
 

Abstract — Understanding   the metabolic function of
microorganisms has recently received a lot of attention due to
its importance in fields such as health and industry. Metabolism
in microorganisms is a sophisticated process comprised of
several thousands of different components with intricate
interactions between them. This characteristic is translated into 
complex dynamical behavior that such systems can exhibit e.g.,
multiple steady states, hysteresis, or oscillations. Kinetic models 
of the processes occurring in the cells allow us not just to
determine optimal conditions for a given objective but also to
assess their stability properties. In this work we evaluate the
stability of the central carbon metabolism of E. coli, using the
Chassagnole et al. model, at optimal enzyme levels as
determined by [1] for the production of serine. To accomplish
this, we construct bifurcation diagrams considering the level of
one, two and three enzymes as bifurcation parameters. We
determine that the system goes through a Hopf bifurcation
and/or a limit point for certain parameter values. This is
achieved for a 68% change in the enzyme level, implying that
the system is robust to perturbations on the process parameters 
at the optimal enzyme levels for the employed model
description.

I. INTRODUCTION
ETABOLISM is a process that involves a large
number of enzymes and sophisticated regulation

mechanisms, through which the cell converts thousand of
organic compounds into the biomolecules and energy needed 
to support their life. The main approaches on the analysis of
metabolism are based either on stoichiometry or the kinetics
of the enzymatic reactions that take place in the cell. The
first methodologies characterize the space, constrained by
the stoichimetry, of the possible flux distributions [2-6].
These approaches allow us to evaluate possible flux
distributions and the effect of changes in the genotype on the 
metabolic pathways, e.g., knockout or insertion of genes [7].

On the other hand, kinetic models are valuable tools that
can provide quantitative predictions for well studied systems.
In spite of the difficulty in obtaining kinetic parameters,
large-scale models are now available and it is expected their
number, complexity and accuracy will increase in the coming 
years [8, 9]. Kinetic models allow us to determine the
enzyme levels needed to accomplish optimal production of a 
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given metabolite [1, 10]. Moreover, kinetic models make
possible the analysis of stability of the predicted states, an
issue that is important in view of the fact that biological
systems may exhibit not only monotonic stable states but
also bistable switching threshold phenomena, oscillations
and chaotic behavior [11]. In E. coli multistability and
oscillations have been observed in strains designed for these
purposes as well as for strains modified for different
objectives [12-15]. Furthermore, in practice the precise
modulation of enzyme levels is not attainable yet, therefore it 
is important to know the behavior of the system in the
neighborhood of the desired values.

Due to the nonlinear kinetics of the biochemical reactions
and their coupling through common metabolites, biological
systems may be subject to drastic changes in their qualitative 
behavior when subjected to variation of the enzyme levels,
e.g., loss of stability, switching to a different steady state,
limit cycle oscillations. Bifurcation analysis allows the
identification of critical points in the parameter space where
these changes take place. Many contributions have been
made to the analysis of complex dynamic phenomena in
nonlinear chemical reactions systems. These mathematical
tools have been used extensively in the analysis of biological 
systems [12, 16-20], however, small or moderate size models 
have been analyzed. 

To the best of our knowledge, there have been no results
on the construction of bifurcation diagrams for large-scale
kinetic models of a metabolic system. In this work we
constructed bifurcation diagrams for a large-scale kinetic
model to analyze the sensitivity and the stability properties
of a kinetic representation of the central carbon metabolism
of E. coli at optimal enzyme levels, obtained through the
solution of a nonlinear optimization problem. The
bifurcation parameters considered are the maximum reaction
rates sets of one, two and three enzymes for the optimal and
suboptimal production of serine, as determined by [1].

II. THE MODEL AND THE OPTIMAL ENZYME SETS

The model used in this work is an adaptation of the model 
of the central metabolism of E. coli presented in [8] and is
shown in Fig. 1. It considers the glucose transport system,
glycolysis, the pentose-phosphate pathway and
simplifications of the biosynthetic and anaplerotic reactions.
It comprises of 30 reactions and 17 primary metabolites. The 
concentrations of secondary metabolites or cofactors (i.e.,
ATP, ADP, AMP, NAD, NADH, NADP, and NADPH)
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and extracellular glucose are kept constant [8]. The model
can be written as:
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where Ci is the concentration of metabolite i, Sij is the
stoichiometric coefficient of metabolite i in reaction j, rj and 
rj

max are the reaction rate and maximum reaction rate of
reaction j, C is the concentration vector, K is the vector of
kinetic parameters, M is the number of enzymes, and N is the 
number of metabolites. The kinetic rate expressions can be
expressed as a factor of the maximum reaction rates and a
nonlinear function of the concentration of metabolites:

