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Abstract

We present the methods and results of a two-stage modeling process that generates candidate gene-regulatory networks

of the bacterium B.subtilis from experimentally obtained, yet mathematically underdetermined microchip array data. By

employing a computational, linear correlative procedure to generate these networks, and by analyzing the networks from a

graph theoretical perspective, we are able to verify the biological viability of our inferred networks, and we demonstrate

that our networks’ graph-theoretical properties are remarkably similar to those of other biological systems. In addition, by

comparing our inferred networks to those of a previous, noisier implementation of the linear inference process [A. Gupta,

J.D. Varner, C.D. Maranas, Comput. Chem. Eng. 29 (2005) 565], we are able to identify trends in graph-theoretical

behavior that occur both in our networks as well as in their perturbed counterparts. These commonalities in behavior at

multiple levels of complexity allow us to ascertain the level of complexity to which our process is robust to noise.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Complex networks—systems of multiple interacting parts—can be found in nearly every field of study. The
World Wide Web, for example, is a vast network of web pages, interconnected by hyperlinks; social networks
are composed of individuals, linked together through their acquaintances; and the North American power grid
represents a network of generators and power stations, joined by power lines [1,2]. With the advent of genome
sequencing and high-throughput protein interaction screens, a new realm of complex biological networks has
been uncovered. To fully understand the workings of an organism, we must be able to map more than just the
organism’s genome: in addition, we must understand the networks of metabolic and protein–protein
interactions taking place within the organism’s cells, and it is critical that we be able to reconstruct and verify
the interaction networks through which genes are regulated.
e front matter r 2006 Elsevier B.V. All rights reserved.
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During the last decade, genomics, transcriptiomics and proteomics have produced an incredible quantity of
molecular-interaction data, contributing to maps of specific cellular networks. Genome-wide protein–protein
interaction maps have been constructed for a variety of organisms, including the yeast, S. cerevisiae [3–6], the
worm C. elegans [7], and the fruit fly D. melanogaster [8]. By systematically pairing DNA- binding proteins
and their target genes, transcriptional regulatory maps have been constructed for E. coli [6] and S. cerevisiae

[9–11]. While these static maps offer significant insights into the remarkable interconnectivity of cellular
components, they describe only functional subsets of cellular networks and do not capture the dynamical
aspects of gene regulation.

Alternative methods aim to reverse-engineer regulatory networks from gene expression information [12].
Unfortunately, obtaining the data with a low degree of error and with a high degree of completeness is often
experimentally impossible; gene expression information lacks clear thresholds, and frequently possesses far
fewer measurements than there are genes in the network. In such underdetermined cases, we must turn to
mathematical modeling techniques to infer candidate regulatory networks of high biological viability.
Generally, one of two modeling methods is employed: either a deterministic model-based method, in which the
expression level of gene X is assumed to affect the expression level of gene Y, or a stochastic model-based

method, in which the observed expression profiles are assumed to have been selected from a multivariate
probability distribution. Because the stochastic model-based method is computationally intensive and
underdetermined, here we employ a deterministic model-based approach. Specifically, we identify the
regulatory connections among the genes of the bacterium B. subtilis through a first-order, linear process [13],
and we then perform a multi-scale graph-theoretical analysis of these inferred networks to test the efficacy of
the model.

As the extensive work of the last decade demonstrates, a large class of biological graphs shares many
features of heterogeneous social and technological networks [1], and its members’ topologies are markedly
different from those of random graphs. Three dominant graph-theoretical measures define this class of
biological graphs. First, members of the class are scale -free, meaning that there is a power-law relationship
between the number of edges (degree), k, adjacent to nodes in the graph, and the fraction, P(k), of nodes with
that degree. Second, all graphs in the class exhibit a high average clustering coefficient [14], indicating that first
neighbors of nodes tend to be highly interconnected. Third, most graphs possess short average path lengths,
which is to say that the average distance—i.e., the number of adjacent edges in the shortest path—between any
two nodes in the graph is small. In addition, research has revealed that cellular interaction networks exhibit
structured patterns of connection at multiple levels of complexity [2,15–17], ranging from three-, four-, and
five-node network motifs to a global bow–tie structure [18].

Here we compare the characteristics of our inferred networks to the common features of other
biological graphs, and by contrasting our networks’ properties with those of random graphs, we assess our
networks’ biological viability. The biological viability of our networks is intrinsically linked not only to
their global properties, but also to their subglobal topological characteristics: as the scale of complexity is
refined, our networks exhibit a plethora of substructures, revealing a ‘‘topological complexity pyramid’’ [19].
In fact, the regulatory substructures that are revealed by our multi-scale graph-theoretical analysis
could provide additional validation of the utility of synthesizing large-scale inference and multi-scale graph-
theoretical analysis, as these substructures may uncover as-of-yet unknown interactions that can later be
verified experimentally. Although this paper reports primarily on the results of a graph-theoretical analysis
of inferred gene-regulatory networks in a specific organism, the broader goal of this research is to
demonstrate that by uniquely integrating experimentation, mathematical modeling, and mathematical
analysis, we can uncover both the global characteristics as well as the local interactions inherent to any

complex system.

