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ABSTRACT

Motivation: In this paper, we present a novel framework for inferring

regulatory and sequence-level information from gene co-expression

networks.The key ideaof ourmethodology is the systematic integration

of network inference and network topological analysis approaches for

uncovering biological insights.

Results: We determine the gene co-expression network of Bacillus

subtilis using Affymetrix GeneChip� time-series data and show how

the inferred network topology can be linked to sequence-level informa-

tion hard-wired in the organism’s genome. We propose a systematic

way for determining the correlation threshold at which two genes are

assessed to be co-expressed using the clustering coefficient and we

expand the scope of the gene co-expression network by proposing

the slope ratio metric as a means for incorporating directionality on

the edges. We show through specific examples for B. subtilis that by

incorporating expression level information in addition to the temporal

expression patterns, we can uncover sequence-level biological

insights. In particular, we are able to identify a number of cases

where (1) the co-expressed genes are part of a single transcriptional

unit or operon and (2) the inferred directionality arises due to the pres-

ence of intra-operon transcription termination sites.

Availability: The software will be provided on request.

Contact: ralbert@phys.psu.edu

Supplementary information: http://www.phys.psu.edu/�ralbert/pdf/

gma_bioinf_supp.pdf

1 INTRODUCTION

Gene expression information captured in microarray data for a

variety of environmental and genetic perturbations, in conjunction

with other sources such as protein–protein/protein–DNA interaction

and operon organization data, promises to yield unprecedented

insights into the organization and functioning of biological systems

(Brazhnik et al., 2002; Ge et al, 2003). It has now become clear that

only by simultaneously accounting for all the multiple layers of

regulation that exist in biological systems can one hope to uncover

the biological knowledge embedded in the experimental data. In this

paper, we take a first step by proposing an integrated approach that

combines network inference and analysis with a detailed biological

study of the uncovered regulatory patterns. Specifically, we study

the gene co-expression network of Bacillus subtilis derived from

Affymetrix GeneChip� time-series data and show how the observed

expression patterns can be traced back to the sequence-level

organization of the various genes. We construct a gene co-

expression network, where nodes correspond to genes and an undir-

ected edge exists between two genes if the similarity of their expres-

sion profiles exceeds a threshold value. We introduce a novel

systematic way for determining the similarity threshold by applying

ideas from network analysis. In addition, we expand the scope of the

gene co-expression network representation by proposing a way to

impose directionality on the edges. We show that this enables us to

uncover additional biologically relevant insights that are not obvi-

ous at the level of the gene co-expression network.

Several methods aim to cluster genes on the basis of their expres-

sion profiles for identifying groups of genes that are co-expressed/

co-regulated under particular experimental conditions (Eisen et al,
1998; Wen et al, 1998; Herwig et al, 1999; Tamayo et al, 1999;

Dougherty et al, 2002; Xu et al, 2002; Schmitt et al, 2004). The

graph-based method that we use is closely related to the widely used

hierarchical clustering approach (Eisen et al, 1998; Spellman et al,
1998). In hierarchical clustering, one starts with all genes belonging

to separate clusters. Subsequently, the two genes that are closest to

each other with respect to a chosen similarity measure are assigned

to a single cluster. A similarity measure between gene clusters is

then used to determine the most similar pair of clusters, which are

then merged. This procedure is repeated until all the genes belong to

a single cluster and the clustering results are displayed as a dendro-

gram. Specific clusters are obtained by ‘slicing’ the dendrogram at a

threshold of the similarity measure. In the same spirit, in our

proposed approach all genes belong to a single cluster when the

similarity threshold is set to zero while they constitute individual

single-gene clusters when the similarity threshold is set at the other

extreme of one. A common question to be answered for both hier-

archical clustering and our graph-based approach is where to set the

similarity threshold. In this work, we propose an objective and

systematic method of determining the most informative similarity

threshold by employing ideas from network analysis. Another key

advantage of our method over hierarchical clustering is that we do

not need to define a similarity measure between clusters and can rely

solely on the similarity measure between individual genes for

obtaining the clusters.

2 METHODS

2.1 Gene co-expression network

The starting point of our analysis is time-series expression information for

746 B. subtilis genes in a cradle-to-grave experiment (Gupta et al., 2005).�To whom correspondence should be addressed.
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B. subtilis is one of the best characterized Gram positive bacteria and it is

used extensively for industrial-scale protein production. The expression data

were collected during feed-batch protease production and the majority of

the genes included were involved in the central metabolism of B. subtilis.