)(max Cjjj frr = . (2)
The maximum reaction rates are good candidates as

parameters to be tuned in order to modify the behavior of the
biological system since they can be related to the level of the 
corresponding enzymes; it is assumed that the maximum
reaction rate is proportional to the enzyme level. Since
currently the targeted modulation of all of the enzymes in a
system is not feasible, in [1] a methodology was proposed to 
determine optimal enzyme sets and levels to enhance or
suppress capabilities of cellular systems. The approach was
illustrated by determining the optimal and suboptimal
enzyme sets to enhance the production of serine, using the
kinetic model mentioned above. The optimal sets of one, two 
and three enzymes that were identified and that will be used
to construct the bifurcation diagrams are shown in Table I.

The methodology proposed in [1] determines enzyme
level modulations that result in a total protein levels close to 
that of the original system. This requirement was included in 
view of the fact that large changes in protein levels may
result in significant physiological changes not considered in
the kinetic model [21]. Mathematically, this requirement was 
expressed by the following constraints:

11

1
0max,

max
=∑

=

M

j j

j

r

r
M

, 0max,

max

0max,

max

'

'

'
1

'
1 ...

K

K

j

j

j

j

r

r

r

r
== , (3)

where 0max,
jr is the maximum reaction rate at the reference

state, Kjj ′′,...,1 are the  indices  of non-modulated enzymes,
K = M – L, and L is the number of modulated enzymes.
These constraints were considered in the construction of the
bifurcation diagrams in accordance with the results of [1].
They imply that if the level of an enzyme increases, the
levels of  the other enzymes should decrease maintaining the 

TABLE I
BIFURCATION PARAMETERS*

One parameter Two parameters Three parameters

SerSynth (0.0257)
PGM (89.05)
ENO (330.4)

DAHPS (0.108)
Synth1(0.0195)

SerSynth, PTS (7830)
SerSynth, PK (0.0611)

SerSynth, PepCxylase (0.107)
SerSynth, PDH (6.06)

SerSynth, Synth2(0.0736)

SerSynth, PFK (1841),
and PepCxylase

*The parameters are the maximum reaction rates of the corresponding
enzymes. The number in parenthesis correspond to their reference values.
See caption of Fig. 1 for nomenclature.

same proportion as in the reference state, such that the total
level of enzymes remains constant.

III. BIFURCATION ANALYZIS

The bifurcation diagrams were constructed using a pseudo 
arc-length continuation technique with a predictor-solver
scheme [22, 23]. The procedure consists of finding a point in 
the branch solution and using this information to calculate a
solution on the branch close to the previous solution as the
parameters vary. To calculate the new solution, the predictor 
provides an adequate initial guess that is used in the
corrector step to obtain the new solution. For the current
work, the secant method was used as the predictor:

)( 10

10

0 −

−

−−+= iii
pred

i CCss
sdCC ,Ni ∈∀ (4a)

),( 10

10

0 −

−

−−+= kkk
pred

k llss
sdll (4b)

,0 sdsspred += (4c)

where Ci
pred is the predicted concentration of metabolite i, Ci

0

and Ci
-1 are concentrations calculated in the two previous
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Fig. 1. Central carbon metabolism of E. coli. Enzymes: aldolase (ALDO),
DAHP synthases (DAHPS), enolase (ENO), glucose-1-phosphate adenyltransferase
(G1PAT), glycerol-3-phosphate dehydrogenase (G3PDH), glucose-6-phosphate dehy-
drogenase (G6PDH), glyceraldehyde-3-phosphate dehydro-genase (GAPDH), methio-
nine synthesis (MetSynth), mureine synthesis (MurSynth),   phosphofructokinase (PFK),
6-phosphogluconate dehydrogenase (PGDH), glucose-6-phosphate isomerase  (PGI),
phosphoglycerate kinase (PGK), phospho-glycerate mutase (PGM), pyruvate dehydro-
genase (PDH), PEP carboxylase (PEPCyclase), phosphoglucomutase (PGlucoM),
pyruvate kinase  (PK), phospho-transferase system (PTS), ribose-phosphate
isomerase (R5PI), ribose-phosphate pyrophosphokinase (RPPK), ribulose-phosphate
epi-merase (Ru5P), Serine synthesis (SerSynth),synthesis1 (Synth1), synthesis2
(Synth2), transaldolase (TA), triosephosphate iso-merase (TIS), transketolase A (TKa),
transketolase B (TKb), tryptophan synthesis (TrpSynth). Metabolites: 1,3-
diphosphoglycerate (pgp), 2-phospho-glycerate (2PG), 3-phospho-glycerate (3PG), 6-
phosphogluconate (6PG), acetyl-coenzyme  A (accoa), dihydroxyacetonephosphate
(dhap), erythrose-4-phosphate (e4p), fructose-6-phosphate (f6p), fructose-1,6-
bisphosphate (fdp), glucose-1-phosphate (g1p), glucose-6-phosphate (g6p),
glyceraldehyde-3-phosphate (gap), glucose (glc), oxaloacetate (oaa),
phosphoenolpyruvate (pep), pyruvate (pyr), ribose-5-phosphate (rib5P), ribulose-5-
phosphate (ribu5p), sedoheptulose-7-phosphate (sed7p), xylulose-5-phosphate (xyl5p).
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iterations. Similarly, lk
pred is the predicted bifurcation

