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The identification of optimal intervention strategies is a key step in designing microbial strains
with enhanced capabilities. In this paper, we propose a general computational procedure to
determine which genes/enzymes should be eliminated, repressed or overexpressed to maximize
the flux through a product of interest for general kinetic models. The procedure relies on the
generalized linearization of a kinetic description of the investigated metabolic system and the
iterative application of mixed-integer linear programming (MILP) optimization to hierarchically
identify all engineering interventions allowing for reaction eliminations and/or enzyme level
modulations. The effect of the magnitude of the allowed changes in concentrations and enzyme
levels is investigated, and a variant of the method to explore high-fold changes in enzyme levels
is also analyzed. The proposed framework is demonstrated using a kinetic model modeling part
of the central carbon metabolism ofE. coli for serine overproduction. The proposed computational
procedure is a general approach that can be applied to any metabolic system for which a kinetic
description is provided.

Introduction
Recent advances in molecular biology enable the routine

deletion or modulation of the expression level of genes in
microbial production strains. This new capability has ushered
a new era in microbial strain design where genome content can
be manipulated at will. A challenge, however, is that the impact
of deletions and/or expression modulations is hard to quanti-
tatively predict. Stoichiometric models of metabolism (1-6)
attempt to predict the impact of these modifications by optimiz-
ing an objective function that serves as a surrogate of true
cellular behavior. These hypotheses include maximization of
biomass formation (7), minimization of metabolic adjustment
(MOMA) (8), regulatory on/off minimization (ROOM) (9) and
ratio adjustment minimization (RAM) (10). These hypotheses-
driven predictions have, in certain cases, been quite successful
at recapitulating new fluxes after an environmental and/or
genetic perturbation (11-14). However, in the absence of any
regulatory or mechanistic information the stoichiometry-based
predictions are bound to be incomplete.

In contrast, kinetic models of metabolism directly capture
engineering interventions as modifications in the parameters of
the model. For example, gene knock-outs, as is the case with
stoichiometric models, can be described by setting the maximum
flux of the affected reaction to zero. On the other hand,
repressions or overexpressions can be modeled by increasing
or decreasing the corresponding maximum reaction rate param-
eters. A limitation of kinetic models is that they are typically
constructed for a small subset of the totality of metabolism
present and it is questionable whether parameter values are
invariant in response to environmental or genetic changes (1).

Several researchers have employed a hybrid modeling approach
that combines stoichiometric information with high quality
(kinetic) data, whenever available. For example, Beard and Qian
have combined the stoichiometry with thermodynamic con-
straints to improve the prediction capabilities of stoichiometric
models (15, 16). Covert and Palsson (17, 18) have incorporated
the regulation of gene expression to flux balance analysis (FBA),
whereas Mahadevan et al. (19) have extended FBA (i.e., dFBA)
to describe the dynamic behavior of metabolic system. Gadkar
et al. (20) included kinetic expressions in dynamic FBA to
optimize the concentration of a targeted product molecule.

For purely stoichiometric models we introduced the Opt-
Knock (21) framework for optimal deletion strategies and
extended it afterward in OptReg (22) to allow for up/down
reaction modulations. The ultimate goal is to combine stoichio-
metric with kinetic descriptions, whenever available, in the
context of hybrid kinetic-stoichiometric descriptions. Specifi-
cally, given an underlying kinetic description we would like to
identify a prespecified number of knock-outs and/or over/under
gene expression regulations that maximize the synthesis rate
of targeted metabolite (e.g., maximum ethanol production). It
is of particular importance to ensure that any proposed algo-
rithms will be able to handle relatively large kinetic models
irrespective of the form of the underlying functions used to
describe kinetic rates. In this work, we are beginning to unravel
some of these computational challenges by exploring how to
optimally perform strain engineering modifications for a purely
kinetic description. The approach proposed here relies on the
iterative use of basis function linearization and mixed-integer
linear programming (MILP) optimization.

A number of different kinetic modeling descriptions are
available, which are either mechanistic descriptions or general-
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ized rate equations. In general, mechanistic kinetic models are
mathematically more complicated and require more experimental
information to parametrize; however, they offer a more com-
prehensive view of metabolism (23-26). On the other hand,
kinetic models that draw from generalized rate equations
conform all reaction rates to general forms (27). This results in
more compact models with standardized nonlinearities that may
lead to some loss of accuracy. Table 1 illustrates some examples
of generalized rate equations such as linear approximations (28,
29), linear with respect to logarithmic functions (30), generalized
mass action (GMA) and S-systems (31-34), thermokinetic
descriptions (35), lin-log kinetics (36), and general Michaelis-
Menten type (37). As expected, the simplest linear approxima-
tions are valid only within a narrow region around the steady
state at which they were parametrized. This region is substan-
tially expanded in linear in logarithms models by substituting
the linear variables by logarithmic expressions. Hatzimanikatis
and Bailey (38) have shown that these models can accurately
describe the dynamic response of a metabolic system that
exhibits strong nonlinearities. Moreover, their kinetic parameters
can be obtained, using the well-established metabolic control
analysis (MCA) framework, either from a mechanistic model
or from experimentally elucidated elasticities and control
coefficients. Alternatively, reaction rates have been expressed
as the product of enzyme levels and various functions of the
concentrations.

