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ABSTRACT In this article, optimization-based frameworks are introduced for elucidating the input-output structure of signaling
networks and for pinpointing targeted disruptions leading to the silencing of undesirable outputs in therapeutic interventions.
The frameworks are demonstrated on a large-scale reconstruction of a signaling network composed of nine signaling pathways
implicated in prostate cancer. The Min-Input framework is used to exhaustively identify all input-output connections implied by
the signaling network structure. Results reveal that there exist two distinct types of outputs in the signaling network that either
can be elicited by many different input combinations or are highly specific requiring dedicated inputs. The Min-Interference
framework is next used to precisely pinpoint key disruptions that negate undesirable outputs while leaving unaffected necessary
ones. In addition to identifying disruptions of terminal steps, we also identify complex disruption combinations in upstream
pathways that indirectly negate the targeted output by propagating their action through the signaling cascades. By comparing
the obtained disruption targets with lists of drug molecules we find that many of these targets can be acted upon by existing drug
compounds, whereas the remaining ones point at so-far unexplored targets. Overall the proposed computational frameworks
can help elucidate input/output relationships of signaling networks and help to guide the systematic design of interference
strategies.

INTRODUCTION

Recent years have witnessed an increasing interest in the

study of cell signaling cascades as the critical role of these

networks in various cellular events is becoming better

understood. A typical signaling pathway involves the capture

of extracellular signals and the subsequent transduction

inward to control target proteins or gene expression (1). For

example, in response to stimulation by specific ligands, the

receptor tyrosine kinases regulate a great diversity of cellular

processes including cell migration, cell proliferation, and

differentiation (2). Similarly, the vascular endothelial growth

factor (VEGF) family of ligands and receptors has been im-

plicated in vascular development and neovascularization (3).

The connectivity of signaling networks is being unraveled at

an ever increasing pace (4–6). This brings to the forefront the

challenge of devising novel strategies for systematically

deducing the stimuli capable of eliciting a particular cellular

response and deciphering how to ‘‘shape’’ their connectivity

to negate undesirable outputs (e.g., P70S6K, a suppressor of

apoptosis) without affecting necessary ones (e.g., glycogen

synthesis) (7,8). This article introduces an integrated com-

putational base for addressing these questions for large-scale

signaling network reconstructions using a stoichiometric

description of molecular transformations and a Boolean

description of activations and inhibitions. The lack of any

kinetic information in the adopted modeling descriptions

implies that no dynamic effects in signal propagation are

captured (e.g., signal timing). Additional complications may

include cell-type dependent inhibition or activation, com-

partmentalization and the impact of spatial organization in

general. Therefore, only connectivity-encoded insight can be

elucidated, implying that further detailed kinetic-based

analysis may be needed to fully recapitulate the underlying

input-output structures and/or interventions.

Genomic advances have provided a major impetus to the

large-scale reconstruction of signaling pathways. Numerous

databases are under development to catalog the astounding

complexity associated with cell signaling networks. For ex-

ample, the Reaction entries in the TRANSPATH database

(9,10) allow the query of the upstream and downstream

connectivity of signaling molecules by providing direction-

ality and stoichiometry information for each interaction. The

integration of TRANSPATH with TRANSFAC (11), a data-

base for transcription factors and their DNA binding sites,

provides the means to obtain complete signaling pathways

from the binding of a ligand to the set of affected genes. The

Alliance for Cellular Signaling (12), has brought forward the

Molecule Pages database (13), which contains extensive

information about more than 3,700 signaling proteins present

in cellular signaling. Each entry, contributed by invited ex-

perts and peer-reviewed, contains information on a protein’s

known states including a list of sequence, kinetic, and ther-

modynamic parameters when available. Both the Alliance

for Cellular Signaling and TRANSPATH programs have the

ultimate goal of providing the kinetic parameters necessary

for the quantitative simulation of large signaling networks to

aid in drug target discovery and evaluation. The Biomolecular

Interaction Network Database (14,15) and the Database of

Interacting Proteins (16) store protein-protein interaction data

representing ;15,000 and 11,000 interactions, respectively.
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Finally, the PANTHER (17) database is a repository for cell

signaling pathways and includes interactive resources for

associating protein families with their biological pathways,

as well as new tools for analyzing gene expression data in

relation to molecular functions, biological processes, and

pathways.

Signaling cascades were originally thought to function via

linear routes where a single extracellular signal (i.e., input)

would trigger a linear chain of reactions resulting in a single

well-defined response (i.e., output) (18). However nowa-

days, it is unanimously accepted that biological responses to

external stimuli are much more complicated and the result of

multiple interacting pathways containing many common

molecules (19–22). Many researchers have attempted to

model and simulate the signaling cascades. These include

modeling studies conducted on localized aspects of the cell

signaling process such as the kinetic and spatial analysis of

cell surface receptor mechanisms (23,24), analyses of the

cascades (25,26), analyses of specific signaling system

modules (27–30), and analyses of timing- dependent recep-

tor specificities (31). Specifically, the Database of Quanti-

tative Cellular Signaling provides a repository of modules

(i.e.,,100 reactions) of signaling pathways containing;1/3

of all published kinetic models of signaling pathways (4). To

date, the most detailed modular-type kinetic analysis

involves the construction of a dynamic model of the MAP

kinase cascade activated by epidermal growth factor (EGF)

receptors (32). This model describes the temporal concen-

tration profiles of 94 compounds participating in 62 bio-

chemical transformations triggered by EGF stimulation.

Though impressive, a total of 94 compounds is still only a

small fraction of the 2,503 unique chemical species that have

so far been identified in humans and cataloged in the

TRANSPATH database (9).

Faced with the paucity of accurate and comprehensive

kinetic data, the key question is whether only the topology

and connectivity alone of signaling networks can provide

information to qualitatively predict some of their allowable

states and responses to stimuli. Interestingly, a number of

studies have shown that signaling networks are quite robust

with respect to variations in kinetic parameters, implying that

their key properties may be largely established by their

network architecture. For example, it has recently been

deduced that the core topology of the interactions of the

Drosophila segment polarity genes in differentiation was

sufficient to deduce the properties expected of a develop-

mental module, irrespective of the exact values of the kinetic

parameters or initial conditions (33–35). Furthermore, a

Boolean model of the segment polarity genes based solely on

binary (0–1) representation of transcript and protein levels

was able to reproduce wild-type gene expression experi-

ments along with expression patterns in various mutants and

overexpression experiments (36). In their study of the EGF

signaling system, Schoeberl et al. (32) concluded that the

EGF-induced responses were remarkably stable over a 100-

fold range of ligand concentrations and were unexpectedly

robust to variations in kinetic parameters and initial condi-

tions. In Escherichia coli chemotaxis, the precision of

tumbling frequency adaptation to external stimulant concen-

trations was found to be quite robust despite substantial

variations in network-protein concentrations. (37,38). The

local responses at each level of a signaling cascade have been

shown to amplify, enabling the total response of the cascade

to operate almost as a switch where the target is activated in

response to a given signal (39). Lastly, it has been found that

engineering the topology of signaling networks alone was

able to change response specificity in Saccharomyces
cerevisiae resulting in cells eliciting an osmolarity response

to a mating signal (40,41).

