
ARTICLE IN PRESS
1096-7176/$ - se

doi:10.1016/j.ym

�Correspond
E-mail addr
Metabolic Engineering 8 (2006) 1–13

www.elsevier.com/locate/ymben
An optimization framework for identifying reaction
activation/inhibition or elimination candidates for overproduction in

microbial systems

Priti Pharkya, Costas D. Maranas�

Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

Received 20 April 2005; received in revised form 5 August 2005; accepted 9 August 2005

Available online 30 September 2005
Abstract

We introduce a computational framework termed OptReg that determines the optimal reaction activations/inhibitions and

eliminations for targeted biochemical production. A reaction is deemed up- or downregulated if it is constrained to assume flux values

significantly above or below its steady-state before the genetic manipulations. The developed framework is demonstrated by studying the

overproduction of ethanol in Escherichia coli. Computational results reveal the existence of synergism between reaction deletions and

modulations implying that the simultaneous application of both types of genetic manipulations yields the most promising results. For

example, the downregulation of phosphoglucomutase in conjunction with the deletion of oxygen uptake and pyruvate formate lyase

yields 99.8% of the maximum theoretical ethanol yield. Conceptually, the proposed strategies redirect both the carbon flux as well as the

cofactors to enhance ethanol production in the network. The OptReg framework is a versatile tool for strain design which allows for a

broad array of genetic manipulations.

r 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Metabolic engineering in microbial hosts for the
production of renewable fuels and chemicals has received
considerable attention in recent years (Stafford and
Stephanopoulos, 2001; Gross et al., 2003; Vera et al.,
2003; Wyman, 2003; Alper et al., 2005a). This is because
biotechnology offers an opportunity for unparalleled
product diversity and is integral to achieving the goal of
sustainable development. Furthermore, the potential of
biocatalysts to produce very complex products of desired
stereospecificity (Breuer et al., 2004) with possibly more
favorable economics has motivated many large-scale
efforts in engineering microbial production systems.
Already, a number of compounds are being produced
industrially using microbial production systems (Chotani et
al., 2000; Nakamura and Whited, 2003), and many efforts
e front matter r 2005 Elsevier Inc. All rights reserved.
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are ongoing for synthesizing several others using biological
routes (Lee and Schmidt–Dannert, 2002; Martin et al.,
2003; Baez–Viveros et al., 2004).
In recent years, our group has introduced optimization-

based frameworks to predict genetic modifications (i.e.,
deletions and additions), aimed at maximizing the secretion
of biochemicals from metabolic networks. The objective
was to guide experimental metabolic engineering strategies
by adopting a systems approach for anticipating the effect
of genetic modifications on metabolism. Metabolism is
described by adopting genome-scale metabolic models
widely available for many organisms (Schilling et al.,
2002; Van Dien and Lidstrom, 2002; Forster et al., 2003;
Reed et al., 2003; Duarte et al., 2004). Specifically, the
bilevel computational framework called OptKnock (Bur-
gard et al., 2003; Pharkya et al., 2003) was developed to
suggest reaction deletion strategies that maximize bio-
chemical production. This is accomplished by using
maximization of biomass yield (Varma and Palsson,
1994), minimization of metabolic adjustment (MOMA)

www.elsevier.com/locate/ymben


ARTICLE IN PRESS

max
jv

0
j , U

v0
j , L

v

Up 
regulation 

Down 
regulation 

Steady 
state
range

Knockout

Flux values

min
j

v 0

C C 1-C1-C

>−

Fig. 1. A pictorial overview of the definitions of up/downregulations and

deletions. A reaction is called ‘‘upregulated’’ if it assumes flux values in the

range ½ðv0j;U Þð1� CÞ þ ðvmax
j ÞðCÞ; v

max
j �; ‘‘downregulated’’ if it assumes flux

values between vj
min and ðvj ;0LÞð1� CÞ þ ðvmin

j ÞðCÞ where 0pCp1. If a

reaction is knocked out, it is forced to assume a flux of zero. vj
min and vj

max

represent the stoichiometric bounds on the flux through reaction j whereas

[vj,L
0, vj,U

0] is the range of allowable steady-state values. Note that the

stoichiometric lower bound vj
min for a flux j may be greater than zero if the

specific reaction is required for biomass formation. In such a scenario, the

reaction cannot be knocked out.
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(Segre et al., 2002; Alper et al., 2005b) or any other
plausible cellular objective to estimate the redirected fluxes
in the face of the imposed knock-outs. In the case of
biomass maximization, this leads to, under certain situa-
tions, a highly desirable coupling of biomass formation to
targeted biochemical production enabling the use of
adaptive evolution for strain design (Ibarra et al., 2002;
Fong and Palsson, 2004). Notably, the knock-out strategies
predicted by OptKnock were recently demonstrated
experimentally by constructing strains for overproducing
lactic acid (Fong et al., 2005). The experimental observa-
tions for lactic acid yields and biomass growth rates were
quite close to the model predictions, thus demonstrating
the applicability of the proposed framework. Recently, we
proposed an integrated framework called OptStrain which
extends OptKnock by pinpointing minimal reaction set
recombination tasks to confer a desired non-native
biochemical production capability on a microbial host
(Pharkya et al., 2004).

