models 
(Rizzi, et al., 1997; Chassagnole, et al., 2002). 
Prominent examples are models developed at the 
ECell International Project (Tomita 2001), the 
minimal cell model (Castellanos, et al., 2004), and 
virtual cell models (Slepchenko, et al., 2003). The 



     

key challenges in these developments are the 
unraveling of regulatory structures and identification 
of kinetic constants needed for the model 
parameterization. 
 Given these challenges, various approaches and 
techniques have been developed to study kinetic 
models of moderate size and complexity. 
Specifically, evolutionary strategies have proved to 
be effective for fitting model parameters (Moles, et 
al., 2003). Recently, genetic algorithms have been 
employed to understand the evolution of oscillatory 
reactions using a small kinetic model of glycolysis 
(Tsuchiya and Ross 2003). Minimization of internal 
concentrations of metabolites in biochemical systems 
has also been deployed to identify distinct time 
hierarchies in the corresponding kinetic models 
(Heinrich and Schuster 1996). To reduce the 
complexity of highly nonlinear kinetic models, an S-
system approximation was developed (Savageau 
1969) and then successfully used for the optimization 
of the integrated cellular performance (Voit 1992) 
and the optimal redesign of metabolic regulatory 
architectures (Hatzimanikatis, et al., 1996). Recently, 
large-scale kinetic models have been used to assess 
capabilities of microbial strains for the 
overproduction of certain biochemicals (Mauch, et 
al., 2001). 
 In this paper, a hybrid optimization framework 
is introduced to identify minimal enzyme sets to 
meet overproduction requirements in the context of 
large-scale kinetic models of metabolism. Since in 
most cases it is impractical to modulate levels of all 
enzymes in a pathway, the identification of relatively 
small enzyme sets (e.g., one, two, or three), whose 
manipulation leads to significant improvements in 
the production of useful biochemicals, is an 
important biotechnological target. Alternatively, this 
framework can also be used in biomedical studies to 
identify enzymes that control undesired large 
metabolite concentrations and fluxes. Such enzymes 
can then be ranked as candidates for potential 
biomarkers of the underlying diseases or drug 
targets. Because metabolism plays an important role 
in cellular systems by supplying them with energy 
and biosynthetic precursors, the large-scale kinetic 
model of the primary metabolism of Escherichia coli 
(Chassagnole, et al., 2002) is chosen as the basis for 
benchmarking and presenting the developed 
optimization framework. 

 
 

2. MATHEMATICAL DESCRIPTION OF 
KINETIC MODEL 

 
A kinetic model of metabolic processes is usually 
postulated as a set of species mass balances and 
additional homeostasis constraints (Reich and Selkov 
1981; Heinrich and Schuster 1996; Stephanopoulos, 
et al., 1998). The kinetic dynamics is described by 
equation (1), where Ci is the concentration of species 
i, i€∈ Ν, Sij is the stoichiometric coefficient of 
species i in reaction j, j€∈ Μ, and )( max KC,,rr jj  is 

the rate of reaction j. Here max
jr  is the maximal 

reaction rate, C is the vector of metabolite 

concentrations, and K is the vector of kinetic 
parameters. Ν = {1,…,N} and Μ = {1,…,M} are sets 
of metabolites and reactions, respectively. 
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 Since rj

max  represent the maximal specific 
enzyme activities (Stephanopoulos, et al., 1998), 
ratios rj

max / rj
max,0 can be interpreted as the ratios of 

enzyme levels je  and 0
je  (i.e., rj

max / rj
max,0 = je / 0

je ) 

for engineered and reference organisms, respectively. 
Constraint (2) thus assures that an increase in the 
levels of some enzymes will be compensated by the 
decrease in the rest enzymes’ levels. This allows for 
the maintenance of physiologically meaningful 
protein levels excluding protein crowding and 
stresses due to the increased amino acids production 
and a limited amount of mRNA available (Mauch, et 
al., 2001).  
 Kinetic models are valid only for the 
concentration ranges used in the estimation of model 
parameters. Specifically, constraint (3) enforces this 
restriction (Mauch, et al., 2001) with d describing 
allowable concentration changes relative to the 
reference steady state concentrations C0 at the 
original enzyme levels e0. 