Given the aforementioned modeling frameworks, a number
of optimization approaches have already been proposed that
make use of these frameworks to drive the re-engineering of
metabolism. Nonlinear programming (NLP) has been widely
used for this purpose. For instance, Mendes and Kell developed
a platform to determine the value of the enzyme levels and
kinetic parameters that optimize a given metabolic output (39).
They formulated the problem as a NLP and applied it on a
branched metabolic pathway with feedback composed of eight
metabolites and reactions along with 16 kinetic parameters. They
solved the resulting NLP with a variety of methods including
genetic algorithms and evolutionary programming. Visser et al.
have used a large-scale lin-log kinetic model to determine the
optimal enzyme modulations by solving a NLP (40). Similarly,
Schmid et al. used a large-scale mechanistic model to address
the same problem (41). In their approach they partitioned the
manipulated variables (i.e., enzyme levels) into subsets and

solved a NLP for each subset while keeping the enzyme levels
of all other subsets constant. In the pioneering works of
Hatzimanikatis et al. (30) and Dean and Dervakos (42, 43) a
number of novel questions regarding the redesign of the
metabolic systems were raised, such as which enzymes and at
what levels should be modulated to optimize a desired flux if
only a given number of manipulations are allowed? To answer
this question, Dean and Dervakos formulated the problem as a
mixed-integer nonlinear programming (MINLP) problem based
on a nonlinear kinetic model. Alternatively, Hatzimanikatis et
al. used linear in logarithms functions to approximate the kinetic
description of a relatively small metabolic model (i.e., six
reactions and metabolites) and formulated the problem as a
MILP. In both cases the employed models were relatively small
with at most 32 reactions and 13 metabolites.

In this paper, we determine the genes/enzymes that should
be manipulated (i.e., deleted, repressed or overexpressed) to
optimize the flow toward a target metabolite given a constrained
number of total genetic manipulations for a general nonlinear
kinetic model of a relatively large size. As in previous efforts,
we assume that the enzyme levels can be manipulated inde-
pendently of each other and that the levels of the enzymes not
manipulated remain constant. Existing NLP-based approaches
do not allow for only a prespecified number of manipulations.
Hatzimanikatis et al. (30) and Dean and Dervakos (42, 43) laid
the foundation toward answering some of these challenges.
However, Hatzimanikatis et al. did not consider knockouts of
genes, as the adopted linear in logarithms model (similar to
second row in Table 1) becomes ill-defined when the enzyme
levels approach zero. In the other case, the MINLP formulation
proposed by Dean and Dervakos becomes hard to solve for
problems involving a large number of enzymatic reactions (i.e.,
hundreds of reactions). The approach introduced here overcomes
these limitations by first automatically deriving linearizations
according to basis function approximations for arbitrary kinetic
representations. Then, the modeling of knockouts of genes/
enzymes is implemented through the introduction of binary
variables that “remove” the corresponding reactions from the
system. By combining these approaches, the problem can be
formulated as a MILP that can be solved for large metabolic
systems. It should be mentioned that although linearization of
the kinetic models confers mathematical and computational
tractability to the problem, generally only moderate enzyme
levels changes can be imparted and still maintain agreement
with the nonlinear model. For large enzyme level changes, a
MINLP-based modification of the procedure is described. In
the next section we briefly describe the adopted mathematical
description of metabolic networks followed by the proposed
optimization procedure. Subsequently, we provide computational
results, and the work is summarized.

Mathematical Description

Metabolic Kinetic Models. Briefly, a metabolic system con-
sists of a set of processes (enzymatic reactions and transport
processes) that transform organic substrates into metabolic pre-
cursors and energy metabolites. The rate at which these pro-
cesses take place depends on the concentration of the reactants/
products, the amount of inhibitors or activators, and the activity
and level of the participating enzymes. Mathematically, the
reaction rate of an enzymatic reaction can be expressed as

whererj represents the rate of reaction catalyzed by enzymej,

Table 1. Examples of Generalized Reaction Rates

generalized
reaction rate

mathematical
forma

linear r ) r0 + k(e - e0) + ∑
i

ki(ci - c0,i)

linear in logarithms r ) r0 + k ln( e

e0
) + ∑

i

ki ln( ci

c0,i
)

generalized mass action,
S-systems r ) r0k

e

e0
∏

i
( ci

c0,i
)ki

thermokinetic,
lin-log models r )

e

e0
(k + ∑

i

ki ln( ci

c0,i
))

Michaelis-Menten type r ) e(∏
i

ci

ki + ci

- K ∏
j

cj

kj + cj
)

a r: reaction rate,e: enzyme level,ci: concentration of metabolitei
affecting the rate;cj: concentration of metabolitej consider as a product in
reversible reactions in the last equation;K: ratio of the reverse to forward
rate constant;k, ki: kinetic parameters;r0, e0, c0,i stand for a reference state.

rj ) rj
max(ej)fj(cj,pj) (1)
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rj
max(ej) is the maximum reaction rate, andej is the corre-

sponding enzyme level.fj(cj,pj) is a nonlinear function of the
concentration of metabolitescj and kinetic parameterspj that
affect this reaction. Typical examples forfj(cj,pj) are Michaelis-
Menten, Hill equation, GMA kinetics, and S-system (31-34),
lin-log (30, 35, 36, 38, 40) and allosteric enzymes type kinetics
as discussed in the previous section.

For a metabolic system ofm reactions,n metabolites, andk
kinetic parameters, the reaction rates are related through the
mass balances of the metabolites. These mass balances can be
described by a set of ordinary differential equations:

Herec is then-dimensional vector of metabolite concentrations,
r is the m-dimensional vector of reaction rates,e is the
m-dimensional vector of enzyme levels,p is thek-dimensional
vector of parameters, andS is then × m stoichiometric matrix.
It should be noted that a dilution accounting term due to cellular
growth can be incorporated in eq 2 as in ref 24. Equations 1
and 2 capture the general structure of general kinetic models
addressed in this work.