Therefore, the newly available large-scale signaling

network reconstructions motivate the need to explore compu-

tationally their signal transfer properties and possible re-

designs. Specifically, the question of how many signaling

inputs are required to elicit a particular cellular response has

already drawn attention (5). The examination of alternative

sets of input signaling molecules that are capable of trig-

gering the same response provides insight into the degen-

eracy built into signaling networks and their organizational

principles. In another context, degeneracy has been shown to

play an important role in the robust behavior exhibited by the

cellular, metabolic, and regulatory networks (42). To address

this need, we put forward an optimization based framework,

(Min-Input problem) that exhaustively identifies all sets

of input signaling molecules that are required to elicit a

particular cellular outcome (see Fig. 1 a) in the context of

large-scale signaling networks.

FIGURE 1 Pictorial representation of the problems and solution strategies

proposed in this article. The Min-Input framework (a) identifies the minimal

sets of input signaling molecules that are capable of eliciting a particular

cellular outcome. The Min-Interference framework (b) identifies the mini-

mal combinations of disruptions to prevent an undesirable outcome while

preserving a set of the desired outputs.
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Dysfunctions in the signaling architecture have often been

implicated in a wide range of diseases. For example, dereg-

ulation of Ets transcription factors results in formation of

malignant cells leading to tumorous growth (43). Similarly,

dysfunctions in the activity of the receptor tyrosine kinases

and corresponding signaling pathways have been linked to

diabetes and cancer (2). Several drug development studies

focus on identifying therapeutic agents that are capable of

disrupting a targeted set of chemical transformations within

the signaling pathways through competitive binding. Unfor-

tunately, due to the complexity of the networks, the unin-

tended consequences of these disruptions to desired outputs

are not systematically explored. However, by considering sys-

temwide reconstructions of signaling pathways, the far reaching

effects of these disruptions could be traced over the entire

signaling cascades. To this end, we introduce the optimiza-

tion-based framework (i.e., Min-Interference problem) that

pinpoints the minimal combinations of chemical transfor-

mations that need to be disrupted to prevent an undesirable

cellular response while preserving desired ones (see Fig. 1 b).
The proposed computational base is demonstrated on nine

human signaling pathways that have been implicated in the

growth and development of prostate cancer (Table 1). This

network, extracted from the PANTHER (17) database of

signaling networks, involves 322 chemical transformations

and 526 distinct chemical entities. A description of the

procedure used to download and process all pathway data is

provided in the next section. Subsequently, the adopted

mathematical description of the signaling network is high-

lighted followed by a detailed presentation of the computa-

tional frameworks for the Min-Input and Min-Interference

problems including results and some comparisons to data

from open literature.

MATHEMATICAL MODELING

Pathway data

Table 1 lists all nine pathways considered in this study to

highlight the proposed computational frameworks. We used

implication to prostate cancer as a selection criterion.

Prostate cancer is the second highest cause of cancer related

deaths in the United States and many research efforts are

directed toward elucidating the pathways whose upregula-

tion or downregulation promotes malignant behavior (44).

Many of the chemical transformations in the signaling

pathways are either activated or repressed by chemical

entities present in the system. For example, protein tyrosine

hydroxylase activates the transformation of tyrosine to 3,4-

dihydroxyphenylalanine in the adrenaline synthesis pathway.

Similarly, the presence of Akt suppresses the recruitment of

capsase 9 in the angiogenesis pathway, which plays an

important role in blood vessel formation. Therefore, in

addition to stoichiometry, representation of the network

topology requires identification of the activation and inhi-

bition agents and interactions. As explained before, the

pathways investigated in this work were downloaded from

the PANTHER database of signaling networks in SBML for-

mat (45). PANTHER is publicly available without restriction

at http://panther.appliedbiosystems.com. We developed cus-

tomized scripts using Perl (46) to mine the chemical trans-

formations, chemical entities, and activating and inhibiting

interactions and convert them into a format readable by the

GAMS (47) optimization environment. The final data set

consists of 322 chemical transformations, 526 chemical en-

tities, 198 activation interactions, and 38 inhibition interac-

tions and it is available as supplementary material.

Basic definitions

Signaling pathways are represented using a stoichiometric

formalism that has been extensively used to model metabolic

networks (48). The key features of this formalism include

explicit accounting of every chemical transformation such as

binding, dimerization, and phosphorylation, and balancing

around every chemical entity. The component balances

governing a signal transduction network involving N ¼
f1, . . . , ng chemical transformations and M ¼ f1, . . . , mg
chemical entities are as follows:

dCi

dt
¼ +

n

j¼1

Sij rj; "i 2 M: (1)

HereCi denotes the concentration of chemical entity i, Sij is the
stoichiometric coefficient of chemical entity i in chemical

transformation j, and rj is the corresponding flux of transfor-

mation j. The rate-limiting steps in cell signaling processes are

typically either receptor internalization or transcriptional reg-

ulation, bothwith time constants on the order of 102 s. The time

constants for the signaling transformations are on the order of

1–10 s allowing a steady-state assumption to be invoked:

+
n

j¼1

Sij rj ¼ 0; "i 2 M: (2)

Our reaction set considers the transcription factors as the

endpoints and do not take into account the subsequent tran-

scriptional regulation of targeted genes

TABLE 1 Signaling pathways investigated in this study

Pathways involved in prostate cancer cells

1. Angiogenesis

2. Apoptosis_signaling_pathway

3. Cell_cycle

4. EGF_receptor_signaling_pathway

5. Hypoxia_response_via_HIF_activation

6. Insulin_IGF_pathway_MAP_kinase_cascade

7. JAK_STAT_signaling_pathway

8. P53 pathway

9. PI3_kinase pathway

The pathways were obtained from the PANTHER database.
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Modeling activating interactions

Activators are chemical entities that act as catalysts and

enable specific chemical transformations. In such situations,

the corresponding chemical transformation can take place

only if the requisite activator is present subject to the

availability of the reactants. The following simple example

explains how we model activation using only a stoichiomet-

ric description of chemical transformations.