2. Research design and methods

Affymetrixs Gene Chip data, furnished to us by experimental collaborators at Genencor, was used in
conjunction with regulatory data from the open literature [20–27] both to construct and to verify candidate
gene-regulatory networks. We modeled the dynamics of gene expression as a first-order, linear process where
we assumed that the rate-of-change of expression of a particular gene i at time point t is a linear combination
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of the concentration of all other genes, i.e.,

dZit

dt
¼

Ziðtþ1Þ � Zit

Dt
¼
XN

j¼1

oijZit 8i ¼ 1; 2; . . . ;N; t ¼ 1; 2; . . . ;T � 1, (1)

where Zit is the expression level of gene i at time point t, oij the regulatory impact of gene j on gene i, N the
total number of genes, T the total number of time points and Dt the sampling interval. This multiple-
regression-based linear model has been widely used for inferring gene-regulatory relationships from
microarray time series data [13,28–31]. The relative simplicity of Eq. (1) allows both for explicitly correlating
changes in the expression of given genes with the expression level of other genes in the network, as well as for
determining the effects of these changes on other genes. We inferred the regulatory coefficients oij by solving
the system of linear equations that results when experimentally obtained Zit values are plugged in Eq. (1) [13].
The resulting oij values then determined whether gene j up-regulates (oij40) or down-regulates (oijo0) gene i.
Using these inferred regulatory coefficients, the gene-regulatory networks were defined [13] such that each
gene corresponds to a node and such that a directed edge originates from each ‘‘regulator’’ gene j and
terminates on a ‘‘regulated’’ gene i for which oij6¼0. A permutation-based significance analysis was also carried
out on the inferred connections: a confidence level was assigned to each inferred connection by comparing the
likelihood of inferring a regulatory coefficient of a given magnitude from real versus label-randomized data
[13]. Label randomization was achieved by permuting the rows (gene names) and/or columns (time points) of
the expression matrix, and the confidence level for a given regulatory coefficient, was found from

cijðo�Þ ¼
Na oijXo�
� �

Na oijXo�
� �

þNr oijXo�
� � , (2)

where NaðoijXo�Þ and NrðoijXo�Þ are the number of connections inferred from the actual and randomized
data sets, respectively (note that because of the discrete nature of the data, Na and Nr can have a maximum
value of T�1) [13] . For example, if for a given gene pair, no connections with regulatory coefficients greater
than or equal to some prescribed value, o�, were inferred from the randomized data, then all connections for
that gene pair with regulatory coefficients greater than or equal to the prescribed value in the real data were
assigned a confidence level of 100%. We then defined a confidence threshold, and disregarded all edges whose
confidence was lower than this threshold. As a result some genes became isolated after losing all edges to
which they were previously adjacent; such isolated genes were subsequently excluded from the networks, and
only the remaining, connected core of each original network was examined. Therefore, only a subset of the 747
experimentally represented genes appeared in each inferred network.

Because transcription factors are expressed at much lower levels than enzyme-encoding genes, very few of
the 747 experimentally-represented genes encode transcriptional regulators, and at high confidence, the
inferred networks contain only a handful of transcription factors. Thus, the edges of our networks mostly
correspond to indirect regulatory relationships (probably mediated by transcription factors that were not
incorporated in the present analysis).

The data sets correspond to a (i) B. subtilis cradle-to-grave experiment with 20 time points; and (ii)
B. subtilis amino acid pulse experiment with 9 time points. Three networks were generated for each data set at
confidence levels of 70%, 80%, and 90% Though the extraction method used to generate both of these groups
of networks was identical, the two groups represent different experimental conditions. This difference is
underscored by the fact that there is only a 1% intersection in the edge sets of the two network groups, even
though their node sets differ by only 25%. Luscombe et al. [11] have noted a similar trend in the
transcriptional regulatory network of S. cerevisae: different environmental conditions activate distinct subsets
of the full regulatory network, subsets that are overlapping in their nodes (genes) but (largely) nonoverlapping
in their edges (regulatory interactions).

The networks referenced in [13] were constructed using the same mathematical model and from the same
raw microarray data. These arrays exhibit a small but nondisregardable degeneracy of microarray channels:
for 21 of the 747 genes examined, between two and five channels of the microarray corresponded to the same
gene. In Ref. [13] all channels were treated as unique genes; here we have collapsed the expression data of each
of the 21 genes that were redundantly represented in [13], into a consensus expression profile by averaging the
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Table 1

Node and edge composition of each inferred regulatory network at 70%, 80%, and 90% confidence

Network name and confidence Nodes Edges

Amino acid pulse, 70% 356 1040

Amino acid pulse, 80% 274 747

Amino acid pulse, 90% 169 405

Perturbed amino acid pulse, 70% 365 1058

Perturbed amino acid pulse, 80% 277 753

Perturbed amino acid pulse, 90% 154 348

Cradle-to-grave, 70% 476 2722

Cradle-to-grave, 80% 396 2000

Cradle-to-grave, 90% 314 1238

Perturbed cradle-to-grave, 70% 508 2931

Perturbed cradle-to-grave, 80% 416 2167

Perturbed cradle-to-grave, 90% 326 1335

The networks inferred in ref. [29] are denoted as being ‘‘perturbed’’ (see Materials and Methods). The ‘‘unperturbed’’ regulatory

interactions reported on in this paper are available from the corresponding author, upon request (e-mail cpc146@phys.psu.edu).
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expression profiles of the over-represented genes and their respective repeats at each time step. This profile
averaging is justified by the fact that the time-course readings of probes corresponding to the same gene
are highly similar. Because the networks in Ref. [13], formed in the absence of profile averaging, were
inferred assuming a gene space with approximately 3% more genes than were represented experimentally,
we regard these networks as perturbed versions of our inferred networks, and we use them to test the
robustness of our inference process by comparing their graph-theoretical properties to those of our networks.
The numbers of (nonisolated) nodes and edges for each network (unperturbed and perturbed) at each
confidence level are reported in Table 1. The inferred networks are available, upon request, from the
corresponding author.