However, gene additions and complete eliminations do
not describe the entire range of genetic manipulation
strategies available. The importance of tuning upward or
downward gene expression and consequently enzyme levels
and corresponding flux rates is widely being recognized in
metabolic engineering community (Jensen and Hammer,
1998a; Koffas et al., 2003). A recent successful effort for
producing 1,3 propanediol from Escherichia coli employed
the downregulation of glyceraldehyde-3-phosphate dehy-
drogenase as a key genetic modification (Nakamura and
Whited, 2003). Also, in many cases, a gene deletion is lethal
whereas its downregulation is not. For example, in an
earlier paper (Pharkya et al., 2003) we predicted a strategy
involving elimination of enolase to enhance the theoretical
production of serine in the metabolic network of E. coli.
However, the deletion of enolase is known to be lethal in E.

coli due to regulatory interactions not accounted for in the
considered metabolic reconstruction. Consequently, the
repression of enolase rather than its deletion appears to be
a more appropriate strategy. Gene up- or downregulation
can be tuned by using widely available promoter libraries
(de Ruyter et al., 1996; Jensen and Hammer, 1998b)
providing experimental strategies to implement predictions
on desired upward or downward flux changes.

In this paper, we describe the modeling and algorithmic
changes required to extend OptKnock (Burgard et al.,
2003) to allow for up- and/or downregulation in addition
to gene knock-outs to meet a bioproduction goal.
Specifically, the objective here is to computationally
identify which reactions should be modulated, (i.e.,
repressed or activated) or knocked-out such that the
biochemical of interest is overproduced. This extended
computational framework termed OptReg uses the Opt-
Knock formulation as a starting point. However, the
breadth and complexity of the newly considered genetic
manipulations introduce many new variables and non-
linearities requiring a new and non-trivial theoretical
treatment for the generation of the single-level optimiza-
tion problem. This treatment is described in detail in
Section 2. The computational difficulties arising due to
hundreds of binary variables and bilinear products of
binary and continuous variables make this a challenging
problem to solve.
Conceptually, in the OptReg framework, reaction fluxes

are referred to as repressed or activated when their fluxes
are forced to be sufficiently higher or lower with respect to
their corresponding steady-state fluxes. Parameter C,
termed the regulation strength parameter, quantifies the
threshold that needs to be overcome before a reaction is
considered up- or downregulated (see Fig. 1). It can be
assigned values between zero and one. At C equal to zero,
even if the reaction flux is equal to its steady-state value,
the reaction is considered to be modulated. On the other
hand, for C equal to one, a reaction flux must be equal to
its upper or lower stoichiometric bound vmax

j or vmin
j before

it is deemed as up- or downregulated, respectively. It
follows that the higher the value of C, stronger is the
requirement imposed on a reaction when it is regulated (see
Section 2 for further details).
Fig. 1 graphically illustrates the imposed bounds as a

consequence of activation, inhibition or elimination of a
reaction. The figure also shows that not a single value but
rather a range of values between v0j;L and v0j;U sometimes
needs to be used to describe the original steady-state. This
is because as our group (Burgard et al., 2001) and others
(Papin et al., 2002) have found, the maximization of
biomass or any other cellular objective does not yield a
unique solution (i.e., value) for a majority of reactions
(especially for internal ones) at steady-state. Instead, due to
the high redundancy in the network, a range of flux values
is typically identified corresponding to alternate but
equivalent optima for biomass. Therefore, in OptReg we
have to use a range of flux values rather than a single value
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to describe the base state of the network before any genetic
manipulations are implemented. The following section
highlights these modeling and algorithmic developments.
2. Methods

2.1. Steady-state flux determination

In OptReg, up or down flux modulations are modeled as
upward or downward departures, respectively, from the
wild-type steady-state values. Therefore, before employing
the model it is necessary to establish estimates for the
steady-state flux values (or range of values) for all reactions
in the wild-type network of E. coli (Reed et al., 2003). To
this end, we use flux measurements (Fischer et al., 2004) to
fix some of the reaction fluxes in central metabolism at
values determined from comprehensive isotopomer balan-
cing experiments performed on exponentially growing E.

coli cells in a bioreactor culture. These experimental results
(shown in Fig. 2) provide us with carbon flux partitioning
values at key branch points in the central metabolism and
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Fig. 2. The flux values (in mmol/gDW � h) at steady-state fixed at

experimental values extracted from Fischer et al. (2004).
an estimate for the biomass formation rate at steady-state
(0.81 h�1 as predicted in experimental studies).
The steady-state flux values or ranges for the remaining

fluxes are estimated computationally. A linear program-
ming formulation, referred as the min/max problem
(Burgard et al., 2001; Mahadevan and Schilling, 2003) is
solved for base flux estimation for reactions in the most
recent genome-scale model of E. coli (Reed et al., 2003).
Specifically, each flux is successively maximized and then
minimized subject to predetermined experimental values of
a few fluxes.

minimize=maximize vj 8j 2 M

subject to
X

j

Sijvj ¼ 0; 8i 2 N

vatpXvatp_maint; vglc ¼ 10mmol=gDW � h;

vj ¼ v
exp
j ; 8j 2 Mexp,

vjX0; 8j 2 M

Here, M ¼ ð1; . . . ; MÞ denotes the set of reactions and N ¼

ð1; . . . ; NÞ is the set of metabolites. Sij is the stoichiometric
coefficient of metabolite i in reaction j. The first constraint
imposes a stoichiometric balance on the network. The
glucose uptake rate vglc is fixed at 10mmol/gDW � h and a
minimum amount of ATP formation (vatp_maint ¼ 7.6mmol/
gDW � h) is imposed for maintenance. The subset Mexp is
comprised of the reactions whose fluxes are fixed at
experimental values. In addition, all reversible reactions
are split into their forward and backward counterparts to
facilitate the modeling of regulation as described in the
next section, increasing the size of the metabolic network to
1,470 one-directional positive-valued reactions. The identi-
fied minimum and maximum values for each flux through
reaction j are denoted as v0j;L and v0j;U , respectively. If v0j;L, is
equal to v0j;U , then a unique value for the base steady-state
value of reaction j is obtained. Otherwise, the range of
values between v0j;L, and v0j;U quantifies the ambiguity in
assigning a flux value to reaction j.