Consider the chemical transformation A/B, which is

activated by a chemical entity X (Fig. 2 a). Even though the

presence of X is necessary to carry out the transformation,

there is no net change in the amount of X and thus an un-

ambiguous stoichiometric coefficient value cannot be as-

signed to it. To overcome this dilemma, we duplicate the X
chemical entity into XR and XP depending on whether X is a

‘‘reactant’’ or ‘‘product’’ species with respect to the reaction

at hand (i.e., A/B). Accordingly, activation by X is mod-

eled using the following simple reaction steps (see Fig. 2 b):

ðproduction or input of XÞ/X
R

A1XR/B1XP

X
R/X

P

X
P/ðconsumption or output of XÞ:

The first reaction step ensures that all X present as input or

generated through chemical transformations is denoted as

XR. This defines a pool XR of ‘‘reactant’’ X, which, only if

available, could be used in the second step to carry out the

A/B transformation, which also converts XR to XP. The

third step allows for X to directly flow from its ‘‘reactant’’ XR

to its ‘‘product’’ XP form without having to necessarily

participate in reaction A/B. Finally, the last step enables X
to be consumed or become an output to prevent accumula-

tion. This representation of activation enables a nonzero flux

through the reaction A/B if and only if activator X is

available in the system. All the transformations modeling

activating interactions are irreversible. It is important to note

that based on the above definitions, the extent of the A/B
reaction is constrained by the amount of XR. However, this is

not a problem because we are examining network properties

of signaling pathways that are dependent upon the presence

or absence of flow rather than exact values.

This formalism for modeling activation within a stoichi-

ometric framework can be generalized for any chemical

transformation. Based on the above definitions and by du-

plicating all activators into corresponding ‘‘reactant’’ and

‘‘product’’ pools, any reaction requiring activation by a sin-

gle or multiple species can be expressed as the combination

of the elementary steps described above.

Modeling inhibiting interactions

Inhibition interactions are ubiquitous in signaling pathways.

Despite the conceptual similarity of inhibitions to activations,

we did not find an equivalent way to express them in a purely

stoichiometric fashion. Therefore,we had tomake use of binary

variables Yj (i.e., acting as on/off switches) to model inhibited

chemical transformations depending on the presence or absence

of the inhibitor. The binary variable Yj is defined as follows:

Yj ¼
1; implies reaction j is active
0; implies reaction j is disrupted

�

The above condition for setting the values of Yj along with
the constraint 0# rj #UYj ensure that the flux rj is set to zero
if Yj¼ 0 and it can assume any value between 0 andU if Yj¼ 1.

The magnitude of parameter Uwas fixed at 103 for all the

computational studies conducted in this work. We also define

the set Mj
ihb as the set of inhibitors for transformation j.

The presence or absence of an inhibiting chemical species

i 2 Mj
ihb is determined by examining if at least one chemical

transformation leads to production of inhibitor i or i is sup-
plied as an input. The amount of i produced by or supplied as
input to the system is given by the term +j 0 2Ji

P

S
ij
0 r
j
0 , where

JiP is the set of chemical transformations (including input

reactions) leading to the production of i.
If +

j
0 S

ij
0 r
j
0.0;then inhibitor i is present and the flux

through transformation j is set to zero. This condition is de-

scribed mathematically as the following set of constraints:

Yj#1� ð+
j9

Sij
0 rj0 Þ=L; " j 2 N; i 2 Mj

ihb; j0 2 J iP

Parameter L is chosen so that the term ð+
j
0 S

ij
0 � r

j
0 Þ=L is

always ,1. Given the scale of flows in the network, a value

of L ¼ 106 was sufficient for all computational studies

presented in this study. Therefore, through the application of

duplicated chemical species and binary variables, both

activating and inhibiting interactions are properly described.

Identifying and eliminating loops

Signaling networks are often characterized by the existence

of cycles (i.e., loops) in the flow of information. Specifically,

FIGURE 2 Modeling activating interactions. Shown in a is the chemical

transformation A/B, which is activated by the chemical entity X.
Activation interaction is indicated by an arrow with a dot at its tail. Shown

in b is the pathway resulting after accounting for activation. The activator

X is duplicated as XR and XP. The new transformations introduced are

represented by dotted arrows. In both panels, the dashed arrows account for

the production and transfer of chemical entities.
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a chemical entity i participates in a loop if there exists a finite
number of chemical transformations that starting from i can
lead back to the formation of the chemical entity i. Cyclic
motifs or loops lead to the formation of disjoint subnetworks

that can have nonzero flows, at steady state, even in the

absence of required input signaling molecules. A practical

manifestation of this is the incomplete identification of all

inputs needed for an output. To illustrate this point, consider

the pathway posed by Papin and Palsson (5) for the gener-

ation of the STAT1 homodimer output from the input sig-

naling molecules, rIFNg, JAK2, IFNg, STAT1, and ATP

(Fig. 3 a). Also shown in Fig. 3 a is one possible flux

distribution that recruits input signaling molecules ATP and

STAT1 alone to produce STAT1 homodimer. Hence, the

presence of the loop at interferon-g JAK2 receptor ligand

complex allows the assignment of nonzero flows toward the

production of STAT1 homodimer in the presence of ATP

and STAT1 even if the required inputs rIFNg, JAK2, and

IFNg are absent. To overcome this problem, we have

developed a loop-breaking procedure that first identifies all

linearly independent loops and subsequently breaks them

by duplicating chemical species forming the junction points

of the identified loops. Briefly, the procedure involves an

iterative algorithm that selects each chemical entity and sub-

sequently traces the path from the selected chemical entity to

the input entities. If the same chemical entity is encountered

again in the traced path, then a loop exists at the specific

chemical entity. The chemical entity is subsequently dupli-

cated to eliminate the loop and the algorithm is applied to the

new network to find additional loops. This procedure is

repeated until no loops are identified. For example, by ap-

plying the loop-breaking procedure to the example shown in

Fig. 3 a, a topologically equivalent loop-free network is

obtained (see Fig. 3 b). It can be seen from Fig. 3 b that the

network flow balance condition (Eq. 2) now ensures the re-

cruitment of all the five inputs toward the production of

STAT1 homodimer.

A composite block diagram indicating the important steps

in the network modeling is shown in Fig. 4. The statistics of

the resulting network are summarized in Table 2. As shown

in the table, the curated network involves 1,338 chemical

transformations, of which 249 are inputs and 75 are the out-

puts, and consists of 1,063 chemical entities. This network is

used as the basis for all subsequent computational studies.

COMPUTATIONAL STUDIES

Min-Input problem

The identification of all combinations of input signals that

could lead to a desired cellular response represents a signif-

icant challenge for large and highly interconnected signaling

networks. The proposed approach exhaustively identifies the

smallest nondecomposable sets of inputs that could elicit a

particular cellular response (see Fig. 1 a) using an optimi-

zation-based framework. The mathematical description of

FIGURE 3 Application of loop-break-

ing procedure: a shows the pathway for

generating the STAT1 homodimer before

application of loop-breaking procedure.