A suite of preexisting Python code [32] was employed and augmented for the graph-theoretical analysis of
the B. subtilis data sets. In addition, the Mfinder [42] software package, available from http://www.weizmann.
ac.il/mcb/UriAlon/ was used to isolate and enumerate motifs involving between three and five nodes. This
software package determines the concentration of each motif, i.e. the number of occurrences of the particular
motif of n nodes and m edges, divided by the total number of motifs of n nodes and m edges) in a candidate
network. Then this concentration is compared to the concentration of the same motif found in a large
ensemble of randomized networks that preserve the degree of each node in the candidate network, while
establishing connections randomly. The presence of a motif is deemed statistically significant if its
concentration in the candidate network had a Z -score greater than 2—i.e. if ðCi � miÞ=si42, where Ci is the
concentration of motif i in the candidate network, and mi and si are the mean and standard deviation in the
concentrations of motif i in the randomized networks.

3. Results

3.1. The global topology of B. subtilis networks

3.1.1. Degree distribution

Because the edges in gene-regulatory networks represent the propagation of a chemical signal from one
gene to another, the edges in gene-regulatory networks must be directed. Edges that point away from
nodes contribute to their out -degree, and those edges that point toward nodes contribute to their in -degree.
In the network as a whole, there are necessarily as many outgoing edges as there are incoming edges, but
the distribution of outgoing and incoming edges can be markedly different [2,9,10]. Here we study the
cumulative in and out-degree distributions which give the fraction of nodes with in/out degree Kin/out4k.
Degree distributions that conform mathematically to a power law, PðkÞ�k�g, have a cumulative

http://www.weizmann.ac.il/mcb/UriAlon/
http://www.weizmann.ac.il/mcb/UriAlon/
mailto:cpc146@phys.psu.edu
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degree distribution

PðK4kÞ�k�gþ1. (3)

We look for this feature in our inferred networks.
At all confidence levels, the candidate B. subtilis networks, both unperturbed and widely perturbed, exhibit

heterogeneous topologies (see Table 2), a characteristic that has been observed in biological networks [9]. As
shown in Fig. 1, while the total and out-degree distributions are scale free (with exponential tails), the in
degree is better described by an exponential distribution. This duality of more variable out degree than in
degree is shared by E. coli and yeast transcription networks [9,10]. From Table 2 and Fig. 1, it is evident that
the out-degree distribution exponents fall very close to 2. A degree exponent approximately equal to 2 has
been observed in a variety of cellular networks [9,10,33], and seems to be a characteristic that sets biological
networks apart from other networks whose degree distribution exponent is closer to 3 [34].

The heterogeneity in connectivity exhibited by our networks implies that each network possesses a handful
of hub nodes that have far more neighbors than do other nodes in the graph. The presence of these hubs
underscores the fact that the regulatory processes within the inferred networks do not happen in isolation, but
rather that they are strongly interwoven with the functioning of other processes within the network; the hubs
act as direct links among these processes. The hubs (nodes whose degree is at least 25% of the highest degree in
the network) of both sets of networks are genes encoding enzymes (see Table 3). The deviation of this result
from the expectation of hub genes encoding transcription factors is explained by the fact that transcription
factors are vastly underrepresented in our networks. Indeed, the low expression level of transcription-factor-
encoding genes biases our inference method against identifying direct transcriptional regulatory events, and
consequently the interactions we infer are likely indirect relationships that are separated by intermediate
Table 2

Degree ranges and distributions for cradle-to-grave and amino acid data sets at 90% confidence

Data set Degree range 1/l gout gtotal

Amino acid pulse 90% 1–97 �7.35 1.52 1.85

Perturbed amino acid pulse 90% 1–73 �5.84 1.60 1.93

Cradle-to-grave 90% 1–157 �8.96 1.58 1.74

Perturbed cradle-to-grave 90% 1–176 �8.68 1.60 1.75

The in-degree distributions follow exponential functions, PðkÞ�e�lk, while the out-degree and total degree distributions follow power laws,

PðkÞ�k�r.
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Fig. 1. Log–log plot of the cumulative degree distributions for the unperturbed cradle-to-grave network at 90% confidence. Note that the

total (diamonds) and out-degree (triangles) distributions are scale-free (with exponential tails), while the in-degree distribution (squares) is

more nearly exponential.
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Table 3

Identity and function of the networks’ hubs (nodes whose degree is 25% or more of the highest degree in the network)

Hub identity Function Network

ypcA dehydrogenase Amino acid pulse, 90%

thrB kinase Amino acid pulse, 90%

purD ligase/synthetase Amino acid pulse, 90%

sdhB dehydrogenase Amino acid pulse, 90%

pyrE phosphoribosyltransferase Amino acid pulse, 90%

yqhJ dehydrogenase Amino acid pulse, 90%

ctaE oxidase Cradle-to-grave, 90%

phrE activity regulator Cradle-to-grave, 90%

atpB synthase Cradle-to-grave, 90%

secE translocase Cradle-to-grave, 90%

sigW polymerase Cradle-to-grave, 90%

argG synthetase Cradle-to-grave, 90%

pdhC dehydrogenase Cradle-to-grave, 90%

ytcF decarboxylase Cradle-to-grave, 90%

gbsA dehydrogenase Cradle-to-grave, 90%

sucC dehydrogenase Cradle-to-grave, 90%

None of the hubs is a transcriptional regulator.
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interactions. While this trend may be an artifact of the inference process, it might also indicate that the most
active proteins in the networks indirectly influence the regulation of other genes. We do not observe absolute
conservation in the high-degree hub nodes between the unperturbed networks and their perturbed
counterparts. However, between 30% and 40% of the hub nodes of the perturbed versions of the cradle-
to-grave and amino acid pulse networks are similar in regulatory function to hubs of the respective
unperturbed networks.