2.2. Modeling of genetic manipulations

Three sets of binary variables for each reaction j 2 M are
introduced to model all possible combinations of knock-
outs, up- and downregulations.

yk
j ¼

0 if reaction j is knocked out;

1 if reaction j is not knocked out;

(

yd
j ¼

0 if reaction j is downregulated;

1 if reaction j is not downregulated;

(

yu
j ¼

0 if reaction j is upregulated;

1 if reaction j is not upregulated:

(

These binary variables then act as switches to ensure
that fluxes are appropriately restricted in response to a
deletion or an up/downregulation based on the following
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constraints:

vmin
j pvjp½ðv0j;LÞ � ð1� CÞ þ ðvmin

j Þ � ðCÞ� � ð1� yd
j Þ þ vmax

j � yd
j ,

8j 2 M ðDownregulationsÞ,

½ðv0j;U Þ � ð1� CÞ þ ðvmax
j Þ � ðCÞ� � ð1� yu

j Þ þ vmin
j � yu

j pvjpvmax
j ,

8j 2 M ðUp regulationsÞ,

vmin
j � yk

j pvjpvmax
j � yk

j ,

8j 2 M ðKnockoutsÞ.

Here, vj
min and vj

max are the stoichiometric bounds on the
fluxes determined by minimizing and maximizing each flux
subject to (i) the stoichiometric network balances, (ii) a
fixed glucose uptake rate, (iii) the fulfilment of the ATP
maintenance requirement and (iv) the formation of at least
1% of the maximum theoretical biomass in the network.
Note that the stoichiometric lower bound vj

min for a flux j

may be greater than zero if the specific reaction is required
for biomass formation.

As described earlier, the regulation strength parameter C

is assigned values between zero and one. This parameter
determines the fraction of the range of flux values between
the stoichiometric bounds (lower or upper) and the
corresponding lower or upper steady-state flux values that
are available to a regulated reaction (see Fig. 1). We require
that when a reaction is inhibited, the flux should vary
between the stoichiometric lower bound vj

min and the point
denoted by ðv0j;LÞð1� CÞ þ ðvmin

j ÞðCÞ (see Fig. 1). Similarly,
the reaction flux should be greater than ðv0j;U Þð1� CÞ þ

ðvmax
j ÞðCÞ when it is upregulated. The use of parameter C

for the regulated fluxes is employed to ensure a significant
deviation of the fluxes from their steady-state values.
Obviously, the higher the value of C, the higher will be the
departure from the steady-state values and consequently,
the ‘‘stronger’’ the regulation. Note that an appropriate
estimate of the value of C can be made beforehand
depending upon the strength of the promoter and the
inhibitor (Jensen and Hammer, 1998b). Finally, if a
reaction is knocked out, then the corresponding flux is
forced to zero. If a reaction is required for biomass
formation it has a non-zero lower bound vj

min and as a
consequence, it cannot be knocked out.

A reaction flux can be the target of, at the most, a single
type of genetic manipulation, thus:

ð1� yk
j Þ þ ð1� yd

j Þ þ ð1� yu
j Þp1; 8j 2 M.

Additionally, constraints
P

jð1� yk
j ÞpK ,

P
jð1� yd

j Þ

pD, and
P

jð1� yu
j ÞpU specify that the total number of

reactions that can be deleted, downregulated and upregu-
lated are K, D and U respectively. Alternatively, a limit on
the total number of regulated and deleted reactions is
imposed as follows:X

j
ð1� yk

j Þ þ ð1� yd
j Þ þ

X
j
ð1� yu

j ÞpL,

where L is the total number of reactions that can be
modulated or knocked out. Recall that all reactions are
one-directional and their fluxes are constrained to be
greater than or equal to zero. A constraint yk

j ¼ yk
jþ1 8j 2

Mrev is imposed in the outer problem so that the forward
and backward reactions mapping to a reversible reaction
(listed in the set Mrev) can only be knocked out simulta-
neously. For the regulated reactions, either the forward or
the backward flux can be modulated and this is imposed by
the following set of constraints:

yd
j þ yd

jþ1X1 8j 2 Mrev and yu
j þ yu

jþ1X1 8j 2 Mrev.

2.3. OptReg framework

In analogy to OptKnock and based on the above
variable definitions and constraints, the bilevel optimiza-
tion formulation for OptReg is as follows:

max
yK

j
;yU

j
;yD

j

vbiochemical ðOptRegÞ

s:t:

max
vj

vbiomass � e �
P

j

vj ðPrimalÞ

s:t:
PM
j¼1

Sijvj ¼ 0; 8i 2 N

vatpXvatp_maint;

vglc ¼ 10mmol=gDW � h;

vbiomassXð0:01Þ � vmax
biomass;

vjpnmax
j � yk

j ; vjXvmin
j � yk

j ; 8j 2 M;

vjp½ðv0j;LÞ � ð1�CÞþðvmin
j Þ � ðCÞ� � ð1�yd

j Þ

þvmax
j � yd

j ; 8j 2 M;

vjXvmin
j ; vjpvmax

j ; 8j 2 M;

vjX½ðv
0
j;U Þ � ð1�CÞþðvmax

j Þ � ðCÞ� � ð1�yu
j Þ

þvmin
j � y

u
j ; 8j 2 M;

