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In this paper, we introduce and test two new sequence-
based protein scoring systems (i.e. S1, S2) for assessing
the likelihood that a given protein hybrid will be func-
tional. By binning together amino acids with similar
properties (i.e. volume, hydrophobicity and charge) the
scoring systems S1 and S2 allow for the quantification of
the severity of mismatched interactions in the hybrids.
The S2 scoring system is found to be able to significantly
functionally enrich a cytochrome P450 library over other
scoring methods. Given this scoring base, we sub-
sequently constructed two separate optimization formu-
lations (i.e. OPTCOMB and OPTOLIGO) for optimally
designing protein combinatorial libraries involving
recombination or mutations, respectively. Notably, two
separate versions of OPTCOMB are generated (i.e. model
M1, M2) with the latter allowing for position-dependent
parental fragment skipping. Computational benchmark-
ing results demonstrate the efficacy of models
OPTCOMB and OPTOLIGO to generate high scoring
libraries of a prespecified size.
Keywords: hybrid scoring method/protein engineering/
protein library optimization

Introduction

By creatively applying the ever-growing palette of molecular
biology techniques, a variety of protocols are currently avail-
able for performing targeted mutations or constructing com-
binatorial libraries with customized statistics of mutations
and/or parental fragments (see Moore and Maranas, 2004 for
a review). Recent developments have made it clear that
given sufficient resources, a directed evolution protocol can
be set up to create the desired level of diversity. This shifts
the challenge to a priori identifying the optimal level and
type of diversity for a given protein engineering task.

Most protein design efforts can broadly be classified into
two main categories. The first category involves the redesign
of an existing protein structure. It can be accomplished
through changing the existing binding pocket, to alter the
current functionality of the protein (Miyazaki et al., 2000;
Santoro et al., 2002; Baik et al., 2003; Chen and Zhao, 2005;
Chockalingam et al., 2005; Korkegian et al., 2005), or by
introducing an entirely new binding pocket, when a different
functionality is desired (Marvin and Hellinga, 2001; Dwyer
et al., 2003). This type of protein design is dependent on

detailed structural information of the protein. The second
group of protein design efforts considers cases when only
protein sequence information is available with little or no
structural knowledge of the protein system. Here, typically,
the objective is to identify variants that preserve and/or
enhance the desired activity, which is accomplished through
the creation and screening of large protein combinatorial
libraries. This reliance on larger combinatorial libraries is
precipitated by the lack of structural information requiring
that computations must focus on the design of libraries based
on sequence information alone, rather than targeted structural
redesign, to enhance or improve function. The source of
diversity in the library can be either accumulated point
mutations, recombination of a small set of parental sequences
or both. A number of techniques have been developed to
create protein libraries with customized diversity statistics
(Stemmer, 1994a, 1994b, 2000; Zhao et al., 1998; Ostermeier
et al., 1999; Coco et al., 2001, 2002; Lutz et al., 2001;
Martin et al., 2001; Sakamoto et al., 2001; Sieber et al.,
2001; Richardson et al., 2002; Hiraga and Arnold, 2003; Án̆
et al., 2005). This has placed the emphasis on identifying
how to optimally apportion this diversity for a given library
so that the library is maximally enriched in functional
sequences. A number of scoring methods such as SCHEMA
(Voigt et al., 2002), SIRCH (Moore and Maranas, 2003),
FamClash (Saraf et al., 2004), residue clash maps (Saraf and
Maranas, 2003) and SVMs (Dubey et al., 2005) have already
demonstrated that substantial improvements over randomly
created libraries can be obtained in the overall quality of the
library by proactively targeting diversity.

In this paper we introduce two new protein scoring
systems, S1 and S2, and the protein library optimization
methods which make use of these scoring systems. These
scoring systems make use of binned amino acid properties
instead of using amino acid identities. This allows for the
novel action of quantifying the degree of clashes in proteins,
as opposed to simply identifying the number of clashes
present. By identifying the degree of each clash in a protein,
the alterations of the amino acid sequence can be more accu-
rately assessed for their disruptions to the protein’s function-
ality. Modifying the OPTCOMB (Optimal Pattern of Tiling
for COMBinatorial library design) framework (Saraf et al.,
2005), developed recently in our group, we incorporated
these new scoring functions to optimally design and sub-
sequently assess the quality of recombination libraries.
Furthermore, we also developed a corresponding framework,
OPTOLIGO, to optimally design and assess mutation
libraries. Collectively, the new scoring functions and optimal
library design frameworks we introduce here provide an inte-
grated framework to design functional proteins and dis-
tinguish them from non-functional ones.