3.1.2. Clustering coefficient

While random graphs have clustering coefficients that scale inversely with the size of the graph,

Crand ¼ kh i=N, (4)

the clustering coefficients of most real networks are unaffected by their sizes [1]. We therefore expect biological
networks to possess clustering coefficients that are substantially higher than the clustering coefficients of
equivalently large random graphs. For the B. subtilis networks, this is precisely what we see. Each network,
whether perturbed or unperturbed, has a clustering coefficient two to three times larger than the averaged
value for a sampling of random graphs with the same number of nodes and edges (but for which the degree
distribution has not been preserved), and roughly an order of magnitude larger than the clustering coefficient
of a degree-distribution-preserving random graph. Moreover, the ratio of the average clustering coefficient to
the average degree for each network is remarkably stable and graph-size independent, differing by less than
10% across confidence intervals, for both the cradle-to-grave and amino acid pulse networks.

3.1.3. Distances

Because of edge directionality, the existence of a path from node i to node j, with path length dij, does not
preclude the absence of a path from node j to node i, making the distance from node j to node i, dji, infinite. To
accommodate these infinite distances, we have calculated the efficiency—the average of inverse distances—of
each network:

eff ¼ 1
�

dij

� �
, (5)

where dij is the distance between nodes i and j, and where the average is over all node pairs [35,36].
While the efficiency of each network is fairly high—i.e., while each network’s average path length is small—

it is not markedly different from the efficiency of a random graph that preserves the original network’s number
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of nodes and (directed) edges. It is important to note, however, that while the random graphs support at least

three-quarters of the total possible paths among nodes, our inferred networks are composed of less than 25%
of all possible paths. The sparseness of paths in the inferred networks gives a valuable clue as to the structure
and function of these graphs, as it suggests not only that all nodes are not connected to all other nodes, but
moreover that the directionality of connection is likely crucial to the proper functioning of the network as a
whole: signals from one part of the network to another are very specifically and efficiently routed from one
gene to another.

3.1.4. Error/attack resilience and modularity

To focus on the structural connectivity of the inferred networks, we next consider their undirected scaffold.
While this simplification does obscure information about specific regulatory interactions, it still provides
insight into the networks’ susceptibility to node loss. Originally the undirected versions of our inferred
networks are connected. At all confidence levels, random removal of nodes causes the size of the largest
remaining cluster—i.e. the largest group of nodes that can be connected by a continuous path—to decrease
approximately linearly. In fact, the largest remaining cluster typically retains all of its nodes except for the
node that was randomly removed. However, removal of the highest degree nodes (see Table 3 for their
identities and functions) results in a rapid decrease in the size of the largest remaining cluster within the
networks (Fig. 2). This pronounced difference in behavior as a function of node removal strategy is another
mark of the high degree of heterogeneity exhibited by the candidate networks [1,34], and indicates the
important role of the few very high-degree hub nodes (nodes whose degree is at least 25% of the highest degree
in the network), in connecting the other nodes in the network. While the hub nodes are responsible for linking
large portions of the networks to one another, they are not the sole source of connectivity within each
network, as removal of a network’s highest-degree hubs does not cause the immediate disintegration of the
network. In fact, approximately 10% of the nodes of each network must be removed (or all nodes with degree
greater than 8 in the amino acid pulse network, and with degree greater than 10 in the cradle-to-grave
network) before the network becomes fully disconnected, and this relative resilience to targeted attack implies
the existence of additional linking pathways (that do not include the hubs) among the neighbors of the highest-
degree hubs. In fact, if we investigate nodes (intermediate hubs) whose degree is between 10% and 25% of the
maximum degree in the network, whose clustering coefficient is greater than or equal to .4, and that are also
neighbors of at least one hub node, and if we look for edges that connect these nodes’ neighborhoods without
starting or terminating on a hub, we find that on average, there are 3 (5) such edges per intermediate hub in the
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Fig. 2. Error-attack plot for unperturbed cradle-to-grave network at 90% confidence: cross hatches represent random removal of nodes,

while circles correspond to targeted attack of the network’s hubs (nodes whose degree is at least 25% of the maximum degree in the

network). The size of the largest remaining cluster decreases approximately linearly when nodes are removed at random, but the network

disintegrates rapidly if hubs are targeted for removal. The perturbed network which was inferred in Ref. [13] from the same basic data as

was used for the unperturbed network, but without first accommodating redundancies in the microarray channel labeling, exhibits similar

behavior, and appears approximately equally susceptible to targeted attack.
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amino acid pulse (cradle-to-grave) network. We point out that these additional pathways are not necessarily
shortest paths among node pairs; they simply function to tie different local neighborhoods together. Due to
the relative abundance of these pathways, our networks show no strong evidence of modularity in its graph-
theoretical sense; i.e. nodes do not appear in clusters that are connected to other clusters through only one or

two individual edges.
3.2. Global topology and subglobal order

Taken in conjunction, the degree distributions, clustering coefficients, path lengths, error/attack resilience
plots, and lack of modularity for the B. subtilis networks provide valuable hints as to the nature of underlying
structure and order within these networks. For example, the existence of nodes of very high degree, whose
removal results in the disintegration of the networks, combined with the fact that all nodes lie within a few
edges of all other nodes, suggests that the networks’ high-degree nodes are functional hubs, routing chemical
signals quickly and efficiently from one part of the network to other, otherwise distant, network components.
The inferred networks’ high-clustering coefficients, corroborated by the networks’ surprisingly high resilience
to attack, suggests both that the networks are composed of many small clusters of nodes that are heavily
interlinked, and that these small, strongly linked neighborhoods are bound to one another both via the hub
nodes and via pathways that do not traverse the hub nodes. To test the accuracy of these hypotheses, we turn
to increasingly local topological scales.
3.2.1. Strongly connected components, in components, out components, and tendrils: The first level of subglobal