Optimization. Given the model description outlined above,
we use mathematical optimization tools to answer the following
questions: (1) Which genes should be deleted? (2) Which genes
should be repressed or overexpressed or combinations thereof
in order to maximize the flow through a prespecified flux? This
optimization task involves both discrete 0-1 variables (e.g.,
whether a gene is targeted for deletion or modulation of
expression) as well as continuous variables (e.g., metabolic
fluxes and concentrations). The mathematical formulation of
this task gives rise to mixed-integer nonlinear programming
(MINLP) problems with a nonconvex continuous part (42, 43).
Although there exist algorithms (44) for globally solving this
class of problems, the solution procedure is highly dependent
on the type of nonlinearities and typically cannot handle
problems of the targeted size and complexity. Local MINLP
solvers (45, 46) may provide satisfactory solutions for medium-
scale metabolic systems (i.e., tens of enzymatic reactions);
however, computational burden hinders the application of these
solvers as the size of the system increases. This is incompatible
with our objective to introduce a procedure that would be
applicable for kinetic models involving arbitrary nonlinear
expressions with as many as hundreds of reactions. By allowing
for perturbations of limited size around the steady-state values,
the same questions can be addressed using a MILP representa-
tion using customized linearizations that can be obtained
adopting different basis functions. These linearizations according
to different basis functions are next described in detail.

Generalized Linearization. Instead of using the standard
Taylor expansion and retaining only up to linear terms, we
employ a Lagrange expansion according to an arbitrary basis
function to enable the best possible approximation of the non-
linear kinetics (47). This generalized linearization is accom-
plished for any arbitrary kinetic model, represented by eqs 1
and 2, as a function of the enzyme levels and metabolite
concentrations, while keeping the kinetic parametersp constant:

Let xj ) gj(ej) for j ) 1, ...,m andyi ) hi(ci) for i ) 1, ...,n
such thatgj

′(e0,j) * 0 andhi
′(c0,i) * 0, then the linearization of

eq 1 based on the variablesxj andyi is given by

wherer0,j, e0,j, x0,j, c0,i andy0,i are the values ofrj, ej, xj, ci and
yi at the reference value, respectively. It should be noted that
the region where the linearization satisfactorily approximates
the nonlinear model depends on the form of the reaction rates
expressions. For instance, this region may be relatively large
for Michaelis-Menten kinetics, whereas it could be considerably
smaller for sigmoidal kinetics.

Many standardized models conform to the formalism de-
scribed above such as the approach introduced in ref 30 and
the S-systems evaluated at steady state (31, 34). For example,
the log-linear description introduced in ref 30 is a special case
of the generalized linearization described above by setting
gj(ej) ) ln ej and hi(ci) ) ln ci. Other basis functions can be
used depending on the nonlinearities in the original kinetic
model with the objective to improve on the expected approx-
imation error.

Incorporating the linearized reaction rates in the mass
balances, eq 2 yields

where∆x ) x - x0 and∆y ) y - y0, Yc is a n × n diagonal
matrix with elementsYc,ii ) dyi/dci, G0 is a m × m diagonal
matrix with elementsGjj ) (∂rj/∂ej)(1/g′j), andH0 is a m × n
matrix with elementsHji ) (∂rj/∂ci)(1/h′j), both evaluated at the
reference steady state. Equation 4 approximates the nonlinear
model as linear function of∆x and∆y in the neighborhood of
the reference state. At a steady state of eq 4, the time derivative
of c vanishes, as long as∂yi/∂ci * 0 and∂yi/∂ci are finite for all
i, since dci/dt ) (dci/dyi)(dyi/dt). The enzyme levels and the
metabolite concentrations can be obtained from this linearized
model by taking the inverse of the corresponding functions,
i.e., ej ) g′j(xj) andci ) hi

-1(yi). This generalized linearization
enables the expression of the continuous parts of the problem
formulation using linear expressions. Different basis functions

dc
dt

) S‚r (e,c,p) (2)

rj ) r0,j +
∂rj

∂ej

1

g′j

||||e0, j

(xj - x0,j) + ∑
i)1

n (∂rj

∂ci

1

h′i

||||c0, i

(yi - y0,i)) (3)

Figure 1. Hierarchical procedure for identifying optimal gene manip-
ulation strategies. At each iteration of the outer loopq manipulations
are enforced andqmax is the maximum number of manipulations. At
each iteration of the inner loop a cut is added to exclude the current
solution in the next iteration.zq is the objective function of interventions
of q manipulations andzq-1

/ is the best objective function value of the
best intervention strategy ofq-1 manipulations.

dy
dt

) Yc‚S‚(r0 + G0‚∆x + H0‚∆y) (4)
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can be used depending on the nonlinearities in the original
kinetic model. These linear expressions allow us to formulate
the optimization problem using a MILP description.

Hierarchical Complete Enumeration of Genetic Interven-
tions. Figure 1 illustrates the sequence of hierarchical calcula-
tions needed to elucidate the complete set of genetic manipu-
lations leading to an improved phenotype. Specifically, first we
identify all single genetic interventions that improve upon the
current phenotype by starting from the optimal and subsequently
generating the second, third, etc. best by excluding the previous
solution and rerunning the problem. Next we proceed to identify
double interventions (either knock-outs or modulations) that are
at least as effective as the best single intervention strategy. This
additional requirement ensures that only genetic modifications
that contribute directly to an improvement are generated. This
iterative procedure is continued up to a prespecified number
qmax of genetic interventions, which determine the number of
iterations of the outer loop. The core of this scheme is the
optimization problem that has to be solved at each inner
iteration. This optimization problem is formulated as a MILP,
which is described next.

MILP Formulation. Figure 2 pictorially illustrates the
geometric interpretation of the two types of genetic interventions
considered. The presence of knock-outs partitions the feasible
region into a union of disjoint subregions. These subregions
are hyper-rectangles of dimensions that range fromm - qw to
m, whereqw is the number of allowed knock-outs. In the absence
of knock-outs a single hyper-rectangle of dimensionm is present.
Genetic interventions are modeled using the following two sets
of binary variables:

If enzymej is knocked-out, then its corresponding reaction
rate must be set equal to zero. A straightforward way to ensure
this is to use the following constraints:

whererj
l and rj

u are lower and upper bounds forrj. However,
these constraints would impose invalid restrictions on∆xj and
∆yi whenwj ) 1. This can be avoided by introducing two extra
terms into eq 3:

and the following constraints:

whereuj is a continuous variable anduj
l anduj

u are lower and
upper bounds foruj.

