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ABSTRACT In this article we extend the Iterative Protein Redesign and Optimization (IPRO) framework for the design of
protein libraries with targeted ligand specificity. Mutations that minimize the binding energy with the desired ligand are identified.
At the same time explicit constraints are introduced that maintain the binding energy for all decoy ligands above a threshold
necessary for successful binding. The proposed framework is demonstrated by computationally altering the effector binding
specificity of the bacterial transcriptional regulatory protein AraC, belonging to the AraC/XylS family of transcriptional regulators
for different unnatural ligands. The obtained results demonstrate the importance of systematically suppressing the binding
energy for competing ligands. Pinpointing a small set of mutations within the binding pocket greatly improves the difference in
binding energies between targeted and decoy ligands, even when they are very similar.

INTRODUCTION AND OBJECTIVES

As we enter the postgenomic era we have in our hands a plethora

of protein designs, experimental techniques, and computational

methods. Recent developments (1–3) have made it clear that

given sufficient resources and screening capabilities, directed

evolution can be used to drastically improve protein function. A

variety of protocols are available for performing targeted

mutagenesis or constructing combinatorial libraries with cus-

tomized statistics of mutations and/or parental fragments (see

Moore and Maranas (4) for a review), raising the question of

what type of mutations and/or recombination events are likely to

yield functionally enriched protein libraries. This underlines the

task of constructing protein libraries enriched with desired

functions compared to a random sampling of protein sequence

space. The challenge here is in effectively searching sequence

space to find improved variants containing multiple mutations

and particularly to identify interacting mutations whose

effects on fitness are nonadditive.

Computer simulations play an increasingly significant role

in understanding the underlying physical principles that dictate

protein folding, stability, and function, leading to greatly

improved protein design predictions (4). Although it is not yet

feasible to consistently predict structure and function de novo,

it is possible to assess the impact of mutations on existing, well-

characterized proteins (5–8). The goal of this study is to modify

the Iterative Protein Redesign and Optimization (IPRO)

computational protein library design framework (1) to enable

the systematic redesign of proteins for desired ligand specific-

ity while suppressing the affinity toward competing molecules.

The approach is demonstrated through a comprehensive com-

putational study involving the redesign of the L-arabinose-

responsive bacterial transcriptional regulatory protein AraC to

accept targeted unnatural ligands as transcriptional activating

‘‘effector’’ molecules (9). This is an important endeavor be-

cause the precise control of gene transcription in response to

specific stimuli has wide implications ranging from synthetic

biology and metabolic engineering to the development of

customized genetic selections for use in subsequent protein

engineering projects. Furthermore, the regulatory properties of

AraC make it a good candidate for protein engineering because

of the natural coupling of molecular recognition to gene

transcription, enabling the use of a genetic selection and/or

high-throughput screening procedure to rapidly identify mu-

tants with improved binding specificity. Finally, the availability

of high-resolution atomic-level x-ray crystal structures of the

effector-binding/dimerization domain of AraC in the presence

and absence of L-arabinose (10) allows for computationally

modeling novel effector recognition.

We describe the use of simulation and optimization methods

to accurately reflect the relative strengths with which wild-type

AraC binds various compounds. IPRO is subsequently used to

predict mutagenesis strategies resulting in altered binding

selectivity. Specifically, we explore the design of AraC variants

responding to novel effector molecules that increasingly

resemble L-arabinose (e.g., cis-verbenol, followed by D-arabi-

nose). Our interest in binding target molecules such as cis-
verbenol stems from a need to develop biocatalysts capable of

converting renewable and abundant natural resources (including

plant oils such as those containing a-pinene) into value-added

products such as antibiotics, pharmaceutical intermediates, and

chemicals for the flavor and fragrance industry.

AraC SYSTEM

The AraC monomer is a 292–amino acid polypeptide

composed of an N-terminal effector binding/dimerization

domain (residues 1–170) followed by a C-terminal DNA-

binding domain. Under physiological conditions, the AraC

protein exists primarily as a dimer that tightly regulates
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transcription from the PBAD promoter by acting as a repressor

in the absence of inducer (by forming a DNA loop in the

promoter region) and as an activator in response to inducer

(L-arabinose) (10,11). The L-arabinose binding ‘‘signal’’ is a

conformational change in the AraC dimer that consequently

disrupts the DNA loop and activates transcription. This signal

is transmitted from the N-terminus to the DNA binding

domain via movement of the N-terminal arm. In the absence

of the inducer, this arm is believed to make contacts with the

C-terminal domain (12), whereas in the presence of

L-arabinose, this arm closes over the N-terminal binding pocket.