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

ð1� yk
j Þ þ ð1� yd

j Þ þ ð1� yu
j Þp1; 8j 2 M,

yk
j 2 f0; 1g; yd

j 2 f0; 1g; yu
j 2 f0; 1g; 8j 2 M,X

j

½ð1� yk
j Þ þ ð1� yu

j Þ þ ð1� yd
j Þ�pL

yk
j ¼ yk

jþ1; yd
j þ yd

jþ1X1; yu
j þ yu

jþ1X1; 8j 2 Mrev,

where vbiochemical refers to the flux towards the synthesis of
the desired biochemical. The second term in the objective
function of the inner problem ensures that the maximum
biomass flux distribution with the minimum network
‘‘trafficking’’ (i.e., minimum sum of all fluxes) is chosen
out of the set of alternative optima. Recall that reversible
reactions have been divided into forward and backward
fluxes in the network. Therefore, it is possible to have
assigned arbitrarily large values to the forward and
backward fluxes for a reversible reaction while the net flux
is finite. This in turn can lead to an erroneous prediction of
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upregulation for a reaction. To safeguard against this
occurrence, we introduce the second term in the objective
function of the formulation (OptReg). By minimizing the
total flux circulation in the network, only one of the two
unidirectional reactions forming a reversible reaction can
carry a non-zero flux. Through a trial-and-error process,
we have determined that e has to be assigned values
between 0.001 and 0.0001. If e is greater than 0.001, then
the second term starts affecting the solution for the
maximization of biomass. If, on the other hand, e is less
than 0.0001, it is ineffective at preventing the presence of
flux for both forward and backward directions of a
reversible reaction.

The first three constraints in the inner problem (Primal)
have already been described previously. The next con-
straint imposes a minimum requirement on biomass
formation and is set at 1% of the maximum theoretical
biomass (vmax

biomass) feasible in the network. This bilevel
problem is solved by first transforming it into a single level
problem. To this end, we generate the dual of the Primal
problem (Ignizio and Cavalier, 1994) as follows:

minimize

ðvatp_maint � l_atpÞ þ ð0:01 � vmax
biomass � l_bioÞ

þ
X

j

ðqk
U ;j � y

k
j � v

max
j þ qk

L;j � y
k
j � v

min
j Þ

þ
X

j

ðvmax
j

h
� yd

j � q
d
U ;jÞ þ ½ðv

0
j;L � ð1� CÞ

þ vmin
j � ðCÞ� � ð1� yd

j Þ � q
d
U ;j þ ðq

d
L;jÞ � ðv

min
j Þ

i
þ
X

j

ðqU
U ;j :v

max
j Þ

h
þ ðvmin

j � yu
j � q

u
L;jÞ

þ ½ðvu
j;0 � ð1� CÞ þ vmax

j � ðCÞ� � ð1� yu
j Þ � q

u
L;j

i
ðDualÞ

subject to

XN

i¼1

liSi;j þ qk
U ;j þ qk

L;j þ qd
U ;j þ qd

L;j þ qu
U ;j

þ qu
L;jX� e; 8j 2 M; jaatp; biomass;

XN

i¼1

liSi;biomass þ qk
U ;biomass þ qk

L;biomass þ qd
U ;biomass

þ qd
L;biomass þ qu

U ;biomass þ qu
L;biomass þ l_bioX1� e,

XN

i¼1

liSi;atp þ qk
U ;atp þ qk

L;atp þ qd
U ;atp þ qd

L;atp þ qu
U ;atp

þ qu
L;atp þ l_atpX� e,

qk
U ;j ; q

d
U ;j ; q

u
U ;jX0; qk

L;j ; q
d
L;j ; q

u
L;jp0; 8j 2 M,

li 2 R; 8 i 2 N; l_atpp0; l_biop0.

In the dual formulation, li are the dual variables
corresponding to the stoichiometric constraints and are
unrestricted in sign. The dual variables for the ATP
maintenance and the biomass formation constraints are
denoted as l_atp and l_bio, respectively. Furthermore, qk

L;j,
qu

L;j and qd
L;j are the dual variables assigned to the

constraints imposing lower bounds on the fluxes that
become active if the binary variables yk

j , yu
j and yd

j assume a
value of zero in this order. Similarly, qk

U ;j , qu
U ;j and qd

U ;j are
the dual variables corresponding to the constraints impos-
ing upper bounds on the fluxes when a reaction is knocked
out, upregulated or downregulated, respectively. An
additional complication, absent in OptKnock, is that the
objective function involves terms where a binary variable is
multiplied by a continuous variable. To recast these
nonlinear constraints into an equivalent linear form, we
introduce three sets of additional variables (Glover, 1975)
as follows:

zk
U ;j ¼ ðq

k
U ;jÞ � ðy

k
j Þ; zk

L;j ¼ ðq
k
L;jÞ � ðy

k
j Þ; 8j 2 M;

zu
L;j ¼ ðq

u
L;jÞ � ðy

u
j Þ; zd

U ;j ¼ ðq
d
U ;jÞ � ðy

d
j Þ 8j 2 M:

By imposing the following constraints the equivalent
linear transformation of the nonlinearities is accomplished.

ðqk
U ;jÞLB � y

k
j pzk

U ;jpðq
k
U ;jÞUB � y

k
j ; 8j 2 M,

and

qk
U ;j � ðq

k
U ;jÞUB � ð1� yk

j Þpzk
U ;jpqk

U ;j

� ðqk
U ;jÞLB � ð1� yk

j Þ; 8j 2 M.