A total of 20 time points were sampled every 2 h over the course of the

fermentation. Since the data were obtained using Affymetrix arrays, the

expression levels were time-resolved absolute transcript signals as opposed

to the relative expression changes typically measured with cDNA arrays.

In this work, we use the R2 metric (or equivalently the Pearson correlation

coefficient) as a measure of similarity between the expression profiles of two

genes. This metric, which ranges between 0 and 1, quantifies the ‘goodness-

of-fit’ of a linear relationship between two variables. Suppose that the system

is described by two variables X and Y, where Y is linearly dependent on X i.e.

Y ¼ aYX + bYXX. Given observed data (Yi,Xi), the parameters aYX and bYX are

determined by solving the following quadratic least-squares minimization

problem (Rencher, 1995).

min
aYX ‚bYX

SSEYX ¼
XN

i¼1

ðYi � aYX � bYXXiÞ2:

The optimal regression slope, which is determined by setting the first

derivatives @SSEYX/@aYX and @SSEYX/@bYX to zero and by solving the res-

ulting 2 · 2 system of linear equations, is given by

bYX ¼
PN

i¼1 ðXi � XÞ · ðYi � Y Þ
PN

i¼1 ðXi � XÞ2
‚

where

X ¼ 1

N

XN

i¼1

Xi; Y ¼ 1

N

XN

i¼1

Yi:

Alternatively, we can regress ‘X-on-Y’ by switching the roles of the inde-

pendent and dependent variables and determine the alternative regression

slope bXY. If the relationship between X and Y is perfectly linear, then the two

slopes are reciprocal of each other, i.e. bXY · bYX ¼ 1. To measure the degree

of linearity, the R2 metric is defined as R2 ¼ bXY · bYX. In our current setting

where we are given time-course gene expression data Xit for each gene i at

time point t, R2
ij is given by

R2
ij ¼

½
PT

t¼1 ðXit � XiÞ · ðXjt � XjÞ�2PT
t¼1 ðXit � XiÞ2:

PT
t¼1 ðXjt � XjÞ2

:

Next, the co-expression network is defined such that each gene corres-

ponds to a node and an undirected edge is included between two nodes if the

R2 value between the two genes is greater than a threshold value R�. Thus,

the connectivity matrix aij, which encodes whether a particular gene/node i

is connected to another gene/node j, is given by

aij ¼ 1 if R2
ij � R�; aij ¼ 0 if R2

ij < R�‚

where R2
ij is the R2 value between the time-courses of genes i and j. Tra-

ditionally the similarity threshold R� has been chosen either by assuming a

normal R2 distribution (which may or may not be valid) or by significance

analysis using the R2 null distribution generated by permutation of the

original data (Magwene and Kim, 2004). Though valid from the perspective

of trying to minimize the number of false-positive edges, both these methods

fail to take into consideration the linearity assumptions that underlie the R2

metric and do not provide any information regarding the sensitivity of the

resulting network topology to the chosen cut-off value. In this work we

determine the similarity threshold by employing a commonly used graph-

theoretic transitivity measure, the clustering coefficient.

2.2 Clustering coefficient

The clustering coefficient Ci of a node (Watts and Strogatz, 1998; Albert and

Barabasi, 2002) is defined as

Ci ¼
Ei

kiðki � 1Þ=2
‚

where ki (>1) is the number of first-neighbors of node i (i.e. nodes that are

connected to it by a single edge) and Ei is the number of edges present

between these first neighbors. If the ki first-neighbors were all connected to

each other, then there would be a total of ki(ki � 1)/2 edges between them,

leading to a clustering coefficient of 1 for node i.