In the rest of the paper we first describe the two new
scoring systems, S1 and S2, followed by a discussion of
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the optimization formulations for the library designs. The pro-
posed optimization formulations are applied for a Cytochrome
P450 case-study and the results are contrasted against experi-
mental data found in the literature (Otey et al., 2006).

Scoring methods

Here, we introduce two new scoring systems that rely on the
underlying properties of amino acids, exemplified by
volume, hydrophobicity and charge, instead of amino acid
identities. The key concept is that sequences with amino acid
compositions yielding similar property triplets at each posi-
tion are more likely to share similar functions (or lack
thereof) than sequences whose amino acid compositions are
more distant. The use of amino acid properties enables us to
augment the original family sequence dataset by ‘filling in’
information about sequences with new amino acid compo-
sitions. We use this concept in the scoring systems (S1, S2)
along with mathematical optimization to maximize the frac-
tion of high scoring, and by extension functional, sequences
in the designed library.

The volume, hydrophobicity and charge values for all 20
amino acids are given in Supplementary data and are avail-
able at PEDS online (Krigbaum and Komoriya, 1979; Klein
et al., 1984; Cid et al., 1992). We use the concept of a prop-
erty bin, as in the FamClash procedure developed by Saraf
et al. (2004), to cluster amino acids with similar values for a
property. The smaller the size of a bin, the fewer the amino
acids that reside in the bin. In the limit, this yields bins which
contain only a single amino acid, thus reverting back to
solely an amino acid description. Alternatively, using too few
property bins results in a coarse description that tends to
group together dissimilar amino acids. We used a clustering
analysis to find the best compromise between these two
extremes. The bins were created in such a manner that the
maximum property distance between two amino acids in a
bin is less than the minimum distance between that bin and
adjacent bins. Fig. 1 depicts the identified property bins for
all three properties, as well as shows the bins to which the
amino acids belong. Note that the amino acid volume and
hydrophobicity values are not equidistant, but rather tend to
predominantly cluster together. This binning procedure ident-
ifies groups of amino acids with similar property values and
is property-specific. Amino acids binned together with
respect to one property are not necessarily binned together
for another property. For example, methionine, leucine and
isoleucine are all in the same bins for volume and charge, but
only methionine and leucine are in the same bin for hydro-
phobicity. With the amino acids separated into bins, it is
possible to compare and score protein mutant and/or recom-
bination hybrids based on the frequency of different bins,
instead of focusing on the conservation of specific amino
acids.

S1 scoring system
The S1 scoring system is the first of the two new scoring
systems that we propose for the scoring of protein libraries
using the concept of amino acid property bins. Essentially,
S1 rewards amino acid choices that lead to property triplets
that match the statistics of the protein family’s members. The
first step in this scoring system is to structurally align, using
the ClustalW software (http://align.genome.jp/), the members

of the protein family whose mutation and/or recombination
hybrids need to be scored. The alignment is customized for
the parent proteins chosen from the protein family whose
mutation and/or recombination will create the combinatorial
protein library. It begins with the multiple sequence align-
ment of the parental proteins. Subsequently, each one of the
sequences from the protein family is appended, one at a
time, to the multiple sequence alignment and an alignment
score is calculated. The sequences are then sorted in a des-
cending alignment score order. Protein family sequences cor-
responding to distant homologues aligning poorly with the
parent proteins and any repeat copies of sequences are then
discarded, eliminating sequences that contribute non-useful
information. The retained well-aligned sequences form the
dataset for the calculation of the base statistics of the prop-
erty triplets. The particular value of the cutoff score used to
determine which sequences to discard will be specific to
every case involved, depending on the number of sequences
being aligned. It should be selected such that approximately
1 SD (63.2%) of the sequences are kept when duplicates of
sequences are excluded. However, this does not need to be
very precise, as the scoring system is not very sensitive to
the precise number of sequences, as long as a sufficient
number is provided to form a good basis.