 
 

3. SOLUTION METHOD 
 
3.1 Nonlinear programming formulation 
 
Optimal enzyme sets and levels can be identified by 
solving the following nonlinear formulation 
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Here reaction rate )( max

00
C, rr jj  is optimized to 

increase the production of a biochemical of interest 
(i.e., a product of reaction 0j ). Each reaction rate 

)( max C, rr jj  explicitly depends on its own enzyme 

level max
jr  and steady state concentrations C. For 

simplicity, the dependence of )( max C, rr jj  on the 
other fixed kinetic parameters K is omitted. Note that 



     

both steady state metabolite concentrations and 
reaction rates are implicitly coupled with all enzyme 
levels max

jr . In formulation (5), the indices of 

modulated enzymes (i.e., E = },...,{ 1 Kjj ) are integer 

variables and the enzyme levels (i.e., max
1jr ,…, max

Kjr ) 
are continuous variables. While the levels of 
modulated enzymes can be arbitrarily varied, the 
levels of non-modulated enzymes can either be kept 
constant or adjusted to account for limited amounts 
of mRNA available for transcription (see Sect. 4). 
 
 
3.2 Search for Optimal Enzyme Sets 
 
In the following pseudo-code, the simulated 
annealing algorithm (SA) is implemented to navigate 
through the discrete space of enzyme sets E until the 
optimal enzyme set is found 
 

1. Generate an initial Et  
2. Set Eb = Ec = Et 
3. rb = rc = rt = Optimize(Et) 
4. for i = 1:MaxIter 
5.        Et = Select(Ec) 
6.        rt = Optimize(Et) 
7.        if  rt > rb  
8.   rb = rc = rt 
9.        else 

10.   anneal = Trr cte /)( −  
11.   Generate a random )1,0(∈d  
12.  if   d < anneal 
13.        Ec = Et 
14.       end if 
15.    end if 
16.        if  [i/L] = 0 
17.   T = a·T 
18.        end if 
19.        Check_Stop_Condition 
20. end loop 
 

Here, Eb, is the “best” set found thus far with the best 
reaction rate rb, Ec, is the current set with rate rc, and 
Et is the trial set with reaction rate rt. T is the 
annealing temperature, reduced by factor a after L 
random moves, and MaxIter is the maximal number 
of allowable iterations. The heuristics utilized in the 
move class Select relies on a random swap between 
two enzymes, one chosen from the trial set (i.e., Et) 
and another one chosen from the rest of all non-
modulated enzymes (i.e., Μ\ Et). 
 The SA algorithm belongs to a general class of 
direct search algorithms and is based on the analogy 
between the annealing of solids and solving 
combinatorial problems (Kirkpatrick, et al., 1983). It 
guarantees the asymptotic convergence of trials Et 
toward the optimal set Eb. Indeed, the move class 
Select is based on a uniform (i.e., unbiased) random 
search, followed by the Boltzmann-Metropolis 
acceptance criterion (see step 17) that adds bias 
toward a stationary Boltzmann distribution of 
enzyme sets accumulated around the optimal set Eb 
(Kirkpatrick, et al., 1983; Salamon, et al., 2002).  

3.3 Elucidation of Optimal Enzyme Levels 
 
The optimal enzyme levels for every given set Et (see 
steps 3 and 6 in Sect. 3.2.), which maximize the 
given production rate )( max

00
C, rr jj  (see (5)), can be 

computed standard nonlinear programming methods. 
The evaluation of )( max

00
C, rr jj  relies on the 

calculation of stable steady state concentrations C 
using equation (1). Specifically, C is calculated in a 
two-step procedure, the first step of which is the 
direct integration of (1) over the time interval [0, tend] 
until either condition ε≤dttd i /)(C  or k·tend = Tstop is 
satisfied. Subsequently, the end condition of the 
integration step is used as an initial guess for 
Newton-based solvers to compute the solution, C, of 
nonlinear equations 0)( max =⋅∑ C, rrS jjij . 

 
Fig. 1. Central metabolism of Escherichia coli. 
 