The pathway is characterized by the

existence of loop at interferon-g-JAK2

receptor ligand complex. The loop is

represented by dotted arrows in a. b

shows that the topologically equivalent

loop-free pathway is obtained by dupli-

cating the complex (represented in red).

The input molecules are shown with

triangles.
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the optimization problem requires the definition of a number

of sets that identify chemical entities that serve only as inputs

Min or outputs Mout, respectively, in the signaling pathways.

Specifically, the stoichiometric coefficients Sij for all inputs
must be nonpositive for every chemical transformation j.
Similarly, the stoichiometric coefficients Sij are nonnegative
for all outputs in all chemical transformations j.
Transport reactions provide input and output species with a

way to enter and leave, respectively, the signaling pathways

ensuring balanceability under the quasi steady-state assump-

tion. Transport reactions form sets Nin and Nout, respectively:

Nin ¼ fj 2 Nj j is a source of an inputg
Nout ¼ fj 2 Nj j is a sink for an outputg:

Based on the above variable and set definitions, the prob-

lem of identifying all minimal inputs capable of eliciting a

desired output i�, where i� 2 Mout, is posed as the following

mixed-integer linear programming (MILP) problem:

Minimize +
j2Nin

Yj (3)

subject to

+
N

j¼1

Sijrj ¼ 0"i 2 M (4)

r
Ou

i
�$1 (5)

Yj#1�
ð+

j
0
Sij

0rj0 Þ

L
; "j 2 N; i 2 M

j

ihb; j
0 2 J

i

P (6)

0# rj #UYj "j 2 N (7)

Yj 2 f0; 1g"j 2 N: (8)

The objective function minimizes the number of inputs

required to allow a particular response (output i�). Constraint
4 imposes the quasi steady-state condition. Constraint 5

ensures that the flux to the output transformation corre-

sponding to the desired output (i.e., i�) is nonzero. Constraint
set 6 accounts for the inhibition interactions. Finally, con-

straint 7 ensures that the reaction flux rj is set to zero if Yj is
equal to zero. Alternatively, if Yj is equal to 1, then rj can
assume any value between zero and U as described pre-

viously. The above formulation is solved sequentially for

every chemical entity that has been characterized to be an

output of the signaling network (i.e., for every i 2 Mout) to

extract the minimal sets of inputs for every output of the

signaling network. Often times several nondecomposable

sets of inputs exist that could elicit a particular cellular

response. Exhaustively identifying all sets of inputs requires

utilizing the above formulation in an iterative procedure

while successively implementing constraints known as

integer cuts. Specifically, we impose the constraint 9:

+
j2NinjY

iter
j ¼1

Yj# +
j2Nin jY

iter
j ¼1

Y iter

j � 1; (9)

where Yiter
j ; j 2 Nin corresponds to the values of binary

variables obtained at a particular iteration. The constraints at

each successive iteration are accumulated to exclude previ-

ously found solutions. If the problem becomes infeasible,

then no other sets of inputs that can elicit the formation of the

desired outcome remain and the procedure terminates.

Convex analysis-based methods such as extreme pathway

(49) and elementary mode (50,51) analysis represent other

alternatives for obtaining an exhaustive identification of all

input/output structures. These approaches require the com-

putation of all convex basis vectors that can represent every

possible combination of reactions rates that are feasible to

the network. However, convex analysis-based methods have

been found to have poor scalability when applied to large

networks (52). In contrast, the proposed formulation is based

on linear programming and MILP principles and is scalable

to thousands of chemical transformations. Similar linear

FIGURE 4 Composite block diagram illustrating the important steps in

the network modeling procedure. First, the pathway data from PANTHER

database is downloaded and subsequently curated to convert the data into a

spreadsheet readable format. Next, we identify chemical transformations,

chemical entities, activating, and inhibiting interactions using customized

PERL (46) scripts. Next, the identified activating and inhibiting interactions

are modeled as described, and finally the loop-breaking procedure is em-

ployed to represent any loops embedded in the network.
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programming and MILP based procedures have been suc-

cessfully demonstrated on genome-scale metabolic networks

in various microorganisms containing thousands of meta-

bolic reactions (53–56).

In addition to solution tractability to large networks, the

proposed formulation can be readily modified to address a

number of biologically relevant questions. For example, the

minimal sets of inputs that are required for attaining not just a

single but multiple outputs can be identified by simply set-

ting the flows through all the desired outputs .1. Similarly,

the formulation can be modified to conduct an input/output

feasibility analysis as in Pappin and Palsson (5). A feasible

input/output relationship implies that given a set of signaling

inputs, there exists a set of chemical transformations that lead

to the production of the desired output. This is accomplished

by replacing the objective function with Maximize rdesired

and replacing constraint 5 with rIni$1" i 2 Mava
In , where

rdesired represents the flux on the desired output transforma-

tion and the set Mava
In is the set of available inputs.

Computational results

The breadth of questions that can be answered by solving the

Min-Input problem and the biological insights obtained are

highlighted by applying the procedure to the large-scale net-

work model constructed from the pathways characterizing

the growth and development of prostate cancer. Specifically,

we address the following three key challenges in the context

of the signaling network described in the Table 2:

i. Identify the minimal number of inputs required to elicit

a particular outcome.

ii. Identify the degeneracy of a particular output by ex-

haustively enumerating all possible sets of input signal-

ing molecules that lead to a particular outcome.

iii. Analyze the interconnection between the inferred input/

output structures.

By iteratively solving the Min Input problem once for

each output, we generated the distribution of the minimum

number of inputs required to realize a particular output (see

Fig. 5). As shown in Fig. 5, the minimum number of required

inputs to elicit an output ranges from as low as 1 input to as

high as 15. This is a manifestation of the highly varied to-

pologies of the identified input/output structures. We observe

single linear paths to highly interconnected cascades (see

Fig. 6) depending on the output. Specifically, in the case of

apoptosis, a single intracellular input of capsase 3 protein

needs to be provided (see Fig. 6 a). Alternatively, as shown
in Fig. 6 b, the input/output structure characterizing the

formation of protein survivin resembles a simple linear cas-

cade. Finally, we find that input/output structure of phos-

phorylation of BAD is much more complex and is formed by

multiple interacting linear cascades (see Fig. 6 c).
Next, the degeneracy of the outputs is examined by

exhaustively identifying all sets of input molecules capable

of triggering the response of a particular outcome. The dis-

tribution of the number of alternative sets of input molecules

capable of eliciting a given response is shown in Fig. 7.