Induction of the ara operon is specific to L-arabinose:

Structurally and chemically similar sugars such D-xylose

and D-arabinose fail to act as wild-type AraC effectors (13).

D-Fucose, which is identical to L-arabinose at all positions except

C5 (where fucose contains a methyl group instead of a hy-

drogen), acts as a competitive inhibitor that binds AraC (in the

same position as L-arabinose) but fails to induce gene expression

in vivo or in vitro (13,14). AraC mutants have been isolated

that are induced by fucose (13,15). Thus, as in the case of other

receptors (16,17), very similar small molecules can have dras-

tically different binding affinities and stimulatory effects.

COMPUTATIONAL PROCEDURE

Modification of IPRO framework

We use binding calculations to score the relative strengths with

which AraC binds various compounds and subsequently

deploy mathematical optimization to suggest mutagenesis

strategies resulting in the desired altered binding selectivity.

Binding energy, which is computationally approximated using

the CHARMM (18,19) energy function, accessed through the

IPRO optimization framework, serves as a surrogate of

molecular recognition (i.e., binding affinity) (1). The optimi-

zation step identifies mutations that lead to stronger binding

scores for the desired ligand while at the same time depressing

binding scores for competing molecules.

The protein redesign framework IPRO provides the backbone

of the computational environment for the redesign of AraC

binding specificity (1). Briefly, it involves iterative optimal

protein redesign of residues/rotamers (near the binding pocket)

followed by backbone relaxation and ligand(s) redocking.

Specifically, during each iteration a local backbone perturbation

window (i.e., one to five residues) is randomly selected, and a

perturbation of the backbone is imposed. New residues (i.e.,

mutations) and corresponding rotamers are identified by

globally optimizing the binding score within the redesign

window and readjusting rotamers within a wider window (11–

15 residues) around the region of perturbation. This optimization

step is followed by backbone relaxation and ligand(s) redocking

(20). If the redesign and corresponding structural modifications

lead to an improved binding score, then the perturbation is

accepted. If the redesign leads to a worse binding score, then it is

accepted or rejected based on the Metropolis criterion (21). This

iterative cycle forms the basic working paradigm of IPRO.

Improving binding affinity of a regulatory protein must also

take into account the competitive nature of the process. Spe-

cifically, at the same time that binding affinity for the targeted

ligand is improved, the affinity for competing molecules must

be depressed. This new design paradigm warrants a number

of modifications in the general IPRO procedure. We address

this challenge in this article by putting forth and solving a

two-level optimization problem. In the outer level, new designs

(i.e., residue choices) are made, while in the inner level separate

rotamer sets are identified that optimize the binding with

respect to the desired and undesired substrates. A constraint

ensures that the binding score for even the best conformation

(i.e., rotamer choices) for the undesirable ligand(s) remains

greater than what is needed for successful binding of the

desired ligand. When this threshold is exceeded, the corre-

sponding design choice is deemed infeasible. The structure of

the proposed two-stage optimization formulation is as follows:

Minimize
over residue choices

Minimize
over rotamer choices

E(L1)

s:t:
Minimum
over rotamer choices

E(L2) $ M

Minimum
over rotamer choices

E(L3) $ M

::
:

Minimum
over rotamer choices

E(Ln) $ M

2
666666666664

3
777777777775

:

The inner minimization problems identify separate rotamer

combinations that minimize the binding energy E with respect

to the desired L1 and competing (L2, L3, . . . , Ln) ligands.

For all competing ligands this minimum binding energy is

FIGURE 1 Two-level optimization formulation of the modified IPRO. In

the outer level new designs with respect to amino acids choices are gen-

erated, whereas the inner level identifies the rotamer choices that minimize

the binding energy with respect to various ligands. By changing rotamers,

the amino acids are chosen such that the binding energy with respect to all

undesired ligands is above a cutoff value, preventing their binding while

simultaneously ensuring sufficiently low binding energy with respect to the

targeted ligand to enable binding.
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constrained to be above a high enough threshold M preventing

effective binding (see Fig. 1). We use known good/poor

binders for a given protein system to arrive at appropriate

values for M. Note that the inner part of the optimization

problem is decomposable into n separable minimization

problems that can be run on separate processors. Similar to the

original IPRO procedure, the outer optimization problem is

solved using the Metropolis criterion to update amino acid

choices after each iteration. Backbone relaxation and ligand-

redocking steps can also be used after each time the inner

rotamer optimization problems are solved. Fig. 2 pictorially

illustrates the computations workflow of the modified IPRO

framework.