parameter and lk
0 and lk

-1 are the last two calculated
parameters; s is arclength of the solution branch and ds the
length step. 

In the corrector step, for the case of one parameter, the
system (1) is augmented with the equation:
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where Ci
ref and lk

ref  are the concentration of metabolite i and 
the value of parameter k at the reference state respectively; P
is the number of bifurcation parameters. The system is then
solved using Ci

pred and lk
pred as initial guess. Equation (5)

confers stability to the continuation method close to the
points where the original continuation method does not
converge to a solution (i.e., the Jacobian of the linearized
model is singular) and allows passing these points. The
bifurcation points were identified as the points were one or a 
pair of eigenvalues of the Jacobian of the linearized system
crosses the imaginary axis. The augmented system was
solved with the MatLab subroutine fsolve.

In order to construct the bifurcation maps for the case of
two parameters an additional equation is needed:

0)Re(min
,..,1

=
= iNi

eig , (6)

where eigi are the eigenvalues of Jacobian of the linearized
system evaluated at the solution. This equation allows the
calculation of the second parameter at the point where the
system experiences a bifurcation, i.e., one or two eigenvalues 
of the Jacobian of the linearized system have zero real part. 

In the case of three parameters, the bifurcation map was
constructed in a similar way as in the case of two parameters. 
Specifically, the parameter max

PepCxylaser was held constant and
bifurcation maps on max

SerSynthr and max
PFKr were constructed for

several values of the constant parameter. 
In order to satisfy constraint (3), in all cases the maximum 

reaction rates that were not used as bifurcation parameters,
were adjusted according to:
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where n is the number of bifurcation parameters.

IV. RESULTS

In this section, the stability and sensitivity analyses of the
central carbon metabolism of E. coli are presented. In the
first subsection we describe the bifurcation diagrams for one 
parameter, as well as a limit cycle that the system exhibits.
The cases for two and three parameter variations are
discussed in the sequel subsections.

A. One parameter
We initially employed max

SerSynthr as our bifurcation parameter. 
The system undergoes two bifurcations when this parameter
is varied, shown in Fig. 2(a). Starting at the reference

state, 0max,
SerSynthr , the system goes through a Hopf bifurcation and 

subsequently it goes through a limit point when max
SerSynthr

becomes 0max,8.9 SerSynthr and 13.6 0max,
SerSynthr , respectively. The

system has three equilibrium points for max
SerSynthr =

13.6 0max,
SerSynthr , (for all cases investigated, there is a stable

solution branch at very low concentrations which is not
presented in the figures). After the limit point only the
solution branch at very low concentrations exists. The upper
branch is stable for max

SerSynthr < 9.8 0max,
SerSynthr , and it becomes

unstable for max
SerSynthr > 9.8 0max,

SerSynthr (with branch instability we
imply that the system is unstable in the neighborhood of the
steady state for the specific process parameters and that the
trajectories converge to the steady state at low
concentrations). The lower branch is unstable for all the
parameter values where it exists. At the Hopf bifurcation a
limit cycle appears, which is stable as implied through
simulations, shown in Fig. 3. This figure depicts the
trajectories of the system on the plane C3pg-Cg6p for two
different initial states, one inside the limit cycle and the other 
outside. It is observed that in both cases the trajectories
converge to the limit cycle. For max

SerSynthr = 0.252 the limit
cycle is stable with a mean value for the synthesis rate of
serine equal to 0.028 mM⋅s-1, while the amplitude and the
period are 0.044 mM⋅s-1 and 397.5 s respectively.

