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Abstract 

In this contribution, we will discuss a hierarchical procedure termed OptStrain aimed at guiding pathway 
modifications, through pathway additions and deletions, of microbial networks for the overproduction of 
targeted compounds. A comprehensive database of biotransformations, referred to as the Universal 
database (with over 5,700 reactions), is compiled and regularly updated by downloading and curating 
reactions from multiple biopathway database sources. Combinatorial optimization is then employed to 
elucidate the set(s) of non-native functionalities, extracted from this Universal database, to add to the 
examined production host for enabling the desired product formation. Subsequently, competing 
functionalities that divert flux away from the targeted product are identified and removed to ensure 
higher product yields coupled with growth. The range and utility of OptStrain is demonstrated by 
addressing two very diffferent product molecules, hydrogen and vanillin, which represent the extreme 
ends of the product size spectrum. 
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The recent availability of genome-scale models of 
microbial organisms has provided the pathway 
reconstructions necessary for developing computational 
methods aimed at identifying strain engineering strategies 
(Bailey 2001). These models, already available for H. 
pylori (Schilling et al. 2002), E. coli (Edwards and Palsson 
2000; Reed et al. 2003), S. cerevisiae (Forster et al. 2003) 
and other microorganisms provide successively refined 
abstractions of the microbial metabolic capabilities. At the 
same time, individual reactions are deposited in databases 
such as KEGG, EMP, MetaCyc, and many more 
(Kanehisa et al. 2004; Karp et al. 2000; Selkov et al. 
1998), forming encompassing and growing collections of 
the biotransformations for which we have direct or indirect 
evidence of existence in different species. This newly 
acquired plethora of data has brought to the forefront a 
number of computational and modeling challenges which 

form the scope of this article. Specifically, how can we 
systematically select from the thousands of functionalities 
catalogued in various biological databases, the appropriate 
set of pathways/genes to recombine into existing 
production systems such as E. coli so as to endow them 
with the desired new functionalities?  Subsequently, how 
can we identify which competing functionalities to 
eliminate to ensure high product yield as well as viability?  

Existing strategies and methods for 
accomplishing this goal include database queries to 
explore all feasible bioconversion routes from a substrate 
to a target compound from a given list of biochemical 
transformations (Mavrovouniotis et al. 1990; Seressiotis 
and Bailey 1988). More recently, elegant graph theoretic 
concepts (e.g., P-graphs (Fan et al. 2002) and k-shortest 
paths algorithm (Eppstein 1994)) were pioneered to 
identify novel biotransformation pathways based on the 



  
 
tracing of atoms (Arita 2000; Arita 2004), enzyme 
function rules and thermodynamic feasibility constraints 
(Hatzimanikatis et al. 2003). Also an interesting heuristic 
search approach that uses the enzymatic biochemical 
reactions found in the KEGG database (Kanehisa et al. 
2004) to construct a connected graph linking the substrate 
and the product metabolites was recently proposed 
(McShan et al. 2003). Most of these approaches, however, 
generate linear paths that link substrates to final products 
without ensuring that the rest of the metabolic network is 
balanced and that metabolic imperatives on cofactor 
usage/generation and energy balances are met. 

In this paper, we will discuss a hierarchical 
optimization-based framework, OptStrain to identify 
stoichiometrically-balanced pathways to be generated 
upon recombination of non-native functionalities into a 
host organism to confer the desired phenotype. Candidate 
metabolic pathways are identified from an ever-expanding 
array of thousands (currently 5,738) of reactions pooled 
together from different stoichiometric models and publicly 
available databases such as KEGG (Kanehisa et al. 2004). 
Note that the identified pathways satisfy maximum yield 
considerations while the choice of substrates can be 
treated as optimization variables. Subsequently, gene 
deletions are identified (Burgard et al. 2003; Pharkya et al. 
2003) in the augmented host networks to improve product 
yields by removing competing functionalities which 
decouple biochemical production and growth objectives. 
The breadth and scope of OptStrain is demonstrated by 
addressing in detail two different product molecules (i.e., 
hydrogen and vanillin). 

The OptStrain Procedure  

The OptStrain procedure is a four step procedure, 
each step of which introduces different computational 
challenges arising from the specific structure and size of 
the optimization problems that need to be solved.  

Step 1: Curation of the database 

The first step of the OptStrain procedure begins with the 
downloading and curation of reactions acquired from 
various sources in our Universal database. We have 
developed customized scripts using Perl (Brown 1999) to 
automatically download all reactions and parse the number 
of atoms of each element in every compound. 
Subsequently, the elementally unbalanced reactions are 
excluded from consideration. In addition, compounds with 
an unspecified number of repeat units, or unspecified alkyl 
groups R in their chemical formulae are removed from the 
downloaded sets. This step enables the formation of large-
scale sets of functionalities to be used as recombination 
targets. 