COMPUTATIONAL PREDICTIONS

A key consideration for any successful AraC redesign is to

retain the ‘‘light-switch’’ mechanism of the ara regulatory

operon (22) that preserves the coupling between binding and

transcriptional activation. Extensive mutagenesis analyses by

Schleif and colleagues have identified a series of ‘‘hemiple-

gic’’ AraC mutations that specifically block either induction

(I-) or repression (R-) at PBAD (22,23). Many other mutations

in the N-terminal arm are reported to cause constitutivity

or uninducibility (23). In our studies it is important for the

N-terminal arm in engineered AraC variants to maintain

contact with the C-terminal domain in the absence of inducer

and to disfavor contact in the presence of an inducer (favoring

instead arm-inducer interactions). Based on these require-

ments, we have computationally disallowed critical residue

positions from being mutated. Sixteen residues of the 32

residues forming the binding pocket were selected as design

positions. Mutations at these selected positions (located in the

N-terminal domain) are presumed to weaken L-arabinose

binding interactions while preserving the repression of the

ara regulatory operon in the absence of the effector (22,23).

Therefore, these positions were deemed to be viable candi-

dates to be considered as design positions to confer novel

specificity in AraC protein.

The structure of AraC complexed with L-arabinose shows

an extensive network of water molecules within the ligand-

binding pocket (10). This network of water molecules

mediates hydrogen bonds between the ligand and AraC,

thus affecting the binding and location of the ligand in the

pocket. We computationally explored the effect of placing

16 structural water molecules in the binding pocket in the

docking calculations. It has been acknowledged (24–26) that

water-mediated interactions can affect the stability, dynamics,

and the placement of the protein backbone. We find that add-

ing water molecules improves protein docking and thus results

in more accurate ligand positioning. Predicted ligand posi-

tions for L-arabinose and D-fucose more closely match the

known crystal structures (calculated RMSD ¼ 0.20 Å for the

two sugars) when water molecules are included in the calcu-

lations compared to the predicted positions in the absence of

water (RMSD¼ 3.53 Å). Therefore, in the following detailed

FIGURE 2 (A) Local region of the

protein (1–5 consecutive residues

around the targeted ligand) is randomly

chosen for perturbation. The u and c

angles of the targeted position (as

shown in the circle) are perturbed by

up to 5�. (B) All amino acid rotamers

consistent with these torsion angles

are selected at each position from the

Dunbrack and Cohen rotamer library

(35,36). Rotamer-backbone and rota-

mer-rotamer energies are calculated

for all the selected rotamers. (C) The

binding energy is minimized using a

MILP formulation to select the optimal

rotamer at each of these positions. (D)

After rotamer selection for the target

molecule, the nontarget ligand is docked,

and its binding energy is calculated

using the CHARMM energy function

(18,19). The best conformation (i.e.,

rotamer choices) is accepted if it en-

sures that the binding score for the

undesirable ligand(s) remains greater

than what is needed for successful

binding. When this threshold is ex-

ceeded, the corresponding design choice is deemed infeasible. (E) In this step the backbone and the targeted ligand are allowed to relax to adjust to the changes

in the side chains. This is achieved by allowing u and c to vary freely and to be determined during energy minimization. (F) ZDOCK software is employed to

readjust the targeted ligand position regarding the modified backbone and side chains (20). (G) Protein-ligand binding energy is computed using CHARMM

energy functions. If the binding energy for the target ligand is lower than the previous best ligand structure then this move is accepted as best solution

otherwise, (H) Metropolis criterion is used to decide whether to accept or reject the move.

2122 Fazelinia et al.

Biophysical Journal 92(6) 2120–2130



studies we report on results in the presence of structural water

molecules.

The validity of using computationally derived binding

energy as surrogate for molecular recognition was first tested

by calculating binding energies for different sugars (i.e.,

L-arabinose, D-fucose, D-arabinose, L-lyxose, D-lyxose, L-xylose,

D-xylose, L-ribose, and D-ribose) using the CHARMM

(18,19) energy function. The calculated values were subse-

quently contrasted against experimental data available in the

literature (13,23,27–30). We find that the calculated binding

energies qualitatively reflect the experimentally observed

absence of transcriptional activation for the tested sugars

(Fig. 3). Specifically, L-arabinose and D-fucose, two sugars

known to bind to the AraC protein, have the two most negative

binding energy scores. Several of the tested sugars including

L,D-xylose and L-lyxose were also verified by Doyle et al.

to not inhibit induction by L-arabinose, implying that these

sugars are certainly not bound by AraC (13). These results

bolster the assumption that binding energy is a reasonable

surrogate for ligand binding by AraC, which is at least a

requirement for transcriptional activation. Further experi-

mental analysis is necessary to determine whether (or how

readily) binding energy correlates with a ligand’s ability to

induce transcription.