Interestingly, the distribution of output degeneracy is a

convex function with a minimum in the middle and two

maxima at the two extremes. This suggests that the examined

signaling pathways are characterized by the existence of two

distinct sets of outcomes (i.e., outputs) that are either highly

degenerate or highly specific. Table 3 summarizes the

number of input/output structures identified for each output

present in our signaling pathways. For example, we find that

nine alternative sets of input signaling molecules are capable

of triggering the apoptotic machinery, whereas there is only a

single way of triggering the deregulation of the apoptotic

machinery by enabling the activation of NF-kB. The

presence of alternative strategies to realize an outcome can

be rationalized as an evolutionary adaptation to protect

against failure, thus improving response robustness (42).

Therefore, a high degree of degeneracy for a particular out-

come may allude to the importance of the role played by that

component in the cell.

In the previous paragraph, we examined output degen-

eracy. Next, we quantify input degeneracy by identifying

whether there exist any input signaling molecules that are

highly recruited. The distribution of the number of input/

output structures that require the participation of a particular

input is shown in Fig. 8. It can be seen that the number of

input/output structures that recruit a particular input can be

as low as 1 to as high as 130. This clearly demonstrates that

most inputs are narrowly recruited to trigger only a handful

FIGURE 5 Graph depicts the distribution of minimal number of inputs

required to realize a particular output. The broadness of the distribution

suggests that the input/output structures span a wide spectrum in terms of

their complexity.

TABLE 2 Number of chemical transformations, chemical

entities, input transformations and output transformations

Statistics of the network model

Chemical transformations 1014

Chemical species 1063

Input transformations 249

Output transformations 75
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of outputs, although a few key inputs are implicated in trig-

gering a large number of outputs. Specifically, 73% of inputs

signaling molecules were found to be narrowly recruited

(i.e., recruited by 10 or less input/output structures), whereas

10% of input signaling molecules were found to be highly

recruited (i.e., recruited by 50 or more input/output struc-

tures). The complete list of highly recruited input signaling

molecules is provided in Table 4. As expected, energy

transfer metabolites such as ATP and GTP and proteins such

as Grb2 and Sos were found to be highly recruited. This is in

agreement with experimental observations that report that

the protein Grb2 is a crucial component linking the receptor

tyrosine kinase pathways (e.g., VEGF, EGF) with down-

stream proteins such as Ras and Sos (57). The identification

of highly/narrowly recruited input signaling molecules is

important for developing targeted therapeutic interventions

in signaling pathways. Specifically, interfering with a highly

recruited signaling molecule is more likely to lead to side

effects by negating many possibly desirable outputs.

In summary, we find that the topology of the input/output

structures varies widely from simple linear paths to highly

connected cascades. Output degeneracy tends to be either

very high or very low, whereas input degeneracy is very low

for most inputs and very high for a few key inputs (expo-

nential distribution). Clearly, input and output degeneracy

plays a key role in understanding the organizational princi-

ples of signaling networks and devising therapeutic inter-

ventions by blocking key transformations. In the next section,

we describe how to systematically identify which transfor-

mations to disrupt to deny and/or enable different outcomes.

FIGURE 6 Complexity of input/output structure varies from single linear paths to highly interconnected linear cascades. In a, the input/output structure for

capsase 3 resembles a simple linear path requiring just one input. In b, the input/output structure for survivin represents a linear cascade requiring a minimum of

five inputs. In c, the input/output structure for BAD is much more complex and has many interacting linear cascades.

FIGURE 7 Graph shows the number alternative input/output structures

realized for each output. The distribution is a convex function with a mini-

mum in the middle and maxima at two extremes, implying the existence of

two distinct set of outcomes (highly degenerate or highly specific outputs).
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Min-Interference problem

The results for the Min-Input problem indicate that cellular

outputs can be stimulated by several different signaling

molecules hinting at the enormous complexity associated

with disrupting signal transduction. Given a set of input sig-

naling molecules (Min), the Min-Interference problem pin-

points the minimal disruption strategies needed to prevent an

undesirable cellular outcome while preserving the desired

ones (see Fig. 1 b). At the core of the search algorithm is the

bilevel optimization problem depicted pictorially in Fig. 9.