Figure 1 shows how the similarity threshold impacts the average cluster-

ing coefficient of an example network. If the similarity threshold is set at its

minimum value of zero, a fully connected network with an average clus-

tering coefficient (ACC) of one will be obtained. As the cut-off is increased,

edges will get eliminated leading to a lowering of the ACC. However, at a

reasonably high similarity threshold, one can expect the ACC to start

increasing once again due to the emergence of highly ‘cliquish’ disconnected

subnetworks or modules, a manifestation of the transitive property of linear

functions at the network representation level. This predictable variation of

the ACC with the similarity threshold suggests that in the general case, the

similarity threshold should be chosen such that (1) it is low enough so that a

sufficient number of relationships (edges) are retained in the first place, (2) it

is consistent with the transitive property of linear relationships which is

what it eventually captures and finally (3) it is high enough so that the

probability of the implied linear relationships (edges) occurring by chance

is low. Thus, by parametrically varying the similarity threshold and calcu-

lating the resulting ACC, the ‘critical’ threshold should be set at the highest

similarity value above/below which a sharp increase/decrease in the ACC is

observed.

2.3 Edge directionality

A high similarity between gene expression profiles could mask important

differences in the regulation of the gene expression levels. To highlight this

point, consider two representative gene pairs shown in Figure 2. Even though

the R2 values are comparable for the two gene pairs, it is clear from their

expression profiles that there is a qualitative difference between the two

pairs. Specifically, for genes A and B, not only is the overall shape of the

expression profile similar, but also the magnitudes of the expression levels

are almost identical at each of the time points. However, the level of peak

expression of gene D is much higher than that of gene C. In view of this, we

considered the regression slopes for the two gene pairs bAB ¼ 1.004, bBA ¼
0.976, bCD ¼ 0.198, bDC ¼ 4.957.

To quantify how different these slopes are we define the slope ratio metric

SR as

SR ¼ minð jbYXj‚ jbXY j Þ
maxð jbYXj ‚ jbXY j Þ

:

Fig. 1. Impact of the similarity threshold on the average clustering coefficient

of a network. The clustering coefficient of each node is shown next to the node

label (ACC ¼ average clustering coefficient). Note that in the third graph the

clustering coefficient is not defined for nodes B and C and so they are not

considered for calculating the ACC.
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This metric allows for distinguishing between the two pairs since SRCD ¼
0.04 is significantly different than SRAB ¼ 0.97. We incorporate the slope

ratio information at the network representation level by assigning direction-

ality to only those edges that have SR ! 0 according to the following rules.

If SR ¼ jbYXj
jbXY j

) Y!X; If SR ¼ jbXY j
jbYXj

) X!Y:

The interpretation of the directed edge between two genes (e.g. C ! D) is

that a small change in the ‘source’ gene (C) is associated with a large change

in the ‘sink’ gene (D). Consequently, using the slope ratio metric in tandem

with the R2 metric, we can identify differentially (in terms of absolute level)

co-expressed (in terms of temporal pattern) gene pairs such as C and D.

In addition to the similarity threshold, we will now need to determine a SR

threshold such that directed edges having SR value less than the threshold are

considered significant. We use the distribution of SR values for the un-

directed edges surviving the similarity threshold for determining the SR

threshold. Specifically, in keeping with the spirit of how the similarity

threshold is determined, the SR threshold is chosen as the critical value

around which a sharp transition is observed in the SR distribution. By doing

so we are able to focus on gene pairs that ‘stand out’ from the background of

all co-expressed gene pairs.

3 RESULTS

Figure 3 highlights the dependence of the average clustering coef-

ficient (ACC) of the co-expression network on the R2 threshold.

Note that we excluded both the isolated nodes (node degree 0) and

the leaf nodes (node degree 1) from the calculation of the ACC. As

expected, when the threshold was set at 0, resulting in a fully

connected network (since the R2 is greater than 0 for all gene

pairs), an ACC of 1 was obtained. A small increase in the cut-off

from 0 resulted in a sharp decline in the ACC as a result of edge

deletion from the fully connected network. The ACC leveled off

around 0.65 for a broad range of cut-off values (0.12–0.88). From a

network topology perspective, this implied that the average cohes-

iveness of the neighborhood of the non-isolated nodes was largely

constant even though the number of edges was continuously

decreasing over this range. On subsequent increase of the threshold

(0.9 and above) a sharp increase in the ACC was observed. This

was, as expected, due to the emergence of highly self-connected

subnetworks or modules. Given this plot, we chose the similarity

threshold as 0.90 since we observe a sharp transition in the ACC

around this value.

The resulting co-expression network is shown in Figure S1 of the

Supplementary Data. There were 47 separate clusters (subnetworks)

in the network with the largest connected component consisting of

79 nodes and 260 edges (see Table S1 in Supplementary Data).