Four case studies are addressed here to demonstrate the

proposed computational procedure. The first study involves

engineering AraC variants that bind cis-verbenol, one of the

oxidized forms of the bicyclic monoterpene a-pinene without

proactively depressing affinity for competitive ligands. This

study explores the ability of modified IPRO to redesign a

transcription factor (i.e., AraC) to recognize an effector

molecule very different in structure and chemistry from

L-arabinose (Fig. 4). In the second study, we redesign AraC to

recognize cis-verbenol but at the same time not bind its

reduced form a-pinene. In the third case study, we again

redesign AraC to selectively bind cis-verbenol but at the same

time not bind verbenone, an alternative oxidized product of

a-pinene that is chemically and structurally very similar to

cis-verbenol. Finally, in the fourth case study we computa-

tionally redesign AraC protein to impart novel effector

selectivity capable of distinguishing between different chiral

forms of the arabinose sugars (i.e., L- and D-arabinose). The

binding energy values for known poor binders for the AraC

protein were used to choose appropriate binding energy cutoff

values. For the second case study, this cutoff value was set at

�20.0 kcal/mol. This value is higher than the binding energies

of D-xylose (Fig. 3), which is known not to bind AraC.

Furthermore, for the third and fourth case–studies, a tighter

cutoff value of �30 kcal/mol was chosen to help elucidate

mutations that sharpen specificity toward the target ligand

from very similar competing ligands. In these four studies,

several computational libraries were constructed using dif-

ferent sets of randomization seeds for the iterative backbone

perturbation employed by IPRO during each design cycle. We

found that in all cases although the amino acid design choices

can vary between different randomization runs, the underly-

ing properties of the selected amino acids are preserved. The

modified IPRO procedure is run for all studies on a Linux PC

cluster with 3.06-GHz Xeon CPU/4GB RAM, for a total of

4000 major iterations.

Binding of cis-verbenol

We have verified that neither a-pinene nor its oxidized forms

cis-verbenol and verbenone induce transcription from the ara
regulatory operon (H. Fazelinia, P. Cirino, and C. D. Maranas,

The Pennsylvania State University, unpublished data). Mean-

while their calculated binding energies using CHARMM-

based energy functions are significantly higher than those

calculated for native inducers, indicating that these com-

pounds are not bound by AraC.

In the first case study, we address the engineering of AraC

to bind cis-verbenol without considering the effect of the

identified mutations on the binding of other competitive

ligands. Computational results for redesigning the effector-

binding site of AraC for cis-verbenol have revealed a number

FIGURE 3 Binding energies of the various sugars with

AraC protein. L-Arabinose and D-fucose, known to bind to

AraC, have the most negative binding energies.
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of important redesign trends. Of 16 design positions (i.e.,

positions allowed to mutate), positions Asp7, Phe35, Asn48, and

His80 are always conserved as wild-type. Several mutations

within the binding pocket are found that can significantly alter

the calculated binding specificities of the receptor (see Table 1).

Predicted mutations in positions Phe15, Phe34, Ile36, Arg38,

Tyr82, and Trp91 are found to significantly lower the volume of

the binding site, consistent with the fact that the new ligand (i.e.,

cis-verbenol) is 45% larger than L-arabinose (see Fig. 5). Also,

hydrophilic amino acids tend to replace Ala17, Val20, and

Leu23, which are located in a solvent-exposed area of AraC and

do not directly affect the binding of the ligand.