Step 2: Determination of the maximum yield 

Once the reaction sets are determined, the second step is 
geared towards determining the maximum theoretical yield 
of the target product from a range of substrate choices, 
without restrictions on the number or origin of the 

reactions used. The maximum theoretical product yield is 
obtained for a unit uptake rate of substrate by maximizing 
the sum of all reaction fluxes producing minus those 
consuming the target metabolite, weighted with the 
stoichiometric coefficient of the target metabolite in these 
reactions. The maximization of this yield subject to 
stoichiometric constraints and transport conditions yields a  
Linear Programming (LP) problem, often encountered in 
Flux Balance Analysis frameworks (Varma and Palsson 
1994).  

Step 3: Identification of the minimum number of non-
native reactions for a host organism.   

The next step in OptStrain uses the knowledge of the 
maximum theoretical yield to determine the minimum 
number of non-native functionalities that need to be added 
into a specific host organism network. Mathematically, 
this is achieved by first introducing a set of binary 
variables yj that serve as switches to turn the associated 
reaction fluxes vj on or off.  The corresponding constraints 
are imposed only on the reactions associated with 
heterologous genes such that if the reaction j is active, the 
associated binary variable yj assumes a value of one and a 
value of zero if the reaction is inactive. This leads to a 
Mixed Integer Linear Programming (MILP) model for 
finding the minimum number of genes to be added into the 
host organism network while meeting the yield target for 
the desired product. Alternate optimal solutions can also 
be identified iteratively at this stage. 

Step 4: Incorporating the non-native reactions into the 
host organism’s stoichiometric model.   

Upon identification of the appropriate host organism, the 
analysis proceeds with an organism-specific stoichiometric 
model augmented with the set of the identified non-native 
reactions. However, simply adding genes to a microbial 
production strain will not necessarily lead to the desired 
overproduction due to the fact that microbial metabolism 
is primed to be as responsive as possible to the imposed 
selection pressures (e.g., outgrow its competition). These 
survival objectives are typically in direct competition with 
the overproduction of targeted biochemicals. To combat 
this, we use our previously developed bilevel (Burgard et 
al. 2003; Pharkya et al. 2003) computational framework, 
OptKnock  to eliminate all those functionalities which 
uncouple the cellular fitness objective, typically 
exemplified as the biomass yield, from the maximum yield 
of the product of interest.  

Results 

Computational results for microbial strain 
optimization focus on the production of hydrogen and 
vanillin. The hydrogen production case study underscores 
the importance of investigating multiple substrates and 
microbial hosts to pinpoint the optimal production 
environment. In contrast, in the vanillin study, identifying 
the smallest number of non-native reactions is found to be 
the key challenge for strain design.  



  

Hydrogen Production Case Study 

An efficient microbial hydrogen production strategy 
requires the selection of an optimal substrate and a 
microbial strain capable of forming hydrogen at high rates.  
First we solved the maximum yield LP formulation (Step 
2) using all catalogued reactions which were balanced 
with respect to hydrogen, oxygen, nitrogen, sulfur, 
phosphorus and carbon (approximately 3,000 reactions) as 
recombination candidates. Different substrates such as 
pentose and hexose sugars as well as acetate, lactate, 
malate, glycerol, pyruvate, succinate and methanol were 
investigated. The highest hydrogen yield obtained for a 
methanol substrate was equal to 0.126 g/g substrate 
consumed. This is not surprising given that the hydrogen 
to carbon ratio for methanol is the highest at four to one. 
We decided to explore methanol and glucose further, 
motivated by the high yield on methanol and the favorable 
costs associated with the use of glucose. The next step in 
the OptStrain procedure (Step 3) entailed the 
determination of the minimum number of non-native 
functionalities for achieving the theoretical maximum 
yield in a host organism. We examined two different 
uptake scenarios: (i) glucose in Escherichia coli (an 
established production system) and (ii) methanol in 
Methylobacterium extorquens (a known methanol 
consumer). E. coli is a natural producer of hydrogen and 
therefore, no additional functionalities are required. In 
contrast, using Step 3 of OptStrain, we discovered that M. 
extorquens cannot produce hydrogen by itself and 
identified that only a single reaction needs to be 
introduced into its stoichiometric model (Van Dien and 
Lidstrom 2002) to enable hydrogen production. Two such 
candidates are hydrogenase (E.C.# 1.12.7.2) which 
reduces protons to hydrogen or alternatively N5, N10-
methenyltetrahydromethanopterin hydrogenase which 
catalyzes the following transformation:  

E.C.# 1.12.98.2: 5,10-Methylenetrahydromethanopterin  
↔ 5,10-Methenyltetrahydromethanopterin + H2. 