order

Nodes in a directed network can be classified according to the ways in which they are bound to other nodes
[37]. All nodes that can both reach and be reached from one another form a strongly connected component;
those nodes that can reach the strongly connected component, but that cannot be reached from the strongly
connected component form the in component of a network, and those nodes that are connected in a converse
manner form the out component of the network. Finally, those nodes that can neither reach, nor be reached
from, the strongly connected component of a network form a group of tendrils. At highest confidence, both
networks contain a strongly connected component containing more than 10% of the total number of nodes in
the networks. Furthermore, between one-third and one-half of these nodes are also among the networks’
highest-degree nodes. 65% (87%) of nodes lie in the cradle-to-grave (amino acid pulse) network’s out
component, while 7.2% (0%) of the nodes belong to the in component. The cradle-to-grave network also has a
sizeable tendril component (13.4% of the network), though tendrils are all but absent from the amino acid
pulse network.

The strongly connected component forms a dense region of intersecting paths; through the strongly
connected component, nodes are able to connect to other nodes in the network. Removal of the strongly
connected component causes the isolation of more than one-third of both networks’ nodes. Because such a
large fraction of the nodes of the networks lose connectivity when the strongly connected component is
removed, it is difficult to compare average path lengths before and after the strongly connected component’s
removal; therefore we calculate the ratio of the relative change in total efficiency and the relative change in total

number of paths, in going from a network to its counterpart without a strongly connected component, i.e.,

1� ð
P

i0j01=di0j0 Þ=ð
P

ij1=dijÞ

1� ðN �NsccÞðN �Nscc � 1Þ= NðN � 1Þð Þ
, (6)

where N is the number of nodes in the original graph, and Nscc is the number of nodes in the strongly
connected component. The change ratio for the unperturbed cradle-to-grave network at highest confidence is
17.1%, indicating that the number of paths changes more than does path length. Taken in conjunction with
the large numbers of nodes that become disconnected following the removal of the strongly connected
component, this information corroborates the idea that the strongly connected component maintains a dense
mesh of paths among a large fraction of the network’s nodes. Furthermore, the prevalence of high-degree
nodes in the strongly connected component supports the idea that one means of linking the small, tightly knit
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neighborhoods of the B. subtilis networks is through paths involving the networks’ hubs. Similar results are
obtained both for the perturbed cradle-to-grave network at highest confidence, as well as for the unperturbed
and perturbed amino acid pulse networks at highest confidence.

One expects that the nodes of each of these network components are involved in processes that are
functionally similar; indeed, in mammalian signal transduction networks, nodes of the strongly connected
component are responsible for central signal processing, while the nodes of the in and out components work,
respectively, to guide input from ligand-receptor binding and to propagate output from the strongly-
connected component to transcription of target genes and phenotypic changes [37]. We also see hints of this
type of functional grouping in our networks: most strikingly, the strongly connected component of the amino
acid pulse network contains nearly twice the concentration of transferases and dehydrogenases as does this
network’s out component. Transferases systematically move chemical groups from one compound to another,
while dehydrogenases participate in the oxidation reactions that convert small organic molecules into energy;
the high concentration of transferases and dehydrogenases in the strongly connected component of the amino
acid pulse network suggests that the bulk of amino acid metabolism is carried out by the genes comprising the
strongly connected component of this network, since amino acids must first be chemically decomposed by
transferases and then dehydrogenated in order to be fully metabolized by the organism.

3.2.2. Unperturbed networks and perturbed networks: A stricter comparison of their global topologies

As was mentioned previously, we studied our inference method’s resilience to perturbation by comparing
the graph-theoretical properties of our networks to the graph-theoretical properties of networks inferred
under the assumption that 21 redundant channels of the microarray represented unique genes (we refer to
these networks as ‘‘perturbed’’). While the number of genes initially considered in the inference process was
similar (747 vs. 695), only nonisolated nodes are considered part of the inferred network (see Section 2,
Research Design and Methods); thus the overlap between the number of genes in the perturbed and
unperturbed networks is nontrivial. Interestingly, while (at highest confidence) the perturbed networks were
less than 10% larger than their unperturbed counterparts, the overlap in genes common to an unperturbed
network and its corresponding perturbed network ranged from a mere 45.6% to 59%.

At first glance, this low level of conservation would seem to suggest that the inference process is highly
sensitive to perturbation; however, if the nodes of a perturbed network are chosen by randomly drawing genes
from the pool of 747 genes, over 105 iterations of this process, 100% of randomly-drawn networks exhibit
node overlap with the unperturbed networks that is non-trivially lower than the overlap in our perturbed
networks. For this reason, we conclude that the node overlap observed in our networks exhibits robustness in
terms of node selection. However, the process seems to be hypersensitive to noise in establishing regulatory
connections: regardless of the network and confidence level, at best only 1.1% of an unperturbed network’s
edges appear in the perturbed graph. This lack of robustness in regulatory connection conservation is perhaps
not surprising: the linear inference method used to create candidate networks predicts a minimal set of indirect

regulatory interactions; therefore, an edge in one inferred network might correspond to a multi-edge path, or
could be rejected as being of low confidence, in a network inferred under slightly different conditions. Indeed,
we see some evidence of edge-to-path conversion in our inferred networks: 10% of edges in the amino acid
pulse network are found as multi-edge paths in the network’s perturbed counterpart, and 29% of edges in the
cradle-to-grave network are found as multi-edge paths in this network’s perturbed counterpart. Furthermore,
as an analysis of the subglobal topologies of the unperturbed and perturbed networks reveals, the inference
process is highly effective in consistently producing patterns of subglobal (and global) structure and order that
are common both to the unperturbed and perturbed networks.