The lower and upper bounds in∆xj and ∆yi are computed
directly from the bounds on the allowed changes on enzyme

expression levels and metabolite concentrations as∆xj
l,u ) gj

(ej
l,u) - gj(e0,j) and∆yi

l,u ) hi(ci
l,u) - hi(c0,i), respectively. The

bounds onrj anduj can be chosen to be conservative (e.g., very
large values for the upper bounds). However, tighter bounds
will speed up the solution of the MILP. The maximum lower
bounds and minimum upper bounds forrj anduj can be com-
puted by using∆xj

l,u, ∆yi
l,u and eq 5.

Based on the analyses described above the optimization
problem is posed as the following MILP formulation (I):

subject to

Vj ) {1 if enzymej is modulated
0 otherwise

wj ) {1 if enzymej is knocked-out
0 otherwise

rj
l(1 - wj) e r0,j + G0,jj∆xj + ∑

i)1

n

(H0,ji∆yi) e rj
u (1 - wj)

rj ) r0,j(1 - wj) + G0,jj∆xj + ∑
i)1

n

(H0,ji∆yi) + uj (5)

rj
l(1 - wj) e r0,j(1 - wj) + G0,jj∆xj +

∑
i)1

n

(H0,ji∆yi) + uj e rj
u(1 - wj)

uj
lwj e uj e uj

uwj

Figure 2. Disjoint feasible region corresponding to the MILP formu-
lation. The diagram illustrates the disjoint feasible region of the enzyme
levels forj, k, andl. If no knock-outs are allowed, the optimal solution
lies on the cube enclosing the reference state. If one knock-out is
allowed, the feasible region will also contain the projections of the
cube on the planes formed by the two axes. Increasing the number of
allowed knock-outs will expand the feasible region with the addition
of more disjoint sets as shown in the figure by the lines on the axis
(double knock-out) and the point at their intersection (triple knock-
out).

maxz ) ∑
j)1

m

dj(r0,j(1 - wj) + G0,jj∆xj + ∑
i)1

n

(H0,ji∆yi) + uj)

∑
j)1

m

Sij(r0,j(1 - wj) + G0,jj∆xj +

∑
i)1

n

(H0,ji∆yi) + uj) ) 0 ∀ i (c.1)

∆xj
lVj e ∆xj e ∆xj

uVj ∀ j (c.2)

∆yi
l e ∆yi e ∆yi

u ∀ i (c.3)

rj
l(1 - wj) e r0,j (1 - wj) + G0,jj∆xj +

∑
i)1

n

(H0,ji∆yi) + uj e rj
u (1 - wj) ∀ j (c.4)

uj
lwj e uj e uj

uwj ∀ j (c.5)
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In formulation (I) a weighted combination of fluxes is, in
general, being maximized wheredj is the weight given to
reaction rj in the objective function. The constraints (c.1)
describe the mass balance at steady state for each metabolite
concentration. Constraints (c.2) and (c.3) delimit the region
where the linearized kinetic model reasonably describes the
metabolic system. Constraints (c.2) allow a change in∆xj only
if the corresponding enzyme is to be modulated; otherwise∆xj

is set equal to zero. Constraints (c.3) provide lower and upper
bounds on metabolite concentrations. Constraints (c.4) and (c.5)
are included to model enzyme knock-outs. If enzymej is
knocked-out (i.e.,wj ) 1), then constraints (c.4) set to zero its
corresponding reaction rate, whereas constraints (c.5) allowuj

to vary between its lower and upper limits. On the other hand,
if enzymej is not eliminated, constraints (c.5) setuj ) 0 while
constraints (c.4) allowrj to vary within its lower and upper
limits. The total number of manipulated enzymes (modulations
plus eliminations) is set equal toq through constraint (c.6), while
constraints (c.7) and (c.8) control the number of modulations
and knock-outs, respectively. Simultaneous knock-out and
modulation of the same enzyme is avoided through constraints
(c.9). Finally, in order to determine theTth optimal solution
consideringq manipulations, constraints (c.10) are used to
exclude the solutions derived in previous iterations. These
constraints are referred to as cuts in Figure 1 and one of such
cuts is added at each iteration of the inner cycle. The accumula-
tion of these cuts is restarted at the beginning of the outer cycle.

By solving formulation (I), the desired values of enzyme
expression levels and the concentrations are obtained fromej

) gj
-1(x0,j + ∆xj) and ci ) hi

-1(y0,i + ∆yi). Next we demon-
strate the application of the computational framework by
determining optimal genetic manipulation strategies through an
example of a kinetic model of the central carbon metabolism
of E. coli (24).

Computational Results and Discussion

The proposed scheme was employed to determine optimal
genetic manipulation strategies that maximize the flux of a
prespecified reaction in a relatively large-scale metabolic kinetic
model. Specifically, the objective is to maximize serine synthesis
in E. coli. Current serine production methods include enzymatic
and whole cell conversions from glycine and methanol, whereas
processes of direct fermentation from glucose are not common
(48).

The model used, introduced by Chassagnole et al. (24),
describes part of the central carbon metabolism ofE. coli and
is graphically presented in Figure 3. It includes the glycolysis
and the pentose phosphate pathway (PPP) as well as drain fluxes

of metabolic precursors (e.g., pyruvate, phosphoenol-pyruvate,
etc.) to the synthesis of cellular components. The model com-
prises 17 metabolites and 30 nonlinear reaction rates (e.g.,
reversible Michaelis-Menten, Hill equation, allosteric regula-
tion, etc). An important limitation of this model is that it does
not include mass balances for cofactors such as ATP, NADH
and NADPH. Therefore in this work we assumed that the
concentrations of the cofactors remain constant. This assumption
may significantly affect the quality of the result obtained, but
it does not affect the fundamentals of the proposed procedure.
We investigate the maximization of serine synthesis by (i)
enforcing only knock-outs, (ii) enforcing only modulations of
enzyme levels and (iii) allowing for both modulations and
knock-outs simultaneously.