Similar to the position of L-arabinose bound to AraC, cis-

verbenol is predicted to stack against the indole ring of Trp95

(see Fig. 6). Ligand binding is stabilized by hydrogen bonds

and van der Waals (vdw) interactions between side chains of

residues within the binding pocket and the hydroxyl and

aliphatic groups of cis-verbenol, respectively. The N-terminal

arm of AraC is predicted to form both direct and indirect

contacts with the verbenol, resulting in complete burial of the

new ligand. The hydrogen bond between the OH group of cis-

verbenol and the main-chain carbonyl of Pro8 and vdw

interactions between the cis-verbenol C5 and C7 methyl

groups and the side chain of amino acids in positions 13 and

15 stabilize the position of the N-terminal arm. Although

His93 plays an important role in binding L-arabinose, this

residue is not involved in cis-verbenol binding. In contrast,

amino acids in positions 36 and 42, not involved in binding

and recognition of L-arabinose, are predicted to play signif-

icant roles in binding cis-verbenol. Hydrophilic amino acids

predicted to replace Ile36 create a new hydrogen bond with the

OH group of the new ligand and are in vdw contact with its C3

methyl group (see Fig. 6). Furthermore, wild-type Met42 is

predicted to be in vdw contact with the C10 methyl group of

cis-verbenol. The replacement of Thr24 (involved in binding

L-arabinose) with larger amino acids such as Gln stabilizes the

position of the new ligand in the binding pocket by creating a

new hydrogen bond with the OH group of cis-verbenol.

Overall, computational results (see Table 1) indicate that

despite the structural and chemical difference between cis-

verbenol and L-arabinose, IPRO does identify sets of muta-

tions typically involving ;12 mutated positions within the

binding site that lower the binding energy from �16.82 kcal/

mol to as low as �55.54 kcal/mol.

Binding of cis-verbenol but not a-pinene

Although the redesigns described above managed to lower

the binding score substantially for cis-verbenol, this does

not necessarily sharpen ligand specificity. Specifically, the

binding energy of the redesigned AraC with a-pinene not only

remains negative but also increases in absolute value (i.e.,

changes from �12.58 to �46.54 kcal/mole). This quantita-

tively demonstrates that when the binding energy for a new

FIGURE 4 Structures of the targeted

and decoy molecules in the four case

studies.
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ligand is optimized with no regard to the binding energy for

the competitive ligand(s), it typically leads to a redesign that

appears to have broader specificity (31–33). This result

motivates the need to proactively suppress the binding energy

for a-pinene while optimizing the binding energy for cis-

verbenol. We use the modified IPRO procedure (as described

above) to accomplish this objective. With the modified

version of IPRO, the binding energy of cis-verbenol is

FIGURE 5 Size and hydrophobicity

distribution of the wild-type amino acids

(blue column), designs for case study 1

(red column), case study 2 (yellow col-

umn), and case study 3 (green column) for

all design positions.

TABLE 1 Identified mutations for improving the binding of cis-verbenol in the presence of water molecules for the first three

case studies

Computational design

Design

position

Wild-type

residue

Binding of cis-verbenol

(case study 1)

Binding of cis-verbenol

but not a-pinene (case study 2)

Binding of cis-verbenol

but not verbenone (case study 3)

7 Asp WT* WT WT

15 Phe Gly, Gln, His Gly, His, Thr Gly, Gln, His

17 Ala Gln, Arg Asn, Arg Gln, Arg

20 Val Arg, Thr, His Trp, Gln Tyr, Arg, Thr

23 Leu Gln, Glu, Lys Trp, Gln, Lys Phe, Gln, Glu, Lys

24 Thr Val, Asn, Gln WT His, Gln, Glu

32 Leu Tyr, Asn, Arg Gln, His, Phe Ala, Ser, Tyr, Asn, Arg

34 Phe Met, Glu, His Tyr, Gln, Arg, His Arg, Glu, Gln, His

35 Phe WT WT WT

36 Ile Thr, Asn Asn Asn, Asp

37 Asp Val, Lys, Arg Lys, Arg Val, Lys, Arg

38 Arg Ala, His, Trp Ala, His His, Ala, Trp

48 Asn WT WT WT

80 His WT WT WT

82 Tyr Ala, Phe WT Gly, Ala, Phe

91 Trp Gly, Ala, His Phe, Arg, His Ala, Gly, His

*WT refers to wild-type AraC.
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lowered from �16.82 kcal/mol to –50.19 kcal/mol while at

the same time the binding energy of the redesigned AraC with

a-pinene remains approximately the same (i.e., changes only

from�12.58 kcal/mol to�10.03 kcal/mol). In addition to the

same four positions that remain unmutated in the previous

case (i.e., 7, 35, 48, and 80), residues Thr24 and Tyr82 are also

conserved. The overall mutated amino acid size patterns

between the two computed libraries are very similar (see

Table 1 and Fig. 5), except for positions 15 and 91, where in

the second case study predicted residues are more than 20%

different in size. Smaller amino acids are preferred in the

second library compared with the solutions found in the first

library at position 15, whereas larger ones are favored at

position 91. Having a smaller amino acid at position 15

reduces the magnitude of a vdw interaction implicated in the

binding of a-pinene. The role of larger residues at position 91

is less clear. The hydrophobicity patterns of the mutated

residues in the two libraries are also very similar. Only subtle

differences can be discerned at positions 15 and 38, which are

presumably implicated in the destruction of the hydrophobic

interactions needed for the binding of a-pinene with AraC.