Vanillin Production Case Study 

Vanillin is an important flavor and aroma molecule. In 
this case study, we identify metabolic network redesign 
strategies for the de novo production of vanillin from 
glucose in E. coli. Using OptStrain, we first determined 
the maximum theoretical yield of vanillin from glucose to 
be 0.63 g/g glucose by solving the LP optimization over 
4,270 candidate reactions balanced with respect to all 
elements but hydrogen (Step 2). We next identified that 
the minimum number of non-native reactions that must be 
recombined into E. coli to endow it with the pathways 
necessary to achieve the maximum yield is three (Step 3). 
Numerous alternative pathways, differing only in their 
cofactor usage, which satisfy both the optimality criteria of 
yield and minimality of recombined reactions, were 
identified. For example, one such pathway uses the 
following three non-native reactions: 
(i) E.C.# 1.2.1.46: Formate+NADH+H+↔ Formaldehyde 
+ NAD+ + H2O, 

(ii) E.C.# 1.2.3.12: 3, 4-dihydroxybenzoate + NAD+ + 
H2O + Formaldehyde ↔ Vanillate + O2 + NADH,  
(iii) E.C.# 1.2.1.67: Vanillate + NADH + H+ ↔ Vanillin + 
NAD+ + H2O. 

Interestingly, these steps are essentially the same as 
those used in the experimental study by Li and Frost (Li 
and Frost 1998) to convert glucose to vanillin in 
recombinant E. coli cells demonstrating that the 
computational procedure can indeed uncover relevant 
engineering strategies. Note, however, that the reported 
experimental yield of 0.15 g/g glucose is far below the 
maximum theoretical yield (i.e., 0.63 g/g glucose) of the 
network indicating the potential for considerable 
improvement. 

This motivates examining whether it is possible to 
reach higher yields of vanillin by systematically pruning 
the metabolic network using OptKnock (Step 4). Here the 
most recent genome-scale model of E. coli metabolism 
(Reed et al. 2003), augmented with the three 
functionalities identified above, was integrated into the 
OptKnock framework to determine the set(s) of reactions 
whose deletion would force a strong coupling between 
growth and vanillin production. The highest vanillin-
yielding quadruple knockout strategy is discussed next for 
a basis glucose uptake rate of 10 mmol/gDW/hr. A 
substantially high level of vanillin production is predicted 
in this mutant network. Note also that an anaerobic growth 
environment was selected by OptKnock for overproducing 
vanillin. This strategy leads to the production of 6.17 
mmol/gDW/hr of vanillin or 0.52 g/g glucose at the 
maximum growth rate of 0.056 hr-1. The OptKnock 
framework suggested the deletion of phosphoenolpyruvate 
carboxylase (E.C.# 4.1.1.31), lactate dehydrogenase 
(E.C.# 1.1.1.28), pyruvate formate lyase (E.C.# 2.3.1.54), 
and acetaldehyde dehydrogenase (E.C.# 1.2.1.10). These 
deletions eliminate the competing byproduct production 

Figure 1: Vanillin production envelope of the augmented 
E. coli metabolic network for a basis 10 mmol/gDW/hr 
uptake rate of glucose. Point A denotes the maximum 
growth point for the four reaction deletion mutant 
network. In contrast to the wild-type network for which 
vanillin production is not guaranteed at any rate of 
biomass production, the mutant networks require 
significant vanillin yields to achieve high levels of 
biomass production.  
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routes for ethanol, formate, and lactate. Furthermore, a 
surprising network flux redistribution involves the 
utilization of a group of reactions from one-carbon 
metabolism to form 10-formyltetrahydrofolate, which is 
subsequently converted to formaldehyde. Figure 1 
compares the vanillin production envelopes, obtained by 
maximizing and minimizing vanillin formation at different 
biomass production rates for the wild-type and the mutant 
networks. These deletions endow the network with high 
levels of vanillin production under any growth conditions.  

Discussion 
The OptStrain framework is aimed at systematically 

reshaping whole genome-scale metabolic networks of 
microbial systems for the overproduction of not only small 
but also complex molecules. We have so far examined a 
number of different products (e.g., 1, 3 propanediol, 
inositol, pyruvate, etc.) using a variety of hosts (i.e., E. 
coli, Clostridium acetobutylicum, M. extorquens). The two 
case studies, hydrogen and vanillin, discussed earlier show 
that OptStrain can address the range of challenges 
associated with strain redesign. At the same time, it is 
important to emphasize that the validity and relevance of 
the results obtained with the OptStrain framework are 
dependent on the level of completeness and accuracy of 
the reaction databases and microbial metabolic models 
considered. We have identified numerous instances of 
unbalanced reactions and ambiguous reaction 
directionality in the reaction databases that we mined. 
Careful curation of the downloaded reactions preceded all 
of our case studies. Whenever the balanceability of a 
reaction could not be restored, the reaction was removed 
from consideration. The purely stoichiometric 
representation of metabolic pathways in microbial models 
can lead to unrealistic flux distributions by not accounting 
for kinetic barriers and regulatory interactions (e.g., 
allosteric regulation). Despite these simplifications, 
OptStrain has already provided useful insight into 
microbial host redesign in many cases and, more 
importantly, established for the first time an integrated 
framework open to future modeling improvements. 
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