Figure 4 shows the characteristic expression signatures of the top six

clusters. These clusters were mainly composed of genes involved in

t-RNA synthesis, amino acid metabolism (in particular tryptophan),

biotin synthesis and pentose and glucuronate interconversion path-

way (see Supplementary Data).

Next, based on the distribution of slope ratios found in our net-

work (Figure S2 in Supplementary Data), we chose the slope ratio

threshold of 0.15 and imposed directionality on the edges that had

slope ratio less than 0.15. The resulting directed network is shown in

Figure S3 and described in the Supplementary Data. While differ-

ential regulation of co-expressed genes belonging to the same path-

way could be implemented in several ways, a remarkably consistent

picture emerged when we looked at how this was operationally

achieved at the sequence level in an organism. In bacterial and

other prokaryotic systems, genes that encode for proteins necessary

to perform coordinated functions in a particular pathway are typ-

ically clustered into a single transcriptional unit or operon that is

transcribed into a single polycistronic mRNA coding for multiple

proteins (De Hoon et al., 2004). Indeed, we found a large number of

instances of genes constituting an operon belonging to the same

co-expressed cluster. For example, in cluster 2, genes could be

grouped as argC-argB-argD, carA-carB, argH-argG and rocF-

rocD according to their operon organization (Makarova et al.,
2001), the tryptophan metabolism genes of cluster 3 constitute

the trpEDCFB operon (Du et al., 2000), while the biotin biosyn-

thesis genes of cluster 4 form the bioWAFDBI operon (Bower et al.,
1996; Perkins et al., 1996). Overall, the fraction of operons pre-

served in our co-expression network (meaning that all genes of an

operon belong to the same cluster) is found to be 82.6% with 38 of

Fig. 2. Two qualitatively different gene pairs that cannot be differentiated

purely on the basis of the R2 metric.

Fig. 3. Variation of the average clustering coefficient with the similarity

threshold for the 746 gene ‘cradle-to-grave’ dataset.

Fig. 4. Expression signatures for the top six clusters in the gene co-expression

network.
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the 46 operons being preserved.1 Moreover, we were able to

uncover the sequence-level basis for the differential regulation of

genes in the same operon, namely the existence of alternative

transcription termination sites as described next.

The network topology of one of the inferred sub-networks con-

taining genes involved in biotin biosynthesis (Fig. 5) implied that

(1) the expression levels of all six genes were highly correlated

across time and (2) small changes in the expression level of bioI
were translated into large changes in the expression of the remaining

five genes (Fig. 5B). The underlying biological reasons for these

observations were found at the sequence level since the six genes are

organized into an operon (Bower et al., 1996; Perkins et al., 1996)

with two putative rho-independent transcription termination sites

t1 and t2 (Fig. 5C). This type of transcription termination occurs

when the transcribing RNA polymerase encounters a GC-rich

region with dyad symmetry (inverted repeats). Once transcribed,

the inverted repeats self-hybridize (anneal) to form a stem–loop

structure which causes the RNA polymerase to pause. This allows

the DNA strand to re-anneal and results in the release of the RNA

polymerase along with the newly synthesized mRNA transcript.

Consequently, the presence of the two termination sites suggested

the existence of two transcripts of different lengths as shown in

Figure 5C. This was indeed the case as previous experimental work

(Perkins et al., 1996) on the bio operon had uncovered a 7.2 kb RNA

that corresponded to the entire 7-gene operon along with a 5.1 kb

transcript that corresponded to only the first five genes. In addition

to the difference in lengths, the relative amounts of the two tran-

scripts were also determined to be very different. Specifically, the

amount of the 5-gene transcript was found to be eight times greater

than that of the 7-gene transcript (Perkins et al., 1996). This dif-

ference in relative abundance would translate into lower expression

level of bioI (and orf2) as compared to the other five genes, in

accordance with both our experimental measurements and the

relationships implied by our network representation. From a biolo-

gical control perspective, our results support previous suggestions

(Perkins et al., 1996) that the reaction catalyzed by the bioI protein

product, which is the very first reaction in the linear biotin synthesis

pathway, is the rate limiting step in this pathway.