 
3.3 Computational implementation 
 
The kinetic model (Chassagnole, et al., 2002) 
includes 30 enzymes and 17 metabolites (see Fig. 1). 
In all studies, only 10% variation in concentrations is 
allowed (i.e., d = 0.1). After some experimentation, 
the following parameters of the numeric procedures 
are set: MaxIter = 200, T = 0.5, L = 20, a = 0.9, 
e = 10-2, tend = 102, and Tstop = 105. Because of the 
very large variations in the maximal reaction rates 

0max,
jr , ranging from 10-4 to 5.1·105, the normalized 

rates max~
jr  (i.e., 0max,maxmax /~

jjj rrr = ) are used in all 

numeric procedures. Random multistarts have also 
been performed to check the robustness of the local 
search. The entire framework is implemented in 
Matlab. 
 
 

4. RESULTS AND DISCUSSION 
 
Maximal serine overproduction using the E.coli 
model (Chassagnole, et al., 2002) are examined for 
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the following two cases: 1) all enzyme levels are 
modulated, and 2) only glycolytic enzyme levels are 
modulated while the other levels are kept constant. 
Fig. 2b shows that in case 1, a 20-fold increase in 
serine production can be achieved, while in case 2 
only a 7-fold increase is possible. 
 

 
Fig. 2. (a) Enzyme level ratios and (b) reaction rate 

ratios. The solid and white bars correspond to the 
two cases, where all or only glycolytic enzyme 
levels are modulated, respectively. 

 
 The analysis of the optimal enzyme levels (see 
Fig.2a) shows that in case 1, the activities of all 
enzymes that do not contribute toward serine 
biosynthesis are shut down. For example, the activity 
the glycolytic pathway below the branching point at 
3-phosphoglycerate (i.e., 3PG in Fig. 1) is blocked. 
Additionally, the pentose-phosphate pathway, the 
biosynthesis of polysaccharides, and aromatic amino 
acids are suppressed.  
 To investigate the predictive strength of 
Metabolic Control Analysis (MCA), the flux control 
coefficients for serine biosynthesis are computed and 
the FCC-based predictions are then compared with 
the optimization results, where only two enzyme 
levels are modulated. Specifically, for every pair of 
modulated enzymes i  and 'i , the maximal serine 
production flux versus the sum |||| 'ii FCCFCC +  
(see Fig. 3) is presented in Fig. 3. Calculation of 
FCCs leads to the following values: FCC = 0.949 for 
serine synthesis, FCC = 0.192 for 
phopshotransferase transport system, and the other 
FCCs have absolute values around 0.1 or much less. 
All enzyme sets form two clusters (see Fig. 3). The 
first cluster corresponds to the sets which do not 

include serine synthesis, while the second cluster 
corresponds to the sets where serine synthesis is 
present. Based on these observations, only a minor 
correlation between FCCs and serine production is 
established. The modulation of the enzyme levels 
with small FCCs leads to a small increase in serine 
production, while the modulation of the enzyme 
levels where serine biosynthesis is present leads to a 
considerably increase in serine production. This 
means that the FCC values alone do not necessarily 
pinpoint optimal enzyme manipulations, which 
becomes even more pronounced when more than two 
enzymes are modified simultaneously. 
 

 
Fig. 3. Relative changes in serine production versus 

the sums of FCC absolute values. 
 

 
Fig. 4. The maximal ratios 0

SerSynthSerSynth / rr  are 
plotted versus the number of modulated enzymes. 

 
 Subsequently, the best enzyme sets of one, two, 
and three enzymes are investigated (see Fig. 4). In 
this optimization study, the fixed ratios for non-
modulated enzyme levels are used to accounts for 
homeostasis in transcriptional rates. Note that the 
optimal selection of three enzymes leads to the 8-fold 
increase in the serine production rate (i.e., 40% of the 
maximal theoretic prediction). This case corresponds 
to the 4-fold increase in the level of PFK 
(FCC=0.14), 10-fold increase in the level of serine 
biosynthesis (FCC=0.949), and complete elimination 
of PEPCxlylase (FCC=-0.126). The elimination of 
PEPCxlylase can be favorable because this enzyme is 
located below the branching point leading to the 
serine biosynthesis and hence its elimination can 
contributes toward the release of the additional 
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amount of mRNA utilized in the transcription of the 
increased enzyme levels. 
 In Table 1, alternative enzyme sets leading to a 
substantial increase in serine production are 
presented. Clearly, substantial improvements in 
serine production are feasible by manipulating only a 
small set of enzymes. 
 