Once the protein family dataset is aligned and screened,
the frequency of each amino acid a ¼ 1, . . . , 20 at each
sequence position i ¼ 1, . . . , N is calculated. Positions with
gaps are excluded from this calculation, and the amino acid
frequency information is stored in parameter Aa,i that quan-
tifies the fraction of sequences in the family that have amino
acid a at position i. This implies that

P
aAa,i ¼ 1 for all posi-

tions i. This parameter is in turn used to calculate the fre-
quency distributions for all three properties at each position
i. The frequency of bin b at position i for property k ¼ 1,2,3
(volume, charge and hydrophobicity) is the sum of the fre-
quencies of the amino acids at position i that belong to bin b
for property k. This information is stored in parameter Fi,k,b.

The bin occupation frequencies of the protein family are
next used to calculate the likelihood of a protein sharing
functionality with the protein family. The amino acid compo-
sition of the sequences to be scored is encoded using the
binary indicator variable Yi,k,b, which equals 1 if the amino
acid in position i belongs to bin b of property k. Figure SF1
(Supplementary data available at PEDS online) shows an
example of the alignment of 275 DHFR sequences and the
Fi,k,b and Yi,k,b values for a specific residue position. Once
determined, the protein family information, Fi,k,b, and protein
sequence information, Yi,k,b, can be used to score the protein.
The S1 score is defined as follows:

S1 ¼

P
i

P
k

P
b

log10ðFi;k;bÞYi;k;b

L

where L is the number of amino acids in the protein being
scored.

Essentially, the S1 scoring system additively, in logarith-
mic space, accumulates the individual scores for every posi-
tion i and property k of the examined sequence. The more
the positions in the examined sequence with amino acids in
high frequency bins in Fi,k,b, the better the S1 score. It is
important to note that S1 scores are always negative as they

R.J. Pantazes et al.

Page 2 of 13



are the sum of logarithms of numbers between 0 and 1.
Conceptually, S1 assigns higher (less negative) scores to
sequences that have amino acid compositions with property
values that are similar to the ones found in the protein
family. A pathological case arises when, at a given position
i, the examined sequence has an amino acid whose property
k value falls within a bin b that is completely unpopulated
by all sequences in the protein family. We artificially assign
all such instances a score of 2200, which is of the same
order of magnitude as the number of amino acids in most
proteins. This penalizes any such occurrence in the examined
sequences.

The S1 scoring system was tested on several different sets
of data to assess its effectiveness. Representative results are
provided for the DHFR family of proteins. Five hundred and
fifty-four DHFR proteins were downloaded from the Pfam
database (http://pfam.wustl.edu/index.html). We selected
Escherichia coli, Bacillus subtilis, and Lactobacillus casei as
the parental sequence set, and the members of the protein
family were aligned using ClustalW (http://align.genome.jp/).
Using an alignment cut-off score of 8225 and eliminating
identical sequences, 275 DHFR proteins were retained to
form the protein family dataset, as shown in Figure SF2

(Supplementary data available at PEDS online). The amino
acid frequencies at each position were calculated, and using
this information the Fi,k,b parameter was populated. The S1
scores were then calculated for the 275 DHFR family
sequences along with over 2500 protein sequences (not from
the DHFR family) randomly selected from the protein data
bank (PDB) (Berman et al., 2000). The S1 score distributions
for the two different protein populations, shown in
Figure SF3 (Supplementary data available at PEDS online),
are non-overlapping with the DHFR population forming a
sharply peaked distribution with much higher scores than the
randomly selected protein sequences. This result clearly
demonstrates the ability of the S1 scoring system to isolate
protein sequences sharing the same functionality from a
background of randomly selected protein sequences.