Motivated by the results for the bio operon, we explored whether

our approach could be used to validate/invalidate computational

predictions of putative terminator sites. Typically, possible stem–

loop structures between genes transcribed in the same direction are

predicted by calculating the free-energy of base pairings in the stem

region (de Hoon et al., 2005). If the calculated free energy is neg-

ative and is below a specified threshold value, the sequence region is

inferred to code for a putative transcription termination site. One

such computationally predicted stem–loop site embedded within the

yjm operon of B. subtilis is shown in Figure 6C (Rivolta et al.,
1998), along with the network inferred for some of the genes con-

stituting this operon (Fig. 6A) and their expression profiles in the

cradle-to-grave dataset (Fig. 6B).

The directed arcs from yjmD and yjmE are included as dashed

lines in Figure 6A because they barely miss the SR threshold of

0.15 with SR values of 0.214 (yjmD ! yjmA) and 0.153 (yjmE !
yjmA). In light of the results for the bio operon, the large difference

in the expression level of yjmA as compared with the other genes

suggests that the putative stem–loop structure is indeed a site for

transcription termination. Other previously known instances of

read-through terminators embedded within operons that we were

able to identify included terminators in the valS-folC operon (read-

through terminator after valS) and the gap-pgk-tpi-pgm-eno operon

(read-through terminator after gap).

We are also able to predict the presence of truly novel putative

intra-operon transcription termination sites as in the case of the opp
operon shown in Figure 7. The genes oppA and oppC and oppD were

found to comprise a 3-gene cluster with the directionality between

them as shown in Figure 7A. These genes, along with oppB, oppD
and oppF, constitute the oppABCDF operon encoding proteins

involved in the oligopeptide transport system responsible for

importing/exporting peptides of 3–5 amino acids across the cell

membrane (Solomon et al., 2003). The expression data for these

genes (Fig. 7B), in combination with their sequence map (Fig. 7C),

strongly suggest the presence of an intra-operon termination site

between oppA and oppB since the expression level of oppA was

Fig. 5. (A) Subnetwork inferred for the biotin biosynthesis genes. (B) Mea-

sured expression profiles for the six genes. (C) Sequence map of theB. subtilis

bio operon (orf2: uncharacterized gene) and the reported relative abundances

of the two transcripts (the shorter transcript was found to be eight times more

abundant than the longer one).

Fig. 6. (A) Subnetwork inferred for the hexuronate utilization genes. (B)

Measured expression profiles for the six genes. (C) Sequence map of the

B. subtilis yjm operon. The question mark indicates the computationally

determined putative termination site.

1An important point to note is that operons and clusters are not equivalent, in

the sense that if the genes are known to be part of an operon then they can be

expected to belong to the same cluster; however, all genes in a cluster do not

constitute an operon.
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much larger than all the other genes. Previously, using free-energy

calculations, it had been hypothesized that the secondary structure

of the RNA corresponding to the oppA-oppB intergenic region may

enhance the stability of the mRNA molecule or function as a read-

through terminator (de Hoon et al., 2005). Our results support the

read-through terminator hypothesis since there is large difference in

the expression profiles of oppA and oppCD. This would not be

expected if the sequence region was contributing to mRNA stability.

Next, we explore whether given the fact that we find good cor-

respondence between our directed networks and the presence of

intra-operon terminator sites, our analysis can be taken a step further

to infer the relative strengths of known terminator stem–loop struc-

tures. Typically, two (or more) terminator sites are compared based

on their free-energy values. The more negative the free-energy, the

more stable the stem–loop, implying greater chance of termination

at that site. Thus, a large difference in relative strengths of two

terminators gets translated into significant difference in the amounts

of the two possible transcripts, which corresponds to strong direc-

tionality (indicated by a small slope ratio) in our analysis. One such

operon of B. subtilis for which the free-energy values were available

was the glv operon (Fig. 8), where DG ¼ –30.1 Kcal/mol for the

terminator after glvA and DG ¼ –18.6 Kcal/mol for the terminator

after glvC (Yamamoto et al., 2001). We find that the slope ratio of

the glvA-glvC pair is 0.0678, suggesting that the terminator after

glvA is much stronger than the one after glvC, in good agreement

with the free energy results.