Consistent with the previous case study, more hydrophilic

amino acids are favored to replace the wild-type amino acids

at positions Val20 and Leu23, which are located in the solvent-

exposed area. Fig. 7 contrasts in a Venn diagram the mutations

found in the two case studies along with the quantitative

impact of each single-point mutation on the binding energy

for the two ligands. We see that some mutations, when their

impact on a-pinene binding is ignored, tend to improve both

binding scores, whereas others only improve the binding

score with cis-verbenol alone. Mutations found on system-

atically suppressing the binding score with a-pinene consis-

tently favor binding only cis-verbenol. Among these mutations

there is a subset common to both case studies. Notably, in both

cases there seems to be a strong additive component in the

action of the mutations. If the mutations in all three regions

shown in Fig. 7 are combined, the binding score changes are

almost additively amplified.

Binding of cis-verbenol but not verbenone

Next we attempt to redesign AraC computationally to dis-

criminate between different oxidized forms of the bicyclic

monoterpene a-pinene (i.e., cis-verbenol and verbenone; see

Fig. 4). These two molecules are identical at all positions

except C4, where hydroxyl oxygen and carbonyl oxygen are

present for cis-verbenol and verbenone, respectively. There-

fore, the computational redesign simulation must identify

suitable amino acid choices for the binding pocket residues

based only on this small difference. Comparison between the

computed libraries for this case study and the first one, where

only cis-verbenol was considered as the target ligand, reveals,

as expected, only subtle differences in size, hydrophobicity,

and charge (see also Table 1 and Fig. 5). Notably, at positions

24 and 36, more hydrophilic amino acids are favored.

In verbenone the carbonyl oxygen acts only as a hydrogen-

bond acceptor, whereas the hydroxyl oxygen in cis-verbenol

is a hydrogen donor and also an acceptor. Different amino

acids are selected to form hydrogen bonds with the two

ligands. To discern what amino acids favor the binding of

verbenone, results from the predicted library in the first case

study are contrasted against results from the library in which

only verbenone was considered as the target molecule. We

find that wild-type Thr24 and Lys36 are favored, acting as hy-

drogen bond donors to interact with the nonbonding electron

FIGURE 6 Best predicted orientation of cis-verbenol (shown with its

vdw surface area) in the redesigned binding pocket of AraC from two dif-

ferent angles. Hydrogen bonds are shown with green lines; cis-verbenol is

predicted to stack against the indole ring of Trp95 and networks of hydrogen

bonds, and vdw interactions are responsible for placing the ligand in the

binding pocket.
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pairs in the carbonyl oxygen in verbenone. On the other hand,

computed libraries in the third case study favor His, Gln, and

Glu for position 24 and acidic amino acids Asn and Asp for

position 36. These mutations allow the unprotonated imida-

zole nitrogen of histidine and carbonyl oxygen of the acidic

amino acids to form hydrogen bonds with the hydroxyl group

of cis-verbenol and thereby stabilize the position of the target

molecule in the pocket.

Overall, in this case study, binding energy of cis-verbenol

improves from�16.82 kcal/mol to –51.23 kcal/mol, while at

the same time the binding energy of the redesigned AraC with

verbenone also decreases from �15.85 kcal/mol to �34.03

kcal/mol. The inability to further suppress binding with

verbenone compared with the second case study is presum-

ably a consequence of the fact that the competing molecule

here is extremely similar to the targeted ligand (see Fig. 8).

FIGURE 7 AraC protein (PDB:

2ARC) was redesigned using IPRO to

bind cis-verbenol without any regard to

the corresponding binding score of com-

petitive ligands (mutations are shown

within the dark gray circle). The mod-

ified version of IPRO was also em-

ployed to proactively suppress the

binding energy for a-pinene while

optimizing the binding energy for cis-

verbenol (mutations are shown within

the white circle). Common mutations

between the two are placed in the

overlapping regions between circles.