In order to select the basis functions for the generalized
linearization, the log-linear description used by Hatzimanikatis
et al. (30) and the optiongj(ej) ) ej/e0,j andhj(cj) ) ln cj were
tested. The test consists of comparing the steady-state reaction
rates and concentrations predicted by the linearized models with
those corresponding to the nonlinear model after perturbation
of a number of enzyme levels. The perturbed enzymes and the
perturbation levels were determined randomly using a uniform
distribution. Figure 4 shows the average errors of the linearized
models for different numbers of perturbed enzymes (100 data
points were considered for each number of perturbed enzymes).
As can be appreciated, both approximate models (squares repre-
sent log-linear description; circles representgj(ej) ) ej/e0,j, hj(cj)
) ln cj) cause similar average errors in the predicted concentra-
tions (white points) and fluxes (gray points). However, the
average errors considering only the fluxes associated with
perturbed enzyme levels (black points) are significantly smaller
for the casegj(ej) ) ej/e0,j andhi(ci) ) ln ci. Therefore, we adopt
this basis function set to perform the linearization.

We allow enzyme levels to vary only by a factor of 2 (i.e.,
ej

l ) 0.5e0,j andej
u ) 2e0,j) unless they are eliminated, whereas

metabolite concentrations are allowed to deviate from the refer-
ence state by no more than 50% (i.e.,ci

l ) 0.5c0,i and ci
u )

1.5c0,i). These bounds correspond to∆xj
l ) -0.5,∆xj

u ) 1,
∆yi

l ) ln0.5, and∆yi
u ) ln1.5. The linearization was performed

∑
j)1

m

(Vj + wj) ) q (c.6)

∑
j)1

m

Vj ) qV (c.7)

∑
j)1

m

wj ) qw (c.8)

Vj + wj e1 ∀ j (c.9)

∑
j|wj

t)1

m

wj + ∑
j|yj

t)1

m

Vj e q - 1 ∀ t ) 1, 2, ...,T - 1 (c.10)

Figure 3. Overview of central carbon metabolism ofE. coli. See
Notation section for notation.
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with the symbolic toolbox of MATLAB, and the MILPs were
solved with CPLEX using the interface CPLEXINT (49).

In the following subsections, we present the results for each
policy. Subsequently, the effect of the upper limits on the
metabolite concentrations is investigated, and finally we consider
a variation of the proposed scheme to explore larger changes
on the enzyme levels.

I. Allowable Manipulations: Knock-Outs. Table 2 lists the
identified optimal gene knock-out strategies for serine over-
production (only the top five results are presented for each case).
Not surprisingly, most of the single and double knock-outs
strategies involve only end-point reactions in the kinetic model.
Knock-outs of non-terminal steps are not chosen because they
tend to cause large concentration changes. Enzymes of the PPP
(eG6PDHandePGDH, see Notation) only appear in the triple knock-
outs, whereas glycolytic enzymes (ePGI andePK) are selected in
the best set with four knock-outs and in all the sets with five
and six knock-outs, respectively. The best single manipulation
is the knock-out ofeDAHPS. This strategy is not intuitive since
this reaction does not compete directly with the serine synthesis.
It improves the serine production because it increases the
concentration ofcPEP, which in turn results in an increase of
the concentration of the serine precursor (3-phospho-glycerate,
c3pg). This knock-out also occurs in all of the best multiple
knock-outs. In the best double strategy, the knock-out ofeG1PAT

increases the concentration ofcg6p, resulting in a reduction of
rPTS, which is the main consuming reaction ofcPEP. The best
strategies with four, five and six knock-outs involveeDAHPS,
eG1PAT, ePGI and ePK. In these sets, the knock-out ofePGI is
interesting since one would expect the overexpression of the
enzymes upstream of the flux to be maximized in order to

increase the carbon supply. Moreover, this knock-out redirects
the carbon flux through the PPP, which is stoichiometrically
less efficient because of the loss of one carbon as CO2 per each
molecule of glucose processed through this pathway. This
knock-out is selected however, because other knock-outs lead
to larger changes in concentrations than allowed by the imposed
bounds.

An important observation of the results listed in Table 2 is
that the best single knock-out produces only a 5.5% increment
in the rate of serine production, whereas when allowing for as
many as six knock-outs only up to an 11.8% increase is
achieved. This suggests that serine production cannot be
improved considerably by implementing only knock-outs with-
out allowing for drastic concentration changes. This contrasts
with the results obtained based on a purely stoichiometric model

Figure 4. Deviations of the linearized models with respect to a
nonlinear kinetic model ofE. coli (24). Squares correspond togj(ej) )
ln ej, hj(cj) ) ln cj and circles correspond togj(ej) ) ej/e0,j, hj(cj) ) ln
cj. ci andrj are the predictions of the nonlinear model; the superscript
l denotes the predictions of the linearized models using the indicated
functions and the subscript 0 stands for the reference value.M andm′
define the set and number of perturbed enzymes respectively. The
deviations of the linear models from the nonlinear predictions are the
average for 100 data points. Each data point was obtained by
determining the deviations of the steady-state reaction rates and
metabolite concentrations after random perturbations of the enzyme
levels within 0.5e0,j e ej e 2e0,j. The uniform distribution was used to
choose the perturbed enzymes and the perturbations levels. Only points
with 0.5c0,i e ci e 1.5c0,i were considered.