3.2.3. Commonalities in structure and function at the most basic level of complexity

Network motifs: The pioneering work of the Alon group in 2002 [2,17] demonstrated that nearly all complex
networks possess subglobal patterns of connection that recur with a greater statistical significance than would
be found in degree-preserving random graphs—i.e., in graphs for which both the degree of each node, as well
as the number of nodes with a specific in or out degree are preserved. These network motifs have garnered great
interest in systems biology, as it has since become evident that biological networks with similar functions
possess the same motifs. Transcriptional regulatory networks, for example, have been shown to contain,
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Fig. 3. Most abundant and statistically significant motifs in the amino acid pulse and cradle-to-grave networks at 90% confidence.
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predominantly, feed-forward loops, bi-fans, and single-input modules [2,17], whereas signal transduction
networks also show evidence of feed-back loops [2,37]. A diverse array of motifs, involving between three and
five nodes, emerges in the B. subtilis networks; moreover the most abundantly observed patterns within our
simulated networks have also been identified in other gene-regulatory networks [2,15–17,38,40]. Among three
nodes, for example, the dominant connection patterns in our networks involve feed-forward loops; as the scale
of complexity is increased from three nodes to five nodes, the most abundant motifs in the inferred networks
are extended feed-forward loop structures (Fig. 3). Moreover, similarities in structure between the most
statistically significant motifs of the unperturbed networks and their perturbed counterparts demonstrates the
ability of our network inference method to consistently construct networks that are built from simple,
nonrandom regulatory structures. Although some differences in motif identity and abundance exist between
the unperturbed and perturbed networks, the qualitative commonalities in motif structure between the two
sets of networks suggest a robustness in the basic network patterning that arises as a result of the inference
process.

In addition to the highest-abundance feed-forward-loop-based structures, 30 other three-, four-, and five-
node motifs were also found over a range of high statistical significances in at least one of the two unperturbed
candidate networks; after perturbation, 18 motifs of high statistical significance were found in the candidate
networks (see Appendix A for a list of motifs that were found in two or more networks at highest confidence,
with Z score42). Here we focus on motifs that appeared with high significance (Z score42) in both the
cradle-to-grave and amino acid pulse networks (unperturbed and perturbed) at highest confidence.

In order to better quantify the extent to which high-confidence motif inference is robust, we examined
whether or not the highest confidence motifs in an unperturbed network were identically reproduced in the
corresponding perturbed network; i.e., we determined whether the motifs with greatest abundance in an
unperturbed network were composed of exactly the same genes as the most abundant motifs of the same size
in the perturbed network. With the exception of the five-node motif in the cradle-to-grave networks, which did
exhibit node conservation, there appears to be almost no complete node-wise reproduction of motifs.
Nonetheless, there is evidence of partial node-wise motif reproduction in going from an unperturbed network
to its perturbed counterpart, as between 1% and 5% of high-confidence motifs contain at least one gene
common to both the unperturbed and perturbed networks.

While the lack of complete node-wise conservation of motifs within our inferred networks is most likely a
result of the inference process, there is strong evidence that complete node-wise conservation of regulatory
motifs between networks corresponding to different environmental conditions is actually unlikely [11,37,39].
In light of these arguments and the fact that there is scant edge conservation between our unperturbed and
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perturbed networks, it is not surprising that there is only a small degree of node-wise conservation among the
motifs of greatest abundance in these networks. Because of this expected variability in motif composition, it
has been suggested that node-wise conservation is of secondary importance to the ability of motifs both to
predict and to be predicted from the global topology and function(s) of a particular network [39]. Given this
reasoning, we found it more meaningful to examine the conservation of information-propagating functions—
both of the highest abundance motifs, as well as of the nodes that occurred most often in these motifs—
between unperturbed and perturbed versions of the inferred networks. We argue that although the
conservation of specific nodes in specific motifs is not necessarily expected, if our inference process is robust to
noise, and if the inferred graphs reflect a biological reality, there should be conserved, dominant features in the
patterns of signal propagation (where signal directionality is signified by the direction of an edge between two
nodes) within the networks that are neither artifacts of the inference process, nor byproducts of noise, but that
are, in fact, responses to environmental stimuli.

Node roles: conservation of information-propagating function: In verifying the hypothesis put forth in the
previous section, we observe that a specific node, appearing in more than one of a given type of motif, may
adopt different roles from one motif to the next. For example, a node that appears in two feed-forward loops
may appear as the node with two outgoing edges in one motif, but it may then become the node with two
incoming edges in the second motif. This further suggests that absolute conservation of motifs may not be
necessary—that a variety of nodes can ‘‘stand in’’ for a given node within a single network, or from one
network to another. Such ‘‘network rewiring’’ has been noted in other gene regulatory networks [11].

To obtain a clearer picture of the specific functions associated with these multiply-incident nodes, and,
subsequently, to uncover the functional role of the motifs in which the nodes are found, we define five node
roles (Fig. 4) based on directionality and abundance of edges incident to a node, and we then categorize the
motifs according to the roles of the nodes from which they are composed. Thus, sinks are nodes with incoming
edges only; sources are nodes with outgoing edges only; relays have equal numbers of incoming and outgoing
edges; branches incorporate one incoming edge and multiple outgoing edges; and integrators merge multiple
incoming edges with one outgoing edge. If we think of node roles as being linked to the propagation of
chemical signals throughout the network, sinks then represent signals’ final destinations, while sources indicate
those signals’ origins. The presence of a relay likely increases the efficiency of signal propagation by creating a
path between two nodes that would otherwise be separated by, for example, the spatial distance of the genes’
products within the cell. Alternatively, a relay’s presence might act to delay a signal’s arrival at a sink node, in
the case that other signals must reach the sink node before the arrival of the delayed signal. Finally, branches
likely work to disseminate a signal—to branch it out—and integrators, likely concentrate and synthesize a
number of incoming chemical messages to integrate them into one downstream signal.