Similar constraints are imposed for the sets of variables
zk

L;j, zu
L;j and zd

U ;j. These variables assume non-negative or
non-positive values according to the negativity restrictions
on the corresponding dual continuous variables. All other
bounds (upper/lower) on the dual variables are calculated
by maximizing or minimizing them subject to the
constraints of the dual problem.
From the strong duality theory in Linear Programming, if

the primal and the dual optimal solutions are bounded, then
at optimality both objective function values must be equal
(Ignizio and Cavalier, 1994). This implies that the unique
optimum solution value to the inner primal can be obtained
by solving a system of equations encompassing an equality
relation for the objective functions of both the primal and
the dual problems and the accumulation of their respective
constraints. The inner problem is thus transformed from an
optimization problem to an equivalent set of equations
(equalities and inequalities). This provides a single-level
mixed-integer linear MILP formulation for OptReg that is
solved using CPLEX (Brooke et al., 2005) accessed through
GAMS (Brooke et al., 2003). The complete formulation of
OptReg is provided in Appendix A.
This utility of the framework is next demonstrated by

applying it to elucidate the optimal down/upregulation and
knock-out strategies for overproducing ethanol, an in-
dustrially important chemical. In the next section, we
discuss and contrast strategies that involve (i) only reaction
eliminations, (ii) only reaction modulations i.e., activa-
tions/inhibitions and (iii) both deletions and modulations
for overproducing ethanol by manipulating the central
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metabolism in the E. coli metabolic network as abstracted
in Reed et al. (2003). The obtained results based on biomass
maximization are also contrasted against the ones obtained
based on the MOMA (Segre et al., 2002) criterion.
3. Results

The OptReg formulation was employed to determine
efficient reaction modification strategies for overproducing
ethanol in the E. coli metabolic network comprised of more
than 1,470 one-directional reactions. The glucose uptake
rate was fixed at 10mmol/gDW � h and the network was
allowed to uptake a maximum of 20mmol/gDW � h of
oxygen. All other nutrients such as potassium, ammonia
and iron available from minimal media in experimental
studies were allowed in unlimited quantities and the
network could secrete any metabolite. As expected, ethanol
formation in the network takes place through acetalde-
hyde/alcohol dehydrogenase (adhE). It is worth mentioning
that the predicted yields of ethanol in the network are
strongly affected not only by the carbon availability but
also by the abundance of NADH which is a cofactor for
adhE. Table 1 shows the two and three-reaction modifica-
tion strategies predicted by the framework for overprodu-
cing ethanol. We first discuss the strategies predicted by the
framework for a universal value of C ¼ 0:5. The impact of
C on these strategies will be briefly discussed in a separate
subsection.
Fig. 3. A pictorial representation of the central metabolic network of E.

coli and the associated genes to explain the proposed metabolic

engineering strategies.
3.1. Two-reaction modification strategies

A two-reaction deletion mutant (mutant MA) involving
the removal of oxygen transport and phosphotransacety-
Table 1

Strategies for overproducing ethanol (for C ¼ 0:5) listed along with the corres

Deletions Regulations

Mutant MA Mutant MB

Oxygen transport (X) Pyruvate dehydrogenase

Phosphotransacetylase (X) Succinate dehydrogenas

Ethanol:16.30, Biomass ¼ 0.19 Ethanol: 16.72; Biomass

Mutant MD Mutant ME

Glucose-6-phosphate isomerase (X) Pyruvate dehydrogenase

Pyruvate formate lyase (X) Succinate dehydrogenas

Oxygen transport (X) Ethanol: 18.74;

Biomass ¼ 0.08

Oxygen transport(k) (0.
Biomass ¼ 0.17

The first column indicates strategies that show only eliminations of functiona

column depicts strategies which involve both reaction deletions and activations

two modifications and the second row describes mutant networks with three m

Conversely, downregulated reactions are denoted with the (k) symbol and the d

the relative values of the modified fluxes when compared to the steady state-fl

single value of the flux at steady state. In the case of succinate dehydrogenase

corresponding to vj,L
0. Biomass formation rate is expressed on a per hour bas
lase (pta) (see Fig. 3) was predicted by the framework. This
double mutant network has a theoretical yield of
16.30mmol/gDW �h of ethanol. The predicted anaerobic
(fermentative) environment for producing ethanol and the
deletion of the competing pathway producing acetate are
consistent with experimental evidence. The design for the
two-reaction modulation (i.e., repression and activation
only) mutant involves the upregulation of pyruvate
ponding ethanol production and biomass formation rates

Regulations/Deletions

Mutant MC

(m) (1.75) Pyruvate dehydrogenase (m) (1.75)
e (k) (0.33) Oxygen transport (X)

¼ 0.17 Ethanol: 18.64; Biomass ¼ 0.09

Mutant MF

(m) (1.75) Phosphoglucomutase (k) (0.37)
e(k) (0.33) Pyruvate formate lyase (X)

14) Ethanol: 16.72; Oxygen transport(X) Ethanol: 19.83,

Biomass ¼ 0.011

lities. The second column lists only up and down regulations and the last

/inhibitions. Also note that the first row in the table refers to mutants with

odifications. The upregulated reactions are denoted with the (m) symbol.

eleted reactions with a (X) symbol. The numbers within parentheses show

uxes. In all the cases except that of succinate dehydrogenase, there was a

, the number within parentheses is the relative value of the modified flux

is and all the other fluxes are expressed in units of mmol/gDW � h.
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dehydrogenase (pdh) and the simultaneous downregulation
of succinate dehydrogenase (sdh) leading to a theoretical
yield of 16.72mmol/gDW � h (mutant MB). The upregula-
tion of the pdh complex enables the conversion of most of
pyruvate into acetyl CoA with a concurrent generation of
an extra NADH molecule per molecule of acetyl CoA
formed. The decrease in flux through sdh reduces the
activity in the citric acid cycle preventing acetyl CoA from
being channeled. The oxygen uptake in the network is very
low suggesting microaerobic conditions of growth. Note
that the model description does not include regulatory
conditions which would signal adhE to be inactivated in the
presence of oxygen. However, a study suggests that alcohol
dehydrogenase is indeed active even in aerobic conditions
concomitant to mutations in the adhE structural gene and
in the promoter region (Holland–Staley et al., 2000). A
recent publication reports successful overexpression of pdh

to increase the carbon flux from pyruvate to acetyl CoA
(Vadali et al., 2004).