FIGURE 8 AraC protein (PDB:

2ARC) was redesigned using IPRO to

bind cis-verbenol without any regard to

the corresponding binding score of com-

petitive ligands (mutations are shown

within the dark gray circle). The mod-

ified version of IPRO was also em-

ployed to proactively suppress the

binding energy for verbenone while

optimizing the binding energy for cis-

verbenol (mutations are shown within

the white circle). Common mutations

between the two are placed in the

overlapping regions between circles.
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Specificity alteration from L- to D-arabinose

It has been shown that, in contrast to the stimulatory effect of

L-arabinose, its enantiomer D-arabinose is unable to activate

transcription in the ara regulatory operon (34). Here we

address the computational redesign of AraC to enhance the

binding score for D-arabinose as opposed to L-arabinose. This

corresponds to a challenging task given that both enantiomers

have exactly the same molecular groups. Therefore, the

computational redesign procedure must identify appropriate

residue choices for the active site based on only the differing

stereogeometries between the two enantiomers. As before,

first we identified mutations that improve the binding score of

D-arabinose without any regard to the corresponding binding

score for L-arabinose. We next accumulated (see Table 2) all

the AraC redesigns that improve the D-arabinose binding

score and disfavor the L-arabinose at the same time. The role

of the identified mutations is more clearly elucidated by

considering the underlying impact of these mutations on the

volume, hydrophobicity, and charge at each position. Nota-

bly, the predicted mutations are few and involve only subtle

changes in the size and hydrophobicity of the AraC binding

pocket. Of 16 positions considered for redesign, we found that

10 positions are mutated away from wild-type (Table 2). As

expected, because L-arabinose and its enantiomer D-arabinose

have exactly the same size, we found that the average volumes

at each position remain very close to those of the wild-type

residues. The same holds, to a lesser extent, for the average

hydrophobicity of the redesigned AraC pocket. For 11 design

positions, the average hydrophobicity of residues in the

redesigned AraC is very similar to the wild-type residues,

although the hydrophobic characteristics of amino acids

predicted to replace positions 20, 23, 36, 37, and 48 differ

from the wild-type residues (Table 2).

Interestingly, despite the difference in topology between

L- and D-arabinose, the sugar is stabilized similarly in the

wild-type and all redesigned AraC variants (10). Specifically,

in the redesigned AraC, Arg38 forms a bidentate interaction

with two of the hydroxyl groups of the bound sugar, resem-

bling the interactions that exist between Arg38 and L-arabinose

in wild-type AraC. Meanwhile, as in the wild-type AraC, all

predicted structures have D-arabinose stacking against the

indole ring of Trp95, and the ligand position is stabilized by a

network of hydrogen bonds between D-arabinose and binding

pocket residue side chains (see Fig. 9).

In all computed redesigns of AraC in this case study, the

position of the N-terminal arm is stabilized by a hydrogen

bond between the main chain carbonyl of Pro8 and one of the

hydroxyl groups of the bound sugar (see Fig. 9). This

interaction is very similar to that found in wild-type AraC,

where the anomeric hydroxyl group (OH-1) of the bound

sugar interacts with the main chain carbonyl of Pro8 (10). It is

important to note that no specific information about the

TABLE 2 Identified mutations for improving the binding of

D-arabinose in the presence of water for the fourth case study

Computational design

Design

position

Wild-type

residue

Binding

of D-arabinose

Binding of D- but

not L-arabinose

7 Asp WT* WT

15 Phe WT WT

17 Ala Gly,Tyr, Arg Gly, Tyr, Arg

20 Val Gln, Glu, Arg Thr, Gln, Arg

23 Leu Met,Trp, Lys, Ile Lys, Glu, Gln

24 Thr Asn, Gly, Ala Ala

32 Leu Tyr, Phe, His Ala, Gly, Phe, His

34 Phe Met, Arg, Glu His, Met, Glu

35 Phe Gln, Tyr Glu, Tyr

36 Ile WT WT

37 Asp WT WT

38 Arg WT WT

48 Asn Lys, Gln, Ala, Ile Gln, Ala

80 His Gln, Asp, Ala Gln, Phe, Asn

82 Tyr Thr, Ala, Met Phe, Glu, His

91 Trp WT His, Phe, Met

*WT refers to wild-type AraC.

FIGURE 9 Location of L-arabinose (a) and D-fucose (b) in the binding

pocket of the AraC (PDBs:2ARC, 2AAC). Model-predicted positions of

D-arabinose in the presence (c) and in the absence (d) of water-mediated

interactions. IPRO-predicted ligand positions more closely match those

found from the crystal structures when water is included. Computational

results indicate that in both cases the position of the N-terminal arm of AraC

is stabilized by the main chain carbonyl of Pro8, which makes a hydrogen

bond with one of the hydroxyl groups of sugars. In both cases, the sugar

stacks against the indole ring of Trp95.