Table 2. Optimal Knock-Out Strategies to Maximize Serine
Synthesisa

r*/ r0* knocked-out enzymesb

1.004 G3PDH
1.010 G1PAT
1.037 RPPK
1.043 SYN1
1.055 DAHPS
1.055 DAHPS METS
1.056 G1PAT SYN1
1.059 DAHPS MURS
1.061 G3PDH DAHPS
1.073 G1PAT DAHPS
1.076 G6PDH PGDH TRPS
1.077 G6PDH PGDH TA
1.077 G6PDH PGDH TKA
1.083 RPPK SYN2 DAHPS
1.087 SYN1 SYN2 DAHPS
1.088 SYN1 SYN2 DAHPS METS
1.092 SYN1 SYN2 DAHPS MURS
1.095 G3PDH SYN1 SYN2 DAHPS
1.097 PGI PK G1PAT DAHPS
1.097 PGI PK PGLM G1PAT DAHPS
1.098 PGI PK G1PAT DAHPS METS
1.100 PGI PK G3PDH DAHPS MURS
1.116 PGI PK G1PAT DAHPS MURS
1.117 PGI PK G1PAT G3PDH DAHPS
1.118 PGI PK G1PAT G3PDH DAHPS METS

a r*/ r0* is the ratio of the objective function respect to the reference
value. The strategies are sorted in ascending order. Only the top five
strategies are presented for each number of allowed knock-outs.b See
Notation section for notation.

Table 3. Optimal Modulations Strategies to Maximize Serine
Synthesisa

r*/r 0* modulated enzymes (ej/e0,j )

1.043 PFK (1.309)
1.058 GAPDH (1.539)
1.061 PK (0.5)
1.063 PEPC (0.5)
1.949 SERS (2)
2.001 PDH (2) SERS (2)
2.010 PK (0.5) SERS (2)
2.012 PTS (1.328) SERS (2)
2.012 PEPC (0.5) SERS (2)
2.016 PFK (1.479) SERS (2)
2.073 GAPDH (1.595) PK (0.5) SERS (2)
2.074 GAPDH (1.579) PEPC (0.5) SERS (2)
2.084 GAPDH (1.774) PDH (2) SERS (2)
2.129 PTS (1.403) GAPDH (1.964) SERS (2)
2.129 PFK (1.567) GAPDH (1.944) SERS (2)

a r*/ r0* is the ratio of the objective function with respect to the reference
value. The strategies are sorted in ascending order. Only the top five
strategies are presented for each number of allowed manipulations. See
Notation section for notation.
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by Pharkya et al. (50). In the cited work a triple knock-out of
ENO, ATPase and serine deaminase (the last two enzymes are
not considered in the kinetic model) yields a theoretical molar
yield of 0.987 with respect to glucose, whereas the kinetic based
prediction even after six knock-outs is only 0.122. This indicates,
at least for this case, that the kinetics of the enzymatic reactions
imposes significantly stronger restrictions than stoichiometry
alone. In the following subsection we present the strategies
found when only modulations are allowed.

II. Allowable Manipulations: Modulations. Table 3 shows
the optimal sets and enzyme levels leading to the maximization
of serine synthesis when only modulations of the enzyme level
are allowed. Not surprisingly, the increase ofeSERS, correspond-
ing to the flux that is being maximized, represents the best single
modulation. Doubling the level ofeSERS increases the serine
synthesis rate by 94.9%. The remaining single modulations
improve the serine synthesis indirectly by increasing the
concentration of its precursor. Two of them increase the flux
upstream of this metabolite by increasing the level ofePFK and

eGAPDH while the other two reduce fluxes downstream by
diminishing the levels ofePK andePEPC. In all cases, only modest
improvements of less than 6.5% are achieved. This is also the
case when two or three enzymes are modulated. All double and
triple manipulation strategies includeeSERS. Modulation ofePFK

in the best double strategy improvesrSERSby only an additional
6.7%, while modulation ofePFK and eGAPDH in the best triple
strategy accounts for only 18% of the total improvement. The
maximum value of the serine synthesis rate, an improvement
of 112.9%, is achieved by two different sets of triple modula-
tions. In both tripletseSERS is overexpressed at the maximum
allowed level, whileeGAPDH andePTS or ePFK are up-modulated
such thatc3pg reaches its upper limit. Due to the constraints on
the upper limits ofeSERS andc3pg, further modulations do not
improve the serine synthesis. This occurs in this case because
the linear objective function depends only oneSERS and c3pg

and three modulations are enough to make them reach their
corresponding upper limits. IfeGAPDH is not overexpressed
together witheSERSthe maximum value of the serine synthesis
is not reached even after six modulations. This suggests that
the overexpression ofeGAPDH is important to maximize the serine
synthesis according to the kinetic model. Another interesting
result is that the enzymes that are modulated to a lower level,
ePK andePEPC, are not among the best single, double and triple
knock-outs shown in Table 2. This is because the elimination
of these enzymes induces changes in concentration that lie
outside the allowable concentration ranges.