Column 3 (row1) of Table 1 shows a predicted design in
which both activations/inhibitions and knock-outs are
allowed (mutant MC). Not surprisingly, oxygen uptake in
the network is eliminated and pdh is upregulated. These
two-reaction manipulations, in tandem, lead to an ethanol
production rate that is approximately 94% of the
maximum theoretical yield of 19.87mmol/gDW � h. Inter-
estingly, Dien et al. (2003) show that pyruvate formate
lyase (pfl) is induced in anaerobic conditions and a majority
of the pyruvate flux is directed through it. However, this
fermentative pathway is unbalanced because one NADH
and proton is generated for each pyruvate made from
sugars, and two NADH and protons are required for
converting pyruvate into ethanol (See Appendix B for exact
stoichiometry of the reactions). Therefore, E. coli balances
fermentation by also producing acetate, lactate and
succinate which compromises the yield of ethanol (Dien
et al., 2003). The proposed strategy (mutant MC) circum-
vents this problem by upregulating pdh leading to a
concurrent generation of NADH alleviating cofactor
imbalances in the fermentative pathway. This provides
higher yields of ethanol by preventing carbon loss to other
fermentative products. Note that experimental observa-
tions indicate considerable pdh activity in anaerobic
conditions which can be further induced by the presence
of pyruvate in the medium (Carlsson et al., 1985). Similar
results with high flux through pdh were reported (Under-
wood et al., 2002) in experiments with pyruvate and
acetaldehyde-supplemented media to optimize carbon
partitioning at the acetyl CoA node to promote both
ethanol and biomass yields in ethanologenic E. coli. The
flux distribution through the mutant network MC shows a
very small flux through the glycolytic pathway; instead the
flux is diverted to the oxidative branch of the pentose
phosphate pathway through which it enters the Entner–
Doudoroff pathway. Notably, the ethanol-producing
bacterium Zymomonas mobilis employs this pathway for
glucose metabolism instead of the Embden–Meyerhoff–
Parnas glycolytic pathway. The net yield of ATP through
this pathway is only one mole per mole of glucose
consumed which results in low cell mass allowing for
higher ethanol yields (Jeffries, 2005; Seo et al., 2005).
We next investigated the maximum and minimum

biochemical production abilities of the mutant networks.
To this end, we solved the Primal problem (see the
subsection on OptReg formulation) by first maximizing
and subsequently, minimizing ethanol production at all
values of biomass feasible to the network. The biochemical
production envelopes that we derived for the three mutant
networks are shown in Fig. 4. The maximum theoretical
yield of the deletion mutant MA is denoted by point A1.
However, the presence of the vertical line A1A2 at the
maximum biomass formation rate implies the existence of
alternative optimal solutions which means that the
theoretical yield of ethanol varies between points A1 and
A2. Point B1 denotes the maximum theoretical yield
attainable in the mutant network MB. Line B1B2 denotes
the rightmost boundary of the allowable phenotypes. Note
that point B2 corresponds to zero ethanol yield implying no
coupling between growth and ethanol production for this
mutant. In contrast, the network for mutant MC exhibits
ethanol production limits that are superior not only to
those for mutant MB but also to those for the mutant
network MA. Notably, even at small biomass formation
rates, the network for mutant MC produces ethanol (point
C3). Thus, the combination of an upregulation and a
knock-out in this case eliminates undesirable phenotypes to
a large extent as demarcated by the lower boundary C1C3,
ultimately providing a single point optimal solution of
18.64mmol/gDW �h at the maximum growth rate (point
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Fig. 5. The flux distribution for the three-reaction mutant network MF

with two reactions deleted (oxygen transport and pfl) and one reaction

downregulated (pgm). The theoretical yield of ethanol in this network is

19.83mmol/gDW � h which is more than 99% of the maximum theoretical

yield. The down regulated reaction is shown with a dashed arrow and the

cross represents the reaction deletion. The numbers on the figure indicate

the reaction fluxes in mmol/gDW � h based on a glucose uptake rate of

10mmol/gDW �h.
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C1). Note that the cofactor balance in the network forces
the increased acetyl CoA flux to be directed towards
ethanol production and prevents the formation of other
fermentative products such as acetate. The results allude to
the synergistic effect of regulations and deletions on
enhancing biochemical production.

3.2. Three-reaction modification strategies

The identified strategies for overproducing ethanol
which entail modification of three reactions are described
here. The three-reaction deletion mutant (mutant MD)
involves the removal of pfl and phosphoglucoisomerase
(pgi) in an anaerobic growth environment. As a conse-
quence of the elimination of pgi, 99.8% of the glucose-6-
phosphate flux is directed into the pentose phosphate
pathway, which eventually enters the Entner–Doudoroff
pathway. The expected ethanol yield for this mutant
network is 18.74mmol/gDW � h. The consequence of the
removal of pfl has already been discussed in the context of
the upregulation of pdh for mutant MC. We next discuss
the effect of allowing only activations and inhibitions of up
to three reactions (mutant ME). OptReg suggested that
oxygen uptake be downregulated along with the inhibition
of sdh and upregulation of flux through pdh. The maximum
theoretical yield of ethanol in this case is approximately
16.72mmol/gDW � h. Note that no improvement over the
two-reaction modulation strategy is shown by any of the
more than 20 alternative optima that we determined by
applying integer cuts (Pharkya et al., 2004).