2128 Fazelinia et al.

Biophysical Journal 92(6) 2120–2130



stabilizing interactions was a priori provided to the IPRO

model. As in the previous case studies, the redesign of AraC

substantially improves the binding energy for D-arabinose

(from 15.43 kcal/mol to �107.41 kcal/mol), but the binding

score for L-arabinose is also lowered (from �37.21 kcal/mol

to �78.35 kcal/mol).

In the modified version of IPRO, mutation changes that

suppress binding with L-arabinose were next identified (see

Table 2). In 12 of 16 design positions, the mutations are very

similar to the ones found when the binding score of D-arabinose

was minimized. The binding score with D-arabinose is lowered

from 15.43 kcal/mol to –89.698 kcal/mol, whereas the binding

score for L-arabinose increases in this scenario from �37.21

kcal/mol to�18.03 kcal/mol. Comparisons between computed

libraries for these two cases reveal only subtle differences in

charge, hydrophobicity, and size distributions. One such

difference is the replacement of Thr24 with aliphatic residues,

partly destroying the hydrogen bond network involved in

binding L-arabinose and thus diminishing the affinity of AraC

for its natural effector. In contrast, mutating His80 to hydro-

philic residues (Gln, Ser, Asn) creates a new hydrogen bond

with D-arabinose (but not L-arabinose). The binding scores for

individual mutations were calculated and are presented in Fig.

10 in the form of a Venn diagram for both cases.

DISCUSSION

In this article, we introduced a modified version of the IPRO

protein design framework to enable the systematic redesign of

proteins for improved binding affinity for a targeted ligand

while the binding affinity for decoy ligands remains low.

Computationally, this leads to a nested optimization structure

where, in the inner stage, the rotamer optimization problem is

solved separately for all ligands, whereas in the outer stage,

residue redesign choices are made (see Fig. 1). This procedure

was benchmarked using AraC as a model system by favoring

the binding of targeted ligands (i.e., cis-verbenol or D-arabinose)

while suppressing the binding energy of competing molecules

(i.e., verbenone, a-pinene, and L-arabinose).

We found that failure to suppress the binding affinity for

competing ligands leads to a universal improvement in the

binding scores not only for the targeted but also for the decoy

ligands. The modified IPRO procedure was shown to be

capable of decoupling the two and identifying mutations

that improve the binding only with the desired ligand. As

expected, this decoupling was most difficult to achieve for

very similar molecules (i.e., cis-verbenol and verbenone),

which differ by only one group. Somewhat surprisingly,

this decoupling was much easier for enantiomers (i.e., L- and

D-arabinose), suggesting that proteins can be more readily

modified to discern differences in ligand topology rather than

ligand small group substitutions.

In all four case studies the ligand was stacked against the

indole ring of Trp95, and networks of hydrogen bonds and

vdw interactions were responsible for placing the respective

ligand in the binding pocket. The position of the N-terminal

arm, which plays a crucial role in the ‘‘light-switch’’ mech-

anism of the AraC protein, was universally stabilized by

direct hydrogen bonding between the oxygen of the main

chain carbonyl of Pro8 and one hydroxyl group of the target

ligand. The average volume of the amino acids in the binding

pocket was generally changed according to the size of the

target ligand to improve the ligand-protein fit by compen-

sating for differences in ligand structure.

FIGURE 10 AraC protein (PDB:

2ARC) was redesigned using IPRO

to bind D-arabinose without any regard

to the corresponding binding score

for L-arabinose (mutations are shown

within the dark gray circle). The mod-

ified version of IPRO was also em-

ployed to proactively suppress the

binding energy for L-arabinose while

optimizing the binding energy for

D-arabinose (mutations are shown

within the white circle). Common mu-

tation positions are placed in the over-

lapping region between the two circles.
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Comparisons between the different computed libraries

reveal that, in all case studies, all mutations found on sys-

tematically suppressing the binding score with the decoy

consistently favor binding with only the target ligand. The

number of common mutations predicted with and without a

decoy strongly depends on the similarity of the chemistry and

structure between the target and decoy molecules. Finally,

in all cases, improvements in the binding scores are largely

cumulative with respect to individual point mutations, allud-

ing to a strongly additive mechanism of the effect of mutations.
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