It is important to realize that a single node can be part of more than one motif, and further, that it may have
different roles in different motifs. Within a single-candidate network, a handful of nodes appear statistically
more frequently in significant network motifs than do the other nodes in the network, and these ‘‘high-
frequency’’ nodes may adopt different roles in different motifs. The five high-frequency nodes that appear in
the widest variety of motifs are listed in Table 4. When high-frequency nodes’ roles are tallied across motifs,
each shows a preference toward a specific role. Of the 26 high-frequency nodes in the amino acid pulse
network, 23 are sinks; the high-frequency nodes of the perturbed amino acid pulse network also appear
predominantly as sinks. In the cradle-to-grave network, on the other hand, out of 21 high-frequency nodes,
Fig. 4. Node roles. Information propagating and processing tasks are conveyed by edge abundance and directionality.
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Table 4

High-frequency genes—i.e. genes that appear in at least two statistically significant motifs—and their roles in the unperturbed cradle-to-

grave and amino acid pulse networks at 90% confidence

Network High-frequency nodes (roles listed under nodes)

Cradle-to-grave CtaE phrE sucC pdhC ytcF

B B Si, B I, R, B R, B

Amino acid

pulse

SecF citH pgi nadB purF

Si Si Si Si Si

Of 26 high-frequency genes in the amino acid pulse network, and 21 high-frequency genes in the cradle-to-grave network, only the five

genes that appear in the widest array of high-significance motifs are listed. Their dominant roles are given in bold-faced type. B: branch; Si:

sink; So: source; I: integrator; R: relay.
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nine—including the five nodes that participate in the widest variety of motifs—act predominantly as branches.
This dominance of branching behavior is also present in the high-frequency nodes of the perturbed cradle-to-
grave network.

To truly understand the function of a given motif in the network as a whole, that motif’s direct connections
to other nodes in the network must be taken into consideration. Consequently we aim for a classification of
motifs according to their overall functions in a gene-regulatory network: in particular, we can determine
whether a given motif is primarily the target of chemical signals from other parts of the network, whether it
acts as the origin of chemical signals, or whether it works to transform and then route signals from one part of
the network to another.

Functional classification of motifs based on node roles: The high-significance motifs in the amino acid pulse
and cradle-to-grave networks can be divided into classes based on the roles of their constituent nodes. In the
amino acid pulse network, all high-significance motifs contain at least one sink, and 11 of these 14 motifs
are comprised of nodes with at least three of the following four roles: branch, integrator, source, or sink. In the
cradle-to-grave network, however, only 11 of the 17 high-significance motifs possess a sink, and in 12 of the 17
high-significance motifs, the nodes—one of which is always a branch or integrator—have only two roles.

If the sink in a high-significance motif is truly a sink, that is, if the motif’s sink node has no outgoing edges,
the motif can be said to act as a signal repository—whether the signal originates in the motif itself, or whether
it enters the motif from another part of the network, the signal will terminate in the motif’s sink. Similarly, if
the source in a motif is a true source—i.e. if it has only outgoing edges—the motif can be thought of as the
source of a signal. While we did not find any high-frequency nodes of either network that were true sources, 23
of the 26 high-frequency genes in the amino acid pulse network are true sinks, and, because every high-
significance motif in this network involves at least one high-frequency gene that is a true sink, this implies that
all high-significance motifs of the amino acid pulse network are signal repositories. The cradle-to-grave
network shows a marked difference in structure from the amino acid pulse network, as none of its high-
frequency nodes are true sinks.

This difference in behavior between the high-frequency nodes in the statistically-significant motifs of one
network and their counterparts in the other network suggests a difference in overall function of these
networks’ motifs. We propose that the motifs of the cradle-to-grave network act primarily as signal
transformers and disseminators showing little sign of signal instigation or termination, because the bacteria in
this particular set were treated with an unlimited and nutrient-balanced solution—there was no specific nutrient
that dominated the nutrient cocktail on which the bacteria fed, and, therefore, there was no one gene-
regulatory system that appeared to be more active than other systems. The high-frequency nodes of this
network have a variety of gene functions, indicating that there is no one particular task with which these genes
are concerned. Thus, in the cradle-to-grave network, endogenous signals flow among all of the regulatory
systems in the bacteria, aided in their transmission by the branching nodes of the high-frequency motifs
evident in this data set [37].