Bilevel programming problems are hierarchical optimization

problems where the constraints of one problem (outer prob-

lem) are defined in part by a second parametric optimization

problem (inner problem). Specifically, in the case of the Min-

Interference problem, the inner level problem identifies the

worst-case scenario response of the network by maximizing

the flow to the undesirable response. The outer problem then

guarantees that the solution of the inner problem is equal to

zero by systematically disrupting a minimal number of trans-

TABLE 3 Number of alternative input/output structures

identified for each output

Number of alternative

input/output structures identified for each output

Mitogenesis_br_

Differentiation_Cytosol

1 ComplexAxinAPCGSK3_

beta__PlasmaMembrane

2

endoG_Intracellular 1 PLD_PlasmaMembrane 2

Anti-apoptosis_Nucleus 1 PLA_sub_2_endsub_

PlasmaMembrane

2

ComplexI_kappa_BNF_

kappa_B_Intracellular

1 Src_PlasmaMembrane 2

a127_degraded_Intracellular 1 PTEN_ 2

ComplexBcl-2Bik_Intracellular 1 ARF_ 2

CSL_Nuclearmembrane 1 Genetranscription_nucleus 2

Dsh_PlasmaMembrane 1 Bid_Mitochondria 3

TCF_Nuclearmembrane 1 ELF2_alpha__Intracellular 3

Grb14_PlasmaMembrane 1 Rac_PlasmaMembrane 3

Pak_PlasmaMembrane 1 IP3_ER 3

Grb2_PlasmaMembrane 1 ADP_Cytosol 3

RasGAP_PlasmaMembrane 1 Pro-apoptotic_Intracellular 4

Tumorsuppression_ 1 Ets_Nuclearmembrane 4

Survival_ 1 Survivin_PlasmaMembrane 4

ADP_cytosol 1 ComplexeNOSCa_

super_21_endsuper_

PlasmaMembrane

4

VHL_cytosol 1 ComplexcPLA_sub_2_

endsubCa_super_21_

endsuper_

PlasmaMembrane

4

a64_degraded_cytosol 1 VRAP_PlasmaMembrane 4

MetabolismGenes_

br_IncreasedGlycolysis_

Nucleus

1 Sck_PlasmaMembrane 4

Increased_br_Angiogenesis_

Nucleus

1 HSP27_PlasmaMembrane 4

Pro-apoptotic_br_genes_

Nucleus

1 Complexc-Junc-Fos_

Nuclearmembrane

5

ADP_Cytoplasm 1 Paxillin_PlasmaMembrane 5

Pi_Cytoplasm 1 Survival_br_Apoptosis_

br_cell_space_

migration_Cytosol

6

ADP_ 1 Gene_space_

transcription_Cytosol

6

2ADP_Cytoplasm 1 PI3,4P2_cytoplasm 8

Pi_nucleus 1 GDP_cytoplasm 8

ComplexGPCRligandGPC

RG_sub__alpha__cytoplasm

1 S6K_cytoplasm 8

Pre-replication_br_Complex

_SPhase

1 Pro-apoptotic_Nucleus 9

Rb_LateG_sub_1_endsub_ 1 ADP_cytoplasm 10

ADP_Mitosis 1 Pi_cytoplasm 10

a102_degraded_Mitosis 1 GSK3_cytoplasm 10

a_300_ 1 Caspase-9_cytoplasm 10

a87_degraded_Cytosol 2 BAD_cytoplasm 10

Transcription_br_

cellcycleprogression_

Cytosol

2 NOS_cytoplasm 10

STAT3_Nuclearmembrane 2 ComplexFOXO

14-3-3_cytoplasm

10

STAT1_Nuclearmembrane 2 Cyclind_nucleus 10

GADD45_nucleus 10

scl-1_nucleus 10

IGFBP1_nucleus 10

FIGURE 8 Graph depicts the number of times a particular input is recruited

by an input/output structure. Highly recruited inputs include common cur-

rency such as ATP GTP along proteins such as Grb2 and Sos.

TABLE 4 Highly recruited input signaling molecules

(50 or more input/output structures)

Input signaling molecules No. input/output structures

p101_cytoplasm 50

FOXO_cytoplasmINAC 50

GPCRligand_ 50

ComplexGPCRG_sub__alpha_G_sub__beta__

gamma__cytoplasm

50

ComplexRasGDP_cytoplasm 63

ComplexGDPRas_cytoplasm 65

IRligand_ 71

IR_cytoplasm 71

IRS_cytoplasm 71

PKB_cytoplasm 72

PI4,5P2_cytoplasm 120

p85_cytoplasm 123

p110_cytoplasm 123

SOS_cytoplasmINAC 128

GTP_cytoplasm 128

ATP_cytoplasm 130

Grb2_cytoplasm 131
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formations. A similar framework has been proposed before

and successfully implemented for identifying gene knock-

outs in metabolic networks leading to the overproduction of

a particular metabolite (58).

It is important to emphasize that the presence of an

inhibitor molecule leads to the disruption of the correspond-

ing chemical transformation(s) without the need for any

further action. Inhibitor molecules can either be inputs to the

signaling network whose presence can be controlled or they

can be produced through a set of chemical transformations.

This implies that both the set of inputs present and the

underlying chemical transformations in tandem determine

the presence or absence of inhibiting species in the network.

For example, in the context of the small pathway shown in

Fig. 10, recruitment of inputs A, B, and D implies that the

formation of output E is blocked due to the production of

inhibitor molecule C for the transformation D/E. Alterna-
tively, assuming that only the input signaling molecule D is

present in the system enables the production of output E. In
the results described in this section, we assume that all of the

input signaling molecules (Min) are present in the network.

We also postulate that all inhibitor molecules that can be

produced from the set of input signaling molecules (Min) are

present in the system. Therefore, the disruption targets

identified by the Min-Interference problem are in addition to

those chemical transformations that are not achievable due to

presence of inhibitors. This assumption that all ‘‘reachable’’

inhibitors are present is described mathematically as follows:

+
j2N

Sij rj $ 1; "i 2 I
R
;

where the set IR is identified by employing an input/output

feasibility analysis for every inhibitor molecule (6). This

constraint forces a net production of each inhibitor i that

is constitutively available to the system. The set of chemical

transformations that are unreachableor disruptedby thepresence

of inhibitors Ndis
ihb is found by examining if at least one inhibitor

i for that transformation is a member of set IR.
The conceptual optimization model shown in Fig. 9 is

fleshed-out in full detail as follows. Given the set of input

transformations (Nin), an undesirable output i
� 2 Mout, a subset

of desirable outputsMdes
out � Mout to be preserved, and the set of

inhibitor molecules (IR), the bilevel optimization problem for

identifying a disruption strategy to prevent an undesirable

outputwhile preserving the desired outputs is posed as follows:
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The objective function 10 for the outer problem minimizes

the flow to the undesirable outcome (i.e., i�), whereas the

FIGURE 9 Bilevel optimization structure for suggesting disruption targets.

The inner problem allocates the fluxes through the signaling reactions to

maximize the formation of an undesirable output (i.e., worst-case scenario).

The outer problem then minimizes the flow to the undesirable outcomes by

restricting access (i.e., disrupting) to key transformations available to the

optimization of the inner problem.

FIGURE 10 Set of input signaling molecules present determines the set of

inhibitor molecules that can be formed. Recruitment of input molecules A, B,

and D blocks the production of output E by disruption of the transformation

D/E by the inhibitor molecule C. Alternatively, if input molecule D alone

is present, production of E is preserved. The inhibitor action is indicated by

dotted line.
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objective function for the inner problem 11 maximizes the

flow to the undesirable outcome. This is because the solution

of the inner problem establishes the worst-case scenario for

the system, whereas the outer problem drives this worst-case

flow to the undesirable output to zero by disrupting reaction

steps. Disruption of chemical transformations either by in-

hibitor action or by targeted disruption eliminates reactions

that consume the reactants involved in the disrupted chemical

transformations. Consequently, this leads to the accumulation

of some of these reactant species. This is allowed through

constraint 12, which ensures that no deficit in the mass balance

of any chemical species is present although a surplus or accu-

mulation is allowed. Constraint set 13 ensures that, as dis-

cussed earlier, all inhibitor molecules that can be derived from

the current input signaling molecules are present in the sys-

tem. The inflow of input signaling molecules is switched on

by setting them greater than or equal to one (constraint 14).

Constraint 15 disrupts inhibited transformations (by setting

Yj ¼ 0) if the corresponding inhibitor is present. Constraint 16

preserves the desired outputs (Mdes
out ) by ensuring that the flow

to these outputs is possible. Constraint 17 forces the reaction

flux corresponding to all disrupted chemical transformations

in the network to zero, and finally constraint 19 places an

upper limit of K on the number of allowable interferences.

A mathematically valid disruption strategy is identified if

the value of the objective function reaches zero, implying that

the transmission of the extracellular signal to the undesirable

output is blocked. As in the case of the Min-Input problem,

alternative interference strategies (i.e., multiple optima) are

identified by implementing the above optimization problem

within an iterative procedure where previously found solu-

tions are excluded at each iteration by employing integer cut

constraints. First, single disruptions are investigated by setting

K equal to one. Multiple disruption strategies are investigated

by successively increasing the value of K by one after all

single disruption strategies are found.

Computational results

The following studies were conducted to test the ability of the

Min-Interference problem to elucidate targeted disruptions:

i. Identify the minimal set of transformations that need to

be disrupted to prevent each output separately (see Fig.