We also observe in Fig. 2(a) that the synthesis rate of
serine is, as expected, highly sensitive to changes in max

SerSynthr .
Moreover, we observe that the constraint on the total change 
allowed in the concentration for the optimization prevents
the synthesis rate of serine from reaching its maximum value 
when such constraint is disregarded. In such case, the
optimal value for the synthesis rate of serine corresponds to

max
SerSynthr = 0.13 and the concentration deviation from the

reference state is 42%. 
Next, we present the result of analyzing the systems to
changes on max

PGMr . The system has three steady states for
0max,max0max,4 30108 PGMPGMPGM rrr ≤≤× − , shown in  Fig.  2(b).  The

lower bound corresponds to a limit point; beyond this point
the system has only one solution branch at very low
concentrations. The upper bound is due to constraint (3). In
the diagram, the upper branch belongs to the stable steady
states while the lower branch to the unstable ones. Even
though the limit point occurs at small max

PGMr , there is not a
feasible point for max

PGMr = 0. The bifurcation diagram for max
ENOr

is qualitatively similar to the diagram for max
PGMr , and for

reasons of brevity it is omitted; the limit point then occurs at
0max,4max 109.2 ENOENO rr −×= . In both cases, the synthesis rate of

serine  has  low  sensitivity   with  respect to changes in these
parameters, even though they were identified as optimal
candidates to increase the production of serine. 
The case of max

1Synthr  is presented in Fig. 2(c). The system
undergoes a Hopf bifurcation at max

1Synthr = 10.4 0max,
1Synthr and goes

through a limit point at max
1Synthr =14 0max,

1Synthr , and it has three
equilibrium points for max

1Synthr = 14 0max,
1Synthr , (one of them is the

solution branch at very low concentrations, not presented in
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the figure). The upper branch is stable before the Hopf
bifurcation, at which  point  it  becomes unstable. The lower 
branch is unstable for all values of max

1Synthr . In Fig. 2(c) we can 
also observe that the synthesis rate of serine is sensitive to
changes on max

1Synthr , and that the lower bound ( max
1Synthr =0)

prevents the synthesis rate of serine from further increasing.
For max

DAPHSr  the bifurcation diagram has only one branch and
it  is not  presented here.  In these  two cases  the system is
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Fig. 2. Bifurcation diagrams for one parameter presenting the synthesis rate 
of serine as a function of: (a) for maximum reaction rate for the serine
synthesis pathway; (b) maximum reaction rate of PGM; (c) maximum
reaction rate of Synth1. The solid lines denote the steady state of the
system. The round marks, tagged with small numbers, indicate the
percentage of deviation of the concentrations with respect to the reference
state. , , ¦ , and  represent the reference state, the optimal state, the
Hopf bifurcation, and the limit point, respectively.
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Fig. 3. Phase plane of a limit cycle when 252.0max =SerSynthr . The diagram
shows the trajectories of the concentrations of glucose-6-phospate (Cg6p)
and 3-phosphoglycerate (C3pg). The synthesis rate of serine is an explicit
function of 3-phosphoglycerate. The gray lines are trajectories with initial
states in and out of the limit cycle. The black line corresponds to the limit
cycle;  represents the unstable focus. 

stable under any perturbation of the parameters since in the
case of max

1Synthr the flux is set to zero, and in the case of
max

DAPHSr no bifurcations are present.

B. Two parameters
In [1] it was found that the synthesis rate of serine was

sensitive  to max
SerSynthr ;  as  a result, the pairs considered in this 

paper comprise of max
SerSynthr  and another parameter. The

bifurcation maps constructed track the loci of the Hopf
bifurcation and the limit point on the plane formed by the
respective pair of parameters. For the identified optimal pair

max
PTSr and max

SerSynthr , the reference state and the optimum state lie 
close to the Hopf bifurcation, requiring a 68% and 100%
change on max

PTSr with respect to 0max,
PTSr  respectively; shown in

Fig. 4(a). This is an important result since the imprecision
associated with modulating enzyme levels can drive the
system to become unstable. Furthermore, the Hopf
bifurcation and the limit point lie very close. In fact for a
wide range of parameter values they practically overlap.
However, the concentrations differ considerably between the 
Hopf bifurcation and the limit point.  This is because close to 
the limit point the concentrations are very sensitive to the
parameters values.
For the pair max

SerSynthr - max
PKr , the loci of both the Hopf

bifurcation and the limit point are practically linear with
respect to this pair of parameters, shown in Fig. 4(b). A
reduction in max

PKr results in increasing the system robustness
to perturbations (i.e., the possibility of increasing

max
SerSynthr further before the system becomes unstable). The

bifurcation map for the pair max
SerSynthr - max

PepCxylaser is qualitatively
similar to the previous one and is omitted for brevity. For the 
case of max