In the amino acid pulse network, however, which had been treated with a nutrient cocktail composed of
only one type of nutrient (namely, amino acids), we can isolate the terminal points in many of the gene-
regulatory pathways, which suggests that exogenous information affects different parts of the organisms’
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Table 5

KEGG2 regulatory paths common to both an unperturbed network and its perturbed counterpart

Path Function Constituent genes in

unperturbed network

Constituent genes in

perturbed network

Cradle-to-grave

bsu 10 Carbohydrate/energy

metabolism

pdhB, pgk gap, pdhC

bsu 190 Energy metabolism ctaD, ctaB ctaE, hpr, atpB

bsu 230 Nucleotide metabolism yjbP, hprT, ylcD adk, yloH, hpr

Amino acid pulse

bsu 230 Nucleotide metabolism adk, guaA, purN, purC, purF, purM, yerA

rpoB, yloD, rpoC, purL

bsu 240 Nucleotide metabolism rpoB, rpoC, pyrB pyrAA, ctrA

bsu 260 Amino acid metabolism yqhK, yqhJ, thrS thrC, thrB

The Path column gives the KEGG2 [41] path identifier. The high-frequency genes belonging to these paths are given in columns three and

four. While regulatory paths are comprised of different high-frequency genes in the unperturbed and perturbed networks, there is

similarity in gene type between the high-frequency genes in the two varieties of network.
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gene-regulatory networks in different ways: this signal-concentrating effect which was absent in the absence of
biased external stimuli implies a cause-and-effect relationship—it implies reaction. Indeed, 16 of the high-
frequency nodes in the amino acid pulse network represent genes involved in amino acid metabolism, further
suggesting that their regulation is a response to the exogenous signal. This may be the most direct evidence
that our inferred regulatory networks accurately model gene regulation in B. subtilis: we are ‘‘seeing’’ the
metabolism of the amino acid cocktail embedded in the topology of the amino acid pulse network. Similar
behavior is noted in the perturbed amino acid pulse network, though there are fewer sinks overall.

Regulatory pathways: The idea that node (and, therefore, motif) role is largely determined by a network’s
response to endogenous and exogenous signal propagation is further supported by the fact that many of the
highest-frequency genes within a given network can be grouped according to the metabolic or regulatory
function(s) associated with them. Between one-third and one-half of the high-frequency genes in each network
(unperturbed and perturbed) share a regulatory pathway, according to the KEGG2 archive [36]. While the
high-frequency genes of the unperturbed networks are not found as high-frequency genes of the perturbed
networks, all of the regulatory pathways—three in each network—are represented in the perturbed networks.
These regulatory pathways, the high-frequency genes that compose them, and their primary regulatory
function are given in Table 5. We point out that the networks’ high-frequency genes are not necessarily the
hubs of the networks. Although it is true that the greatest aggregation of motifs will occur around hubs [39], it
is not true that motifs of highest statistical significance will necessarily be linked to hub nodes; therefore, it is
possible that the nodes identified as high-frequency genes will not be hubs. In light of the fact that gene
conservation after perturbation is less than 60% in both the amino acid pulse and cradle-to-grave networks at
highest confidence, it is perhaps not surprising that very few of the high-frequency genes in the unperturbed
networks are also high-frequency genes in the perturbed networks (Table 5). Nonetheless, we do observe that
approximately one-third of the high-frequency genes in the unperturbed networks have a similar counterpart
in the corresponding perturbed networks; for example, while pdhB (a high-frequency gene in the unperturbed
cradle-to-grave network) is not found to be a high-frequency gene in the perturbed cradle-to-grave network,
pdhC is among the high-frequency genes of this network, and this trend in gene-type conservation thus
produces trends in regulatory path conservation. Such functional conservation further suggests that our
network inference process is robust to perturbation at the level of subglobal behavioral trends.

4. Discussion

Protein interaction networks and transcriptional regulatory networks represent maps of possible
interactions among cellular components, but only a subset of these interactions is active at a given time,
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Table A1

The number beneath each motif is its Mfinder software identifier. indicates the networks in which each high-frequency motif was found.

The table includes only those motifs that were present in two or more networks, and with Z-score42

Motif Cradle-to-grave 90% Amino acid pulse 90% Perturbed cradle-to-grave 90% Perturbed amino acid pulse 90%

206 � �
222 � �
2254 � � �
2270 � �
926 � �
9118 � � �
25502 � �
50088 �

C. Christensen et al. / Physica A 373 (2007) 796–810 809
in a given cell, or under a given condition. In fact, the dynamic topology of a cellular network may be radically
different from the topology suggested by static protein interaction and transcriptional regulatory maps. Our
inference process, both by maximizing sparseness in connectivity within the B. subtilis networks, as well as by
imposing a confidence threshold on interactions, reveals the most salient and active interactions within the
network, and thus offers a step towards a dynamic understanding of gene regulation—an understanding that
cannot be inferred from systematic mapping methods.

Our graph-theoretical analysis of the topology of gene-regulatory networks, synthesized through a linear
correlative process, has demonstrated that the inferred networks not only belong to a larger class of
heterogeneous biological graphs, but further, that they produce biologically realistic, and experimentally
verifiable structure at several organizational levels. We characterized our inferred networks as being composed
of small, tightly knit clusters of genes that are connected to one another both through high-degree hub nodes,
as well as through other linking pathways between the clusters. We have also demonstrated that the
substructures comprising these clusters—the substructures that form the foundations of the networks—are
topologically identical to small-scale motifs that have been observed in other gene-regulatory networks. By
examining the functionality of these substructures we have shown not only that the subglobal topologies of
our networks both predict and are predicted by the networks’ global topologies, but also that the subglobal
topologies are highly responsive to environmental stimuli.

While analysis has revealed that our network inference process is not robust at the level of specific
regulatory connections, the success of our process in capturing nonrandom trends in regulatory behavior from
the global scale to a subglobal scale involving only a handful of nodes suggests that integrating large-scale
inference with extensive, multi-scale graph-theoretical analysis offers a powerful technique for constructing
networks from highly underdetermined and noisy data. We therefore suggest that the analyses and techniques
described in this paper could easily be tailored to the examination of any complex system, and can provide
valuable information regarding the characteristic behaviors and features of such systems at multiple scales of
complexity.

Appendix A

Pictorial guide to high-significance four and five-node motifs identified in B. subtilis cradle-to-grave and
amino acid pulse networks Table A1.
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