III. Allowable Manipulations: Knock-Outs and Modula-
tions. The strategies for simultaneous knock-outs and modula-
tions produce improvements similar to those obtained when only
modulations are allowed. The results are shown in Table 4. The
single manipulations are the same as those for modulations, but
in the first row overexpression ofePFK is replaced with the
knock-out ofeDAHPS. The most important single manipulation
is again the overexpression ofeSERS, while the other manipula-
tions have only a minor effect on the serine synthesis. In the
case of two manipulations, the best option is the overexpression
of eSERSand knock-out ofePK, while the remaining manipula-
tions are the best double modulations. The maximum value of
this flux is still achieved with only three manipulations, but the

Table 4. Optimal Modulations/Knock-Out Strategies to Maximize
Serine Synthesisa

r*/ r0* modulated+ KO enzymes (ej/e0,j)

1.055 DAHPS (0)
1.058 GAPDH (1.539)
1.061 PK (0.5)
1.063 PEPC (0.5)
1.949 SERS (2)
2.010 PK (0.5) SERS (2)
2.012 PTS (1.328) SERS (2)
2.012 PEPC (0.5) SERS (2)
2.016 PFK (1.479) SERS (2)
2.074 PK (0) SERS (2)
2.106 TIS (2) PEPC (0) SERS (2)
2.129 GAPDH (1.191) PEPC (0) SERS (2)
2.129 PTS (1.403) GAPDH (1.964) SERS (2)
2.129 GAPDH (1.497) PK (0) SERS (2)
2.129 PFK (1.567) GAPDH (1.944) SERS (2)

a r*/ r0* is the ratio of the objective function with respect to the reference
value. The strategies are sorted in ascending order. Only the top five
strategies are presented for each number of allowed manipulations. See
Notation section for notation.

Table 5. Optimal Strategies To Maximize Serine Synthesis Using Large Upper Bounds for Concentrationsa

r*/r 0* ∆xj
u ) ln(2); ∆yi

u ) ln(11)

Knock-Outs
1.176 PEPC
1.368 PK PEPC
1.453 PK PEPC SYN1
1.505 PK PEPC G1PAT SYN1
1.516 PK PEPC RPPK SYN1 TRPS
1.517 PK PEPC RPPK SYN1 TRPS METS

Modulations (ej/e0,j)
1.949 SERS (2)
2.140 PTS (2) SERS (2)
2.247 PTS (2) GAPDH (2) SERS (2)
2.387 PTS (2) PFK (2) GAPDH (2) SERS (2)
2.450 PTS (2) PFK (2) GAPDH (2) PEPC (0.5) SERS (2)
2.511 PTS (2) PFK (2) GAPDH (2) PK (0.5) PEPC (0.5) SERS (2)

Knock-Outs+ Modulations, (ej/e0,j)
1.949 SERS (2)
2.140 PTS (2) SERS (2)
2.342 PTS (1.841) PEPC (0) SERS (2)
2.511 PTS (2) GAPDH (2) PEPC (0) SERS (2)
2.703 PTS (1.937) GAPDH (2) PK (0) PEPC (0) SERS (2)
2.763 PTS (1.382) GAPDH (1.896) PK (0) PEPC (0) SERS (2) DAHPS (0)

a r*/ r0* is the ratio of the objective function respect to the reference value. Only the best strategy is presented for each number of allowed manipulations.
See Notation section for notation.
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combination of knock-outs and modulations produce two
additional strategies, offering more options. As in the modulation
cases, the serine synthesis flux can be increased by a maximum
of 112.9%. The yield of the triple manipulations involving either
the knock-out ofePK or ePEPC(0.19 mol serine/mol glucose) is
somewhat larger than the yield of the strategies involving the
overexpression ofePTS or ePFK (0.16 mol serine/mol glucose).
These yields, however, are lower compared to the molar yields
with respect to glucose of 0.55 and 0.64 achieved by engineered
strains of B. flaVum in an industrial process (51) and C.
glutamicum(48). In these strains, the enzymes of the serine
synthesis pathway are overexpressed while the serine degrading
pathways are deleted or repressed. These manipulations are
equivalent to the strategy of the single modulation ofeSERSsince
serine degrading pathways are not considered in the kinetic
model used. The low yields predicted by the linearized kinetic
model are due to the restriction on the maximum level ofeSERS.
The overexpression ofeGAPDH appears again in all of the sets
that achieve the maximum value.

Effect of the Upper Limit on Concentrations. In the previ-
ous subsections, we identified optimal strategies that comply

with the constraints on the allowable concentration deviations
(i.e.,(50%). Clearly, the obtained results and accuracy depend
on the imposed concentration bound ranges. For relatively small
allowed concentration changes the accuracy of the linearized
kinetic model is high at the expense of perhaps omitting engi-
neering interventions due to the overly conservative concentra-
tion bounds. On the other hand, when allowing for larger
concentration deviations, more strategies are sampled at the
expense of moving outside of physiologically relevant ranges.
The effect of the upper limit on concentrations on the calculated
strategies is examined by solving the previous case study after
allowing the concentrations to change up to 10-fold (i.e.,
∆yi

u ) ln(1 + 10).
The estimated optimal strategies are presented in Table 5

(only the best set for each case is shown). In general, relaxing
the concentration bounds leads to higher serine overproductions.
Six manipulations allow a serine synthesis rate of 99.9% of its
maximum value. The second part of Table 5 shows the best
strategies when only modulations are allowed. The results
suggest that aftereSERS, the next best candidates to be modu-
lated areePTS andeGAPDH. The strategies obtained when both
knock-outs and modulations are allowed are shown in the third
part of Table 5.

We next estimated the value of the serine synthesis rate (rSERS)
using the nonlinear model based on the enzyme levels predicted
by the linearized model to compare the quality of the predictions
using narrow (i.e., 50% fold changes) and wide (i.e., 10-fold
changes) bounds in concentrations. Figure 5 shows that when
only knock-outs are allowed, the linearized model, in general,
offers reasonable accuracy for narrow concentration bounds, but
the error is considerable for the wide concentration bounds.

Figure 5. Comparison of predictions from MILP formulation and the
nonlinear model. Plots illustrate the value of objective function predicted
by the MILP formulation (lines) and the corresponding value calculated
with the nonlinear model (points) for the optimal strategies. Circles
and continuous lines correspond to narrow bounds (∆xj

u ) 2, ∆yi
u )

ln1.5). Squares and dashed lines correspond to the wide upper bounds
(∆xj

u ) 2,∆yi
u ) ln11). (a) Strategies involving only knock-outs. Light

gray, gray, and black indicate one, three and five knock-outs,
respectively. (b) Strategies involving both knock-outs and modulations.
Light gray, gray and black indicate two, four and six manipulations
repectively.