In contrast to the glv operon, consider the pyrimidine biosynthesis

genes (Fig. 9). For this operon, previous studies predicted that the

two terminator sites were approximately identical with respect to

their transcription termination potential (Turner et al., 1994; Lu

et al., 1995; Lu and Switzer, 1996). In particular, the free-energy

values for the pyrR-pyrP and pyrP-pyrB terminator sites were repor-

ted to be DG ¼ –15.3 Kcal/mol and DG ¼ –21.6 Kcal/mol, respect-

ively (Turner et al., 1994). As for the glv operon, our experimental

data supported this claim since the relative distance between the

expression profiles of pyrR and pyrP was approximately identical to

that between pyrP and pyrB/pyrC and the slope ratio was found to

be 0.9837 for the pyrR–pyrP pair and 0.8792 for the pyrP–pyrB pair.

4 DISCUSSION

This paper presents a systematic framework for integrating network

inference and topological analysis for uncovering biological know-

ledge from large-scale gene expression data. Our starting point was

the gene co-expression network for B. subtilis as inferred from

Affymetrix GeneChip� time-series data. We constructed the

gene co-expression network of B. subtilis where each gene corres-

ponds to a node and an un-directed edge exists between two nodes if

the similarity (R2 value) between their expression profiles is above a

threshold. One of the key contributions of our work is the formal

estimation of this threshold value by applying ideas from network

analysis. Specifically, we demonstrated how the clustering coeffi-

cient, which is a measure of local connectedness or cliquishness in a

network, is the appropriate graph-theoretic metric that must be

used for determining the cut-off value. This reliance on the clus-

tering coefficient, as opposed to other topological measures such as

degree distributions, path lengths, etc., was shown to be a natural

consequence of the manifestation of the transitive property of linear

Fig. 7. (A) Subnetwork inferred for the opp genes. The oppD! oppA arc is

drawn as a dashed line because theR2 value between oppD and oppA is 0.845,

which is just below the applied threshold of 0.90. (B) Measured expression

profiles for the 3 genes. (C) Sequence map of the B. subtilis opp operon with

the newly identified putative intra-operon transcription termination site

(indicated with an �).

Figure 8. (A) Implied subnetwork for the glv genes involved in maltose

metabolism. The arcs are shown with dashed lines since the edges barely

miss the applied thresholds. (B) Measured expression profiles for the three

genes. (C) Sequence map of the B. subtilis glv operon.

Fig. 9. (A) Implied subnetwork for the pyrimidine biosynthesis genes. The

arcs are shown as dashed lines since they miss the applied thresholds. (B)

Measured expression profiles for the four genes. (C) Sequence map of the

B. subtilis pyr operon.
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functions at the network representation level. We expanded the

scope of the gene co-expression network by proposing a novel

measure, the slope ratio, as a means for imposing directionality

on the edges. By doing so, we were able to account for both the

temporal similarity of gene expression profiles as well as the

similarity/dissimilarity in the absolute levels of gene expression.

Both these attributes of the expression profiles are important as the

similarity in temporal pattern is indicative of co-regulation of genes

by an endogenous/exogenous signal while the difference in absolute

levels provides information about the relative turnovers of the

specific reactions in a biological pathway.

We found that the B. subtilis gene co-expression network was

highly modular, consisting of one large connected subnetwork and a

large number of relatively smaller subnetworks. We observed no

redundancy in our clustering results as there was no overlap

between the expression signatures of the top six clusters. We veri-

fied that genes participating in the same biological pathway were

co-expressed and consequently belonged to the same cluster and we

identified a number of cases where some/all genes belonging to the

same cluster constituted a single transcriptional unit or operon.

Further probing of the operon structures of a number of gene clus-

ters revealed that edge directionality, which was designed to capture

the difference in expression levels, corresponded to the presence of

intra-operon termination sites. We were able to (1) re-confirm pre-

viously experimentally determined termination sites as in the case

of the bio operon, (2) provide validation for computationally

derived termination sites as in the case of the yjm operon and

(3) quantify their relative strengths to complement free-energy-

based assessments. Given these results, we conclude that indeed

there were important biological insights that were masked at the

level of the un-directed co-expression network and that these were

brought to light by considering the directed network. In the future,

we plan to conduct a large-scale systematic study to see how well

terminator free-energy data, which is now available on a genome-

wide scale for B. subtilis (de Hoon et al., 2005), correlate with our

slope ratio metric. Such a study would help identify instances where

the two approaches (one based on sequence-level information and

one based on expression level information) support as well as

complement each other.
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