Table 1. Alternative best enzyme sets leading to 
increased serine production 

 

 
 

5. CONCLUSIONS 
 
 This paper has presented a hybrid optimization 
framework for optimal selection of enzyme levels 
and sets to enhance or suppress capabilities of 
cellular systems using large-scale kinetic models of 
metabolism. The simulating annealing algorithm 
(Kirkpatrick, et al., 1983; Salamon, et al., 2002) is 
employed to navigate through the discrete space of 
enzyme sets, while general nonlinear programming 
methods are used to pinpoint the optimal enzyme 
levels for the selected sets. 
 The proposed framework has been demonstrated 
on a large-scale kinetic model of central metabolism 
in Escherichia coli (Chassagnole, et al., 2002) with 
the objective of serine overproduction. 
Computational results show that by systematically 
pinpointing relatively small enzyme sets significant 
many-fold improvements in serine production can be 
achieved. It is important to note that serine is not 
only an important target in biotechnology but also 
can be related to certain human diseases. 
Specifically, serine can act as a toxicant resulting in 
serious kidney damage (Bandara, et al., 
2003). Therefore in certain situations, it can be 
important to pinpoint and then diminish the activities 
of enzymes controlling serine biosynthesis. Thus, the 
framework and modeling studies described can serve 
as a basis for the further development of systematic 
approaches and frameworks to predict and control 
global effects of metabolic activities that can 
potentially contribute toward biosynthesis of 
important biochemicals. 

 
5. NOMENCLATURE 

 
Enzymes: aldolase (ALDO), DAHP synthases 
(DAHPS), enolase (ENO), glucose-1-phosphate 

adenyltransferase (G1PAT), glycerol-3-phosphate 
dehydrogenase (G3PDH), glucose-6-phosphate 
dehydrogenase (G6PDH), glyceraldehyde-3-
phospahte dehydrogenase (GAPDH), isloleucine 
synthesis (IleSynth), methionine synthesis 
(MetSynth), mureine synthesis (MurSynth), 
phosphofructokinase (PFK), 6-phosphogluconate 
dehydrogenase (PGDH), glucose-6-phosphate 
isomerase (PGI), phosphoglycerate kinase (PGK), 
pyruvate dehydrogenase (PDH), PEP carboxylase 
(PEPCyclase), phosphoglucomutase (PGM), 
pyruvate kinase (PK), phopshotransferase system 
(PTS), ribose-phosphate isomerase (R5PI), ribose-
phosphate pyrophosphokinase (RPPK), ribulose-
phosphate epimerase (Ru5P), synthesis1 (Synth1), 
synthesis2 (Synth2), transaldolase (TA), 
triosephosphate isomerase (TPI), transketolase A 
(TKa), transketolase B (TKb), tryptophan synthesis 
(TrpSynth). Metabolites: 1,3-diphosphoglycerate 
(pgp), 2-phosphoglycerate (2PG), 3-
phosphoglycerate (3PG), 6-phosphogluconate (6PG), 
acetyl-coenzyme A (accoA), 
dihydroxyacetonephophate (dhap), erythrose-4-
phosphate (e4p), fructose-6-phosphate (f6p), 
fructose-1,6-bisphosphate (fdp), glucose-1-phosphate 
(g1p), glucose-6-phosphate (g6p), glyceraldehyde-3-
phosphate (gap), glucose(glc), oxaloacetate (oaa), 
phosphoenolpyruvate (pep), pyruvate (pyr), ribose-5-
phosphate (rib5P), ribulose-5-phospahte (ribu5p), 
sedoheptulose-7-phosphate (sed7p), xylulose-5-
phosphate (xyl5p). 
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