11 a).
ii. Identify the minimal set of transformations that need to be

disrupted to prevent each output separately while preserv-

ing the flow to a set of desirable outputs (see Fig. 11 b).

By iteratively solving the Min-Interference problem once

for each output, we generate the distribution of minimum

interference strategies for disrupting a particular output (see

Fig. 12). Following from our assumptions stated in previous

section, the bar for zero interference corresponds to outputs

that are already inaccessible due to the presence of inhibitor

molecules in the signaling network. Most of the outputs (i.e.,

47) require a minimum of a single disruption to be blocked

and only two outputs require a minimum of two disruptions.

As expected, there exist multiple interference strategies

that can block the formation of an undesirable outcome. We

find that the Min-Interference framework is able to suggest

both straightforward strategies involving the disruption of

the final transformation(s) leading to the outcome, and

relatively less intuitive strategies that target transformations

far upstream of an undesirable outcome. For example, con-

sider the interference strategies to block the formation of

complex cJun-cFos, a major component of the transcription

factor AP-1, which has been implicated for its role in tumor

growth (59). A straightforward strategy to block the forma-

tion of the complex involves simple disrupting the hetero-

dimeration of transcription factors cJun and cFos (see Fig.

13 a). However, we find a number of less intuitive strategies

such as targeting the MEKK1-dependent activation of

protein JNKK1 (see Fig. 13 b).
Overall, a total of 10 distinct disruption strategies (4

single and 6 double) were found to block the formation of

complex cJun-cFos. Whereas the single disruption strate-

gies were found to focus on transformations downstream of

the Ras-Map kinase cascade, the double disruption strate-

gies target transformations within the Ras-Map kinase

cascade. Interestingly, Ras-Map kinase cascades are known

to participate in a diverse array of cellular programs

including growth, proliferation, and survival, and several

drug molecules have been developed to target these cas-

cades as a means to eliminate undesirable outcomes (60).

For example, by employing the drugs U0126 and PD98059,

it is possible to inhibit the phosphorylation of MEK (60).

FIGURE 11 Pictorial representation of the two different problems solved

within the Min-Interference framework. In a, we identify disruption

strategies to prevent an undesirable outcome, whereas in b we identify

disruption strategies to prevent an undesirable outcome while preserving the

formation of desirable outcomes.
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Table 5 lists drug molecules that can carry out the identified

disruption strategies demonstrating the relevance of iden-

tified targets.

In the second study, we impose constraints that ensure that

whereas a specific output is disrupted, a set of desirable ones

is left unaffected. This modification attempts to identify

disruptions that are less likely to interfere with necessary

biological processes. The set of desirable outputs here is

listed in Table 6. The identified distribution of the minimum

required number of disruptions for different outputs, while

preserving the set of desirable outcomes (indicated by

shaded bars in Fig. 12), is almost identical to the previous

case. However, the number of alternative disruption strate-

gies identified is found to be substantially decreased. For

example, consider the disruption strategy identified previ-

ously to block the formation of complex cJun-cFos. The total

number of interference strategies decreased from 10 (4

single, 6 double) to 4 (4 single) when the flow to desirable

outputs is preserved. Furthermore, the interference strategies

are found to exclusively target the terminal transformations

located downstream of the Ras-Map kinase cascade rather

than disrupting the initial steps governing the Map kinase

cascade as shown in Fig. 14. In addition to eliminating

complex cJun-cFos, we find that the disruption strategies that

target the Map kinase cascades also block the activation of

cPLA2 and the expression of Ets transcription factors, which

play an important role in cell differentiation, cell prolifer-

ation, tissue remodeling, and apoptosis (43) (see Table 5).

These results indicate that when the flow to desirable

outcomes is preserved, the number of alternative interference

strategies decreases and the suggested strategies are found to

predominantly target the terminal transformations of the

signaling pathways.

The hypothesis that by preserving the flow to desirable

outputs the likelihood of side effects is reduced is next tested

by considering two separate examples. First, we explore

blocking the formation of endothelial nitric oxide synthase

(eNOS) an endothelial-cell-specific isoform of nitric oxide-

producing enzyme. eNOS has been implicated in both angio-

genesis and vasculogenesis, suggesting that the modulation

FIGURE 12 Distribution of the minimum number of interferences

required to disrupt the production of a particular cellular outcome. The

black bars represent the distribution of minimum number of interferences

identified to block a cellular outcome alone. The shaded bars correspond to

the distribution of minimum number of interferences identified to block a

cellular outcome while preserving the formation of desirable outcomes.

FIGURE 13 In a, a straightforward strategy to

block the formation of complex cJun-cfos in-

volves disrupting the final transformation (R9)

leading to the formation of the complex. A less

intuitive strategy shown in b targets MEKK1-

mediated activation of JNKK1 (R6), which is

located far upstream from the complex.
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of eNOS may be a potent new strategy for the control of

pathological neovascularization (61,62). As illustrated in

Fig. 15 a, one strategy for eliminating eNOS activity is to

disrupt the transport of Ca21 ion from endoplasmic reticu-

lum. However, this also results in loss of cPLA2 activity,

which is implicated in reduced fertility (63). Alternatively,

we find that targeting the Ca21-dependent activation of

eNOS within the plasma membrane as shown in Fig. 15 b
preserves cPLA2 activity. Interestingly, this disruption strat-

egy is identical to the action of cavtratin, a cell-permeable

peptide molecule, which by inhibiting eNOS activity, was

shown to exhibit anti-tumor properties (61).

In the previous study, we find that the identified disruption

target can be accomplished by an existing drug molecule.

Next, we describe an example where a disruption strategy is

identified that to our knowledge is not the target of any

existing drug molecules. Research has implicated Src in the

progression of tumor angiogenesis (64), qualifying Src as an

attractive target for disruption. By disrupting both VEGF and

fibroblast growth factor (FGF) receptor ligand binding,

thalidomide blocks Src activity (see Fig. 16 a) (65).

However, as shown in Fig. 16 a, disrupting both VEGF

and FGF receptor-ligand binding also interferes with the

activation of proteins VRAP, Sck, and HSP27. Experimental

studies have shown that VRAP plays an important role in the

progression of normal angiogenesis (66), and HSP27 is

known to aid in the survival and recovery of cells exposed to

stressful conditions (67). Also, it has been reported that

employing thalidomide as a means of eliminating Src

activity may result in compromised wound healing and

stop the normal reproductive cycle in women, among other

side effects (68). In contrast, we find that by imposing as a

restriction the preservation of desired output in Min-Inter-

ference we identify, among others, a previously unexplored

target involving the disruption of both VEGF-VEGFR2 and

FGF-FGFR mediated activation of protein Src (see Fig. 16

b), which preserves VRAP, Sck, and HSP27 activity.