Next, we examined the sensitivity of S1 to the presence of
random mutations introduced in the DHFR sequences.
Statistically speaking, an increasing number of random
mutations in a sequence decrease its likelihood of functional-
ity. Starting with the 275 DHFR family sequences, we
created three additional protein sets. These data sets had 1, 5
and 10% mutation rates, which respectively correspond to 2,
8, and 16 mutations per sequence. The results, given in

Fig. 1. Clustering of all 20 amino acids into bins for volume, hydrophobicity and charge. The bins for each property have been circled and labeled.
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Figure SF4 (Supplementary data available at PEDS online),
indicate that as the random mutation level increases, the
average S1 score for the dataset decreases. It is important to
note that the average amino acid composition difference
between any two sequences selected from the 275 top
scoring DHFR sequences is 66.7% which is much higher
than the imposed mutation rates. This implies that S1 is quite
sensitive at detecting departures in the amino acid compo-
sition of the DHFR sequences away from the naturally occur-
ring variance present in the protein family.

To ensure these results were not due to the DHFR family
sequences acting as a ‘training set,’ we divided the dataset
into five random, equally sized groups. Four of the groups
were then used to form the basis for S1 and calculate the
scores for the sequences in the fifth group. This was repeated
to score each of the five groups of DHFR sequences. The
scores of the DHFR sequences decreased by an average of
2.68%, and the worst change was 8.86%. In contrast, the
average differences between the mutated sequences and the
DHFR family scores when all 275 sequences were used as
the basis were 2.98, 10.63 and 20.46% for the 2, 8 and 16
mutation datasets, respectively.

The final test of the S1 scoring system is designed to test
the ability of the scoring system to discriminate between
DHFR sequences and their recombination hybrids.
Comparison of the S1 scores for 1, 5 and 10 crossover DHFR
recombination hybrids were conducted. The results, as
demonstrated in Figure SF5 (Supplementary data available at
PEDS online), show no separation between recombination
hybrids and DHFR sequences. This result is anticipated
because the average amino acid composition for a given posi-
tion i remains unchanged upon recombination between the
parent proteins and the recombination hybrid population. This
is because recombination does not introduce new amino acids
but rather shuffles the juxtaposition of existing ones. For a
scoring system to be able to distinguish between parental and
recombination sequences, it is necessary to take into account
not just every position in isolation but pairs of positions. This
motivates the development and provides the starting point for
the S2 scoring system, which is described next.

S2 scoring system
The S2 scoring system, like S1, relies on the distribution
within bins of the amino acid properties for the protein
family. However, unlike S1, which uses the statistics of
sequence positions one at a time, S2 uses the statistics of
pairs of contacting residues. By making use of pairs of posi-
tions, the S2 scoring system is sensitive to the presence of
recombination events that bring in contact residues originat-
ing from different parental sequences, which have been
shown to often cause disruptions (Voigt et al., 2002). For
every pair of contacting residue positions in the protein
family, the frequency of finding any given pair of bins occu-
pied for each property is calculated and subsequently used to
determine the S2 score. Early experimentation with the S2
system revealed that using not just contacting but all residue
pairs led to a weak ability to discriminate between
sequences. This is because the number of non-contacting
pairs is much higher than the total number of contacting
pairs, whereas their information density content is lower.
These extra pairs tended to partially obscure the ‘signal’
from only contacting pairs. This observation is consistent

with the use of only contacting pairs in the popular
SCHEMA (Voigt et al., 2002) scoring method. In fact, the
S2 scoring system can be viewed as an extension of the
SCHEMA method where contacting residues originating
from different parental sequences are penalized in proportion
to how dissimilar their underlying pairs of property values
are from the ones present in the parental sequences, thereby
categorizing the degree of clashes.

Using only contacting residue pairs in the scoring system
necessitates the creation of a residue contact map. Even
though proteins with the same functionality can have very
different amino acid sequences, the three-dimensional struc-
ture of the proteins is often highly conserved throughout the
protein family, permitting one contact map to be used for all
proteins without much loss of information. The creation of
the residue contact map is performed by calculating residue–
residue distances if the three-dimensional structure of at least
one of the parent proteins is known. If no parental structure
is known, then we rely on Swiss-model (http://swissmodel.
expasy.org//SWISS-MODEL.html) to approximate the three-
dimensional coordinates of every atom in the protein based
on the homologues of known structure nearest to the parental
sequences. We define the minimum distance between two
amino acids as the distance between the two closest atoms in
the amino acids, excluding hydrogens. Two amino acids are
treated as being in contact with each other if the minimum
distance between them is less than the widely employed
cut-off (Voigt et al., 2002) of 4.5 Å. If two amino acids i1,i2
are in contact with each other, then the corresponding binary
parameter Ci1,i2 is set equal to 1.