Once again, allowing for both regulations and knock-
outs (mutant MF) leads to the best scenario for ethanol
production. In addition to the elimination of pfl in an
anaerobic environment whose effects have already been
discussed earlier, the downregulation of phosphoglucomu-
tase (pgm) is predicted to provide an ethanol formation rate
of 19.83mmol/gDW �h. This is approximately 99.84% of
the maximum theoretical yield. The computationally
generated flux distribution diagram for the network of
mutant MF is shown in Fig. 5. A non-intuitive strategy for
enhancing the availability of NADH to promote ethanol
production through adhE is observed. Approximately
5.1mmoles/gDW � h of 3-phosphoglycerate, an intermedi-
ate in the second half of glycolysis, is converted into serine,
thus producing NADH (see Appendix B). A majority of
serine is subsequently converted into pyruvate through L-
serine deaminase (sda in Fig. 3) and is utilized for ethanol
production. Note that L-serine deaminase can be produced
and activated in E. coli grown in glucose minimal medium
when appropriate mutations are introduced (Lan and
Newman, 2003). The enzyme can also be induced in a
variety of ways including growth in anaerobic environment
(Su et al., 1989).

An interesting observation that can be made from the
flux distribution in Fig. 5 is that even though the serine
deaminase reaction is not upregulated, the flux through it is
substantially increased. This is because the modeling
impact of the downregulation of phosphoglucomutase
reaction is to add a constraint on the network that forces
the flux through the phosphoglucomutase reaction at a
value lower than the reference steady-state value. Conse-
quently, the solution of the inner problem, with this added
constraint, causes the flux through a number of reactions,
specifically serine deaminase, to depart from their corre-
sponding reference values. Thus, the direct modulation of
specific reactions may indirectly affect the flux through
other reactions in the network even though they are not
classified as up- or downregulated.
The ethanol production envelopes of the networks are

shown in Fig. 6. The maximum theoretical yield of mutant
MD is denoted by point D1. Although this network also
exhibits alternative optimal solutions (line D1D2), the
range of alternative optima at the maximum biomass
formation rate is considerably smaller as compared to the
one found for mutant MA. The network for mutant ME

shows significant improvement in terms of the coupling
between growth and ethanol production as compared to
the network for mutant MB even though the maximum
theoretical yields for both networks are the same. The
range of ethanol production rates for mutant ME at the
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maximum growth rate is depicted by line E1E2. It can be
seen that the network has to produce more than 50% of the
maximum theoretical yield of ethanol (point E2) at the
maximum rate of growth. The downregulation of pgm in
conjunction with the elimination of pfl and oxygen
availability to the network of mutant MF forces it to form
high amount of ethanol (point F1). The feasible solution
space for this network is significantly reduced and the
mutant is forced to secrete ethanol in the presence of
growth.

Given that more than 99% of the theoretical yield of
ethanol is achieved with three modulations and knock-
outs, further manipulations in the network do not produce
discernible improvements.

3.3. Evaluating the mutant networks using an alternate

objective: MOMA

MOMA (Segre et al., 2002) is an alternative criterion
introduced recently to anticipate the behavior of microbial
systems immediately after imposing genetic modifications.
This criterion hypothesizes that microorganisms adjust to a
perturbation by minimally adjusting their flux distribution
to be as close as possible to that of the wild-type organism
which is no longer accessible. Here, we calculate the
MOMA criterion for all the six mutant networks identified
by OptReg. The objective is to deduce whether the
maximization of biomass criterion employed in OptReg
yields mutants with predicted yields that are in agreement
or disagreement with the predicted yields under the
MOMA criterion. The base case flux distribution for the
MOMA study is derived by obtaining a feasible set of
fluxes that meets the steady-state biomass formation rate
(0.81 h�1). Fig. 7 shows that for five out of six of the
predicted redesigns (mutants MA, MC, MD, ME, MF), both
criteria predict very similar yields. The only outlier is the
mutant network MB for which MOMA predicts a much
lower yield compared to the max biomass criterion. This
close agreement in the results obtained using biomass
maximization and MOMA is not surprising in light of the
fact that biomass maximization is used to estimate the
original steady-state flux distribution needed for applying
MOMA. These results are indicative, but not necessarily
conclusive, that the strategies obtained from the OptReg
framework are quite robust with respect to the choice for
the cellular objective (i.e., max biomass or MOMA).

3.4. Effect of the value of the regulation strength parameter,

C, on the predicted strategies

In this section we investigate the effect of different values
of C on (i) ethanol formation rates and (ii) prediction of
design strategies for overproducing ethanol.
With the first objective in mind, we applied four different

values of C to the mutant networks identified with C equal
to 0.5 and recalculated the ethanol yields. Table 2 shows
the obtained results. Notably for values of C below 0.5 and
for mutants that involve both modulations and deletions,
the theoretical ethanol yields are similar, though not
identical, to the ones predicted for the mutant networks
for C equal to 0.5. Not surprisingly, the influence of the
‘regulation strength parameter’ is more pronounced for
strategies that involve only reaction modulations. How-
ever, it was somewhat surprising to find that the predicted
flux strategies led to infeasible solutions for parameter
values higher than 0.5. Upon further analysis, we found
that higher values of C imply that the fluxes are
constrained more tightly. As a result, the strategies
suggested for higher C values cannot meet the cofactor
requirements in the network and become infeasible.
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Table 2

Comparisons of the theoretical yields of ethanol obtained for a value of C equal to 0.5 when implemented on mutant networks after changing C

C Two reaction M Two reaction M/D Three reaction M Three reaction M/D

0.25 4.19 16.4 4.19 18.64

0.4 13.99 17.59 13.99 19.1

0.5 16.72 (MB) 18.64 (MC) 16.72 (ME) 19.83 (MF)