SUMMARY/DISCUSSION

In this work, a computational base was introduced for the

systematic analysis and targeted disruption of signal trans-

duction networks. A stoichiometric formalism was adopted

to model the complex network of interacting molecules in

signaling pathways as a network of chemical transforma-

tions. The cellular stimuli to the signaling pathways were

described as inputs to the signaling network while cellular

responses were abstracted as outputs. The developed frame-

works were benchmarked by applying them to a large-scale

signaling network constructed from nine signaling pathways

known to play an active role in the growth and progression of

prostate cancer. It is important to emphasize that the

introduced frameworks cannot capture dynamic effects in

signal propagation as no kinetic information is included.

Therefore, only connectivity encoded insight can be eluci-

dated implying that further detailed kinetic based analysis

TABLE 5 List of the identified interference strategies to

block the formation of cJun-cFos along with the list of

available drug molecules reported to be able to block the

targeted transformations

Strategy Type

Disrupted

transformation(s)

Outputs

blocked

Drug

molecule(s) References

1 Single R7 cJun-cFos CNI-1493/JIP-1 (59)

2 Single R8 cJun-cFos Retenoid acid (70)

3 Single R9 cJun-cFos 52R (71)

4 Single R6 cJun-cFos CEP1347 (59)

5 Double R4 cJun-cFos Azathioprine (72)

R3 Ets

cPlA2

6 Double R4 cJun-cFos Azathioprine (72)

R2 Ets U0126/PD98059 (73)

cPLA2

7 Double R1 cJun-cFos RKIP (74)

R4 Ets Azathioprine (72)

cPLA2

8 Double R5 cJun-cFos PN7051 (75)

R1 Ets RKIP (74)

cPLA2

9 Double R2 cJun-cFos U0126/PD98059 (73)

R5 Ets PN7051 (75)

cPLA2

10 Double R5 cJun-cFos PN7051 (75)

R3 Ets Azathioprine (72)

cPlA2

TABLE 6 List of desirable outputs

Desirable outputs

Transcription_

br_cellcycleprogression_Cytosol

VRAP_PlasmaMembrane

Anti-apoptosis_Nucleus Paxillin_PlasmaMembrane

ComplexI_kappa_B

NF_kappa_B_Intracellular

HSP27_PlasmaMembrane

a127_degraded_Intracellular Tumorsuppression_

CSL_Nuclearmembrane Survival_

Ets_Nuclearmembrane Gene_space_transcription_

Cytosol

STAT3_Nuclearmembrane Genetranscription_nucleus

STAT1_Nuclearmembrane S6K_cytoplasm

TCF_Nuclearmembrane GSK3_cytoplasm

PLD_PlasmaMembrane Caspase-9_cytoplasm

PLA_sub_2_endsub_

PlasmaMembrane

BAD_cytoplasm

Src_PlasmaMembrane NOS_cytoplasm

Survivin_PlasmaMembrane ComplexFOXO14-3-3_

cytoplasm

IGFBP1_nucleus Cyclind_nucleus

Rb_LateG_sub_1_endsub_ GADD45_nucleus

a102_degraded_Mitosis scl-1_nucleus

ComplexeNOSCa_super_

21_endsuper_

PlasmaMembrane

ComplexcPLA_sub_

2_endsubCa_super_

21_endsuper_

PlasmaMembrane

The flow to these outputs is preserved while devising interference strategies

for blocking the formation of complex cJun-cFos.
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may be needed to fully recapitulate the underlying input-

output structures and/or interventions.

First, we introduced the Min-Input framework to identify

all cellular stimuli that can elicit the formation of a particular

response. By exhaustively identifying all input/output struc-

tures, Min-Input was able to extract a number of important

topological properties of signaling networks. Specifically,

we found that the outputs can be classified into two distinct

sets, highly degenerate or highly specific depending on

whether they can be elicited by many different input com-

binations or a few dedicated ones. This classification has

important implications for guiding the development of thera-

peutic strategies. For example, interfering with highly re-

cruited input molecules (e.g., Sos) is likely to impact many

network functions, whereas affecting inputs with dedicated

participation is more likely to cause only a specific event.

Similarly, blocking the formation of a highly degenerate

outcome (e.g., cyclinD) is hard to accomplish because it

requires the disruption of multiple steps. Given a set of input

signaling molecules the Min-Interference framework iden-

tifies the minimal set of disruptions needed to eliminate an

undesirable outcome. Computational results indicated that

Min-Interference was able to suggest multiple disruption

strategies that were biologically relevant as several drug mol-

ecules exist to carry out the identified disruptions. Further-

more, by proactively preserving desirable outputs, disruption

strategies were identified that appear to be less likely to

involve side effects by contrasting them against the action

and reported side effects of existing drug molecules. Min-

Interference can also be used to examine if a particular com-

bination of drugmolecules is effective when used in combination

and not alone (i.e., exhibit drug synergy). This is particularly

FIGURE 14 Alternative interference strategies identified

to block the formation of complex cJun-cfos while preserv-

ing the formation of the formation of ETS transcription

factors and cPLA2. The Min-Interference framework finds

only single interference strategies. As shown in the figure,

the alternative strategies target transformations R6, R7, R8,

and R9, respectively. Note that all the disruption strategies

target the terminal transformations located downstream of

the MAP kinase cascades.

FIGURE 15 Interference strategies to block eNOS acti-

vation. Disrupting Ca21 transport from the endoplasmic

reticulum eliminates both cPLA2 and eNOS activation as

shown in a. In contrast, disrupting Erk-mediated activation

of eNOS preserves cPLA2 activation as shown in b.
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important for pathologies such as cancer, where multiple path-

ways may be dysfunctional, requiring a combination of sev-

eral drug molecules (44) for effective treatment.

The reconstruction of signaling networks is progressing

with a fast pace (6). Efforts are under way to identify

‘‘signature networks’’ that are highly specific descriptors of

many diseases (e.g., renal cell carcinoma)(69,70). Whenever

available, the Min-Interference can be used to identify ways

to negate the occurrence of these ‘‘signature networks’’.

Nevertheless, it is important to emphasize that existing sig-

naling reconstructions are inherently incomplete. Therefore,

input-output structure (Min-Input) or disruption results (Min-

Interference) are bound to, for some cases, reflect these

missing links. However, results obtained that are inconsistent

with biological knowledge or experiment can be used to

come up with hypotheses for ‘‘filling in’’ gaps in signaling

reconstructions. Furthermore, the lack of any kinetic infor-

mation in the signaling network description can lead to an

overestimation of the number of viable input-output struc-

tures embedded within a signaling network. However, this

overestimation of the signaling network functionalities

ensures that all identified disruption strategies will be valid

for the true signaling network. Despite these limitations, this

work represents an important first step toward constructing

an integrated computational base for elucidating the input/

output structure and subsequently redesigning signaling

networks.
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