Figure 6. Procedure to determine optimal manipulation strategies for
unrestricted changes in concentration and enzyme levels. The nonlinear
model is linearized, and the local information is used to determine the
enzyme to be manipulated by solving a MILP problem. The optimal
enzyme levels are estimated by solving a NLP problem based on the
nonlinear kinetic model through the SQP method. Counteri controls
the number of iterations in the inner loop, andimax is the maximum
number of iterations.q is the number of required manipulations, and
qmax is the maximum number of manipulations.
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Modified Algorithmic Procedure for Large Concentration
Ranges.As described above using local information to identify
optimal strategies, allowing large changes in concentration and
enzyme levels (results not included) can lead to large ap-
proximation errors. To remedy this, we propose a variant of
the algorithmic procedure illustrated in Figure 6. This modified
procedure uses information at the reference state to predict which
enzymes have to be manipulated by solving a MILP. Then the
enzyme levels that maximize the serine synthesis rate and the
corresponding metabolite concentrations are determined by
solving a NLP formulated using the original nonlinear kinetic
model. The NLP was solved using a SQP method. In Table 6
we present the iteration number at which the best 10 identified
sets were obtained from the procedure (only strategies involving
up to six manipulations are considered). In the cases of one
and two manipulations, the best 10 sets were determined in the
first 10 and 15 iterations, respectively. However, for the cases
of three or more manipulations the best solutions are found in
late iterations.

Summary

In this work we presented a computational procedure to
determine the gene/enzymes manipulations that maximize the
production of a metabolite of interest based on a kinetic model.
The procedure is based on iteratively solving MILPs resulting
from the linearization of arbitrary kinetic models of metabolism
and the use of binary variables to describe the knock-out or
modulation of enzymes. Its implementation was illustrated by
identifying intervention strategies that maximize the serine
synthesis rate according to a kinetic model of a part of the central
carbon metabolism ofE. coli. Through the application of the
proposed scheme, optimal strategies involving only knock-outs,
only modulations, or both were determined. We found that the
obtained engineering strategies and robustness depended heavily
on the width of bounds on metabolite and enzyme levels. We
concluded that, at least for the case study used in this work,
relatively narrow bounds on concentrations generated relatively
accurate predictions while for wider concentration ranges there
was significant divergence between nonlinear and linearized
model predictions. This implies that local information alone is
not sufficient to identify optimal strategies of three or more
manipulations when large changes in enzyme levels are allowed.

The proposed computational procedure can be a useful tool
to aid in the identification of various types of engineering
interventions in the redesign of metabolic production systems.
Moreover, the generality of the procedure ensures its applicabil-
ity for any metabolic system for which a kinetic description is
provided. This work is a step toward the development of a
framework that permits the accurate prediction and selection
of the effects of genetic manipulations through the integration
of the metabolic knowledge available and/or accessible to such
stoichiometry, kinetics, regulatory information, etc. All relevant

MATLAB files are available as Supporting Information; how-
ever, a license from ILOG for CPLEX and Matlab 7 are required
to execute the scripts.

Notation
Enzymes

PT a phospho-transferase system
PGI glucose-6-phosphate isomerase
PFK phosphofructo-kinase
ALDO aldolase
TIS triosephosphate iso-merase
GAPDH glyceraldehyde-3-phosphate dehydro-genase
PGK phosphoglycerate kinase
PGM phospho-glycerate mutase
ENO enolase
PK pyruvate kinase
PDH pyruvate dehydro-genase
PEPC PEP carboxylase
PGLM phosphoglucomutase
G1PAT glucose-1-phosphate adenyltransferase
RPPK ribose-phosphate pyrophosphokinase
G3PDH glycerol-3-phosphate dehydrogenase
SERS serine synthesis
SYN1 synthesis1
SYN2 synthesis2
DAHPS DAHP synthases
G6PDH glucose-6-phosphate dehy-drogenase
PGDH 6-phosphogluconate dehydrogenase
RU5P ribulose-phosphate epi-merase
R5PI ribose-phosphate isomerase
TKA transketolase A
TKB transketolase B
TA transaldolase
MURS mureine synthesis
TRPS tryptophan synthesis
METS methionine synthesis

Metabolites

g6p glucose-6-phosphate
f6p fructose-6-phosphate
fdp fructose-1,6-bisphosphate
gap glyceraldehydes-3-phosphate
dhap dihydroxyacetonephosphate
pgp 1,3-diphosphoglycerate
3pg 3-phospho-glycerate
2pg 2-phospho-glycerate
pep phosphoenolpyruvate
pyr pyruvate
6pg 6-phosphogluconate
ribu5p ribulose-5-phosphate
xyl5p xylulose-5-phosphate
sed7p sedoheptulose-7-phosphate
rib5p ribose-5-phosphate
e4p erythrose-4-phosphate
g1p glucose-1-phosphate
accoa aaloacetate
glc glucose
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Table 6. Iteration Number of the Best Ten Identified Sets using the
MILP-SQP

N.M.a iteration numberb

1 1 4 5 7 6 15 3 10 2 12
2 2 4 7 11 3 6 14 10 8 5
3 4 10 2 34 5 69 8 41 68 7
4 4 5 26 6 15 95 31 30 13 36
5 2 4 12 26 88 8 25 95 34 24
6 85 65 86 50 13 53 1 59 3 9

a N. M.: number of manipulations. For each number of manipulations
100 iterations were performed. Bounds used in MILP: 0.9e0 < e < 1.1e0,
0.5c0 < c < 11c0. NLP: 0 < e < 5e0, 0.001c0 < c < 10c0. b Solutions
ordered according to decreasing objective function value.
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