0.6 Infeasible Infeasible Infeasible 16.95

0.75 Infeasible Infeasible Infeasible Infeasible

The second column shows the yields for the two reaction modulation strategy (mutant MB), the third column for the two reaction deletion and modulation

strategy (mutant MC), the fourth column for the three-reaction modulation strategy (mutant ME) and the fifth column for the three reaction deletion/

modulation strategy (mutant MF). M stands for modulation and M/D stands for both modulation and deletion. All yields are in mmol/gDW � h.
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Next, we revisited OptReg for values of C equal to 0.25
and 0.75 and identified how the predicted strategies change.
When the parameter C is set at 0.75, the framework
chooses to upregulate pfl and inhibits oxygen uptake.
Contrary to the two-reaction modulation strategy for C

equal to 0.5, pdh is not upregulated here. This is because a
higher value of C implies a higher range of fluxes that is
allowed to pdh. The enhanced pdh flux corresponds to an
increased requirement of the oxidized cofactor NAD+.
Due to the inhibition of oxygen uptake, the reduced
cofactor NADH cannot be oxidized at the rate that is
required for the pdh flux to be upregulated at C equal to
0.75. As expected, this strain has a predicted lower yield of
ethanol than mutant MB because of the unbalanced
fermentative pathway through pfl. Thus, its appears that
the cofactor balance in the network is a critical factor for
deciding whether a particular reaction can be up- or
downregulated beyond a certain threshold.

For C equal to 0.25, all regulated fluxes are less
constrained as compared to the case when C is equal to
0.5. Therefore, all the strategies suggested for C equal to
0.5 are feasible (see Table 2) though not necessarily
optimal. For example, we found a three-reaction dele-
tion/modulation strategy that can lead to the production of
19.68mmol/gDW � h of ethanol in the network. The
framework predicted the upregulation of malic enzyme
(ME) in addition to the elimination of pfl in an anaerobic
environment. To increase the flux through ME, the
framework first redirects carbon flux from phosphoenol-
pyruvate (PEP) to oxaloacetate (OAA) through the
phosphoenolpyruvate carboxylase (ppc) reaction. OAA is
then transformed into malate through the reverse malate
dehydrogenase (mdh) reaction, which finally gets converted
into pyruvate through ME (see Fig. 3). These results
indicate that the value of C must be carefully chosen by
taking into account the strength of the available promoters.

4. Discussion

This paper describes an integrated framework to identify
optimal modulation and deletion strategies for biochemical
overproduction. The strategies predicted for the specific
case study (ethanol overproduction) undertaken in this
work demonstrate that OptReg can allocate and manip-
ulate the fluxes in the network to meet the carbon and the
redox requirements for accomplishing the desired biotech-
nological goal. The critical role that cofactor availability
plays in the accomplishment of the desired biotechnologi-
cal goal has been reported extensively in the literature (San
et al., 2002; Berrios–Rivera et al., 2004). Also, quite
interestingly, results obtained from the OptReg framework
are found to be quite robust with respect to the choice for
the cellular objective (i.e., max biomass or MOMA).
It should be emphasized that although reactions dele-

tions or modulations alone can be successful at enhancing
the secretion of the desired biochemical, it is the synergistic

effect of both kinds of manipulations that bears the

maximum effect on the targeted overproduction. Specifically,
for fermentative products such as ethanol where oxygen
uptake needs to be eliminated, just downregulation of
oxygen uptake may not generate the desired results.
Similarly, reaction eliminations restrict the range of
reactions that can be manipulated in a network because
of lethality considerations. For example, in the network for
mutant MF, the downregulation of pgm and the elimina-
tion of oxygen availability to the network in conjunction
with the removal of pfl leads to high ethanol yields. If only
reaction deletions are allowed in the framework, a strategy
with simultaneous deletion of pgm and oxygen uptake is
not feasible because the network cannot meet the non-
growth associated ATP maintenance requirements under
such a scenario.
It is worthwhile to note that the modulation strategies

predicted by OptReg should be interpreted carefully
because we separate the reversible reactions into their
forward and backward counter-parts. For example, in one
case we found that OptReg suggested the upregulation of
the backward flux of the aconitase reaction. However,
when both the forward and backward fluxes of this
reaction were analyzed, the net flux was found to be
downregulated in the forward direction.
It is important to note that OptReg predicts gene

modulation/deletion strategies by using stoichiometric
models of metabolism. These models offer a genome-scale,
though approximate, description of cellular metabolism
and biochemistry (Schilling et al., 2002; Forster et al.,
2003; Reed et al., 2003) allowing for the global assessment
of the effect of energetics and cofactor balancing on
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overproduction. These models used within the context of
the Flux Balance Analysis (FBA) framework (Varma and
Palsson, 1994; Price et al., 2004), have been quite successful
at elucidating the growth characteristics of the E. coli cells
in disparate environments (Edwards et al., 2001; Ibarra et
al., 2002; Fong et al., 2003) and their responses to gene
mutations (Fong and Palsson, 2004). However, they do
suffer from insensitivity to potential kinetic and regulatory
barriers. Therefore, it is important to carefully interpret the
results obtained from OptReg and contrast them with
results obtained from complementary efforts using kinetic
models and those employing the knowledge of qualitative
regulatory interactions.
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Appendix A

The single level OptReg formulation obtained by
converting the inner level optimization problem into a set
of equations by utilizing the strong duality theory is as
follows:

maximize vbiochemical ðOptRegÞ

subject to

vbiomass � e �
X

j

vj ¼ ðvatp_maint � l_atpÞ þ ð0:01:vmax
biomassl_bioÞ

þ
X

j
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vbiomassXð0:01Þ � v
max
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vglc ¼ 10mmol=gDW � h;
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Appendix B. Stoichiometry of selected reactions
Pyruvate formate lyase: CoA+pyruvate-

acCoA+formate
Pyruvate dehydrogenase: CoA+NAD++pyruvate-
acCoA+CO2+NADH
Acetaldehyde dehydrogenase: acCoA+2H++2
NADH-CoA+ethanol+2 NAD+

Phosphoglycerate dehydrogenase (serA): 3-
phosphoglycerate+NAD+-NADH+H++3-
phosphohydroxypyruvate
L-Serine deaminase (sda): L-serine-NH4+pyruvate
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