SerSynthr - max
PDHr the bifurcation map, shown in Fig. 4(c), 

is qualitatively similar to max
PTSr , but the distance between the

Hopf bifurcation and the limit point is considerably larger. In 
this case the optimal state is located far from the bifurcation
implying  that  the  modulation  not only increases the serine
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production but also confers bigger stability margins to the
system. The max

SerSynthr - max
2Synthr  diagram is also qualitatively

similar to max
PTSr and is omitted for brevity. For 0max,

2
max

2 4 SynthSynth rr <
the distance between the Hopf bifurcation and  the  limit
point  is  considerable, but for 0max,

2
max

2 4 SynthSynth rr >  they
practically overlap, as in the max

PTSr case. Contrary to the
max

PTSr case, the optimum state is far away from any bifurcation
points, which implies that the system is then robust to
uncertainty in these parameters.
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Fig. 4. Bifurcation maps presenting the qualitative behavior of the system
in the parameter space for: (a) max

SerSynthr and max
PTSr  ; (b) max

SerSynthr and max
PKr ; (c) 

max
SerSynthr and max

PDHr . The dashed line, the solid line, , and  represent the
Hopf bifurcation, the limit point respectively, the reference state, and the
optimal state, respectively.

C. Three parameters
For the case of three parameters only the optimal triplet was
investigated. In Fig. 5(a) we present a bifurcation map on the 
plane max

SerSynthr - max
PFKr for max

PepCxylaser = 0.0001, corresponding to
its optimal value.  Notice that the reference state (for which

max
PepCxylaser = 0.11) and the optimal state lie close to the Hopf

bifurcation. Taking into account the difficulty to modulate
the enzyme levels   precisely, this  implies  that  a relatively
large deviation on the enzyme levels from their desired value 
may provoke the system to become unstable. Furthermore for 

0max,max0max, 1.191.10 PFKPFKPFK rrr << , the system undergoes two
Hopf    bifurcations    when max

SerSynthr is  varied.  As max
SerSynthr

increases the system goes through a Hopf bifurcation and a
limit cycle, which is stable for a small set of parameter
values, appears.  Subsequently,   the   limit   cycle   becomes 
unstable and disappears for max

PFKr <13 0max,
PFKr . Close to the

second Hopf bifurcation a limit cycle appears again and
becomes stable only for a small set of parameter values close 
to  the  bifurcation.  After  the  second  Hopf bifurcation  the 
system becomes a stable node. Further increase of max

SerSynthr
leads the system through a limit point. Beyond the limit
point, only the steady state at very low concentrations
remains.
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Fig. 5. Bifurcation map presenting the behavior of the system on the
parameter space for max

SerSynthr , max
PFKr  and max

PepCxylaser . (a) A single contour of the 
bifurcation map on the max

SerSynthr vs. max
PFKr  for max

PepCxylaser = 0max,
PepCxylaser . (b)

Contours for constant values of max
PepCxylaser  as indicated by the numbers

inside the figure. The dashed line, the solid line, , and  represent the
Hopf bifurcation, the limit point respectively, the reference state, and the
optimal state, respectively.
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The effect of max
PepCxylaser  on the behavior of the system is

presented in Fig. 5(b). It shows contours of the loci of the
Hopf  bifurcation  and  the  limit  point  on the plane max

SerSynthr -
max

PFKr  for constant values of max
PepCxylaser  (indicated by the

numbers inside the figure). It can be observed that as
max

PepCxylaser  increases the system undergoes the Hopf
bifurcation and goes through the limit point for smaller
values of max

SerSynthr . This can be explained by the fact that as
max

PepCxylaser  increases there is less resources available for
construction of the rest of enzymes due to constraint (3). For 

max
PepCxylaser > 1.87 the system is unstable regardless the values

of max
SerSynthr - max

PFKr .

V. DISCUSSION

The stability properties of the kinetic model describing the 
metabolism of E. coli were assessed by constructing
bifurcation diagrams for the optimal parameters for the
production of serine. The bifurcation diagrams show that the 
central carbon metabolism of E. coli can exhibit oscillatory
(and in general highly nonlinear) behavior for certain values
of the parameters. The system undergoes a Hopf bifurcation
and goes through a limit point when the level of specific
parameters is varied, and the system exhibits sustained
oscillations close to the Hopf bifurcation. Further variation
of the parameters leads to the disappearance of the limit
cycle and the system becomes unstable. However, the
reference state and the analyzed optimal states are usually
distant from the bifurcation point (requiring more than 68%
change in the parameter values), suggesting that the optimal
states are attainable and the system is robust to perturbations 
on enzyme levels. Finally, although we do not have
experimental evidence, from our analysis we observe that the 
system may undergo sustained oscillations in a small range
of parameter values.
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