The calculation of the S2 score proceeds in a similar
fashion as in the case of S1. For all residue pairs that are in
contact with each other, the frequency of finding occupied
any pair of bins b1 and b2 for property k is calculated, and
stored in the parameter FFi1,i2,k,b1,b2. Figure SF6
(Supplementary data available at PEDS online), shows an
example alignment of DHFR sequences and the charge bin
pair distribution at contacting residues 34 and 115. Based on
these definitions, the S2 score is calculated as follows:

S2¼

P
i1

P
i2¼i1þ1
Ci1i2¼1

P
k

P
b1

P
b2

Yi1;k;b1Yi2;k;b2 log10ðFFi1;i2;k;b1;b2Þ

T
;

where T is the total number of contacting residue pairs in the
protein. The S2 score is the logarithmic sum of the frequency
of finding a pair of bins b1 and b2 occupied for a property k
at positions i1 and i2. The more the high frequency pairs of
bins from the protein family found occupied in the tested
protein sequence, the higher (less negative) the S2 score is.
Also, as in S1, the potential exists for a pair of bins to be
present in a hybrid protein but to never occur simultaneously
in the protein family. We examined a number of different
values for this penalty parameter to determine the one that
maximally separates the functional versus non-functional
members of a set of cytochrome P450 recombination
mutants (Otey et al., 2006). The overlap between the S2
score distributions of functional and non-functional proteins
rapidly reaches a maximum plateau when the magnitude of
the penalty becomes approximately equal to 2200.
Therefore, we chose this value of 2200 for the penalty par-
ameter for the remainder of the analysis.
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The S2 scoring system was tested by contrasting the S2
score distributions for the 275 DHFR sequences and the ran-
domly created recombination libraries between E. coli,
B. subtilis and L. casei involving 1, 5 and 10 crossovers,
respectively. Results shown in Figure SF7 (Supplementary
data available at PEDS online), indicate that the S2 scoring
system is successful at separating wild-type DHFR proteins
from recombination hybrids with random crossover locations
of unknown functionality. For example, a score cut-off of
22.8, excludes only 3.64% of the wild-type DHFRs, and
retains 68.4% of the single crossover hybrids, 25.8% of the
five crossover proteins and only 9.45% of the 10 crossover
proteins. Notably, as the total number of crossovers
increases, the percent of retained sequences above the cut-off
score decreases rapidly. This is consistent with the expec-
tation that, statistically, more crossovers are likely to be detri-
mental for functionality. Therefore, it appears that S2 is
successful at separating wild-type DHFR sequences from
their recombination hybrids, presumably biasing the selection
for sequences with the highest likelihood of functionality.
Removing sequences from the DHFR dataset to examine
their effects as a ‘training set’, as was done with S1, is not
useful in this case. S2 is significantly more sensitive than S1
to changes in the sequence of a protein. As a result, the
DHFR dataset gives the appearance of acting as a training
set in this situation. However, the S2 scoring system is still
detecting the presence of the crossovers in the hybrid DHFR
sequences, and the more crossovers there are the worse the
hybrid scores become. In the Computational Results, an
examination of Cytochrome P450 proteins from the literature
(Otey et al., 2006) demonstrates S2’s ability to distinguish
between functional and nonfunctional hybrids. In the next
section, we describe how the S2 scoring system can be
implemented in the context of the OPTCOMB (i.e., M1, M2)
recombination library design procedures and the multiple
mutation library design procedure OPTOLIGO.

Protein library optimization

OPTCOMB (M1 and M2 models)
Here, we switch focus from using S2 to score individual
hybrids to optimizing an entire library of a predetermined
size. Optimization variables include the location of junc-
tion points and the presence/absence of fragments from
any given parental sequence at each junction point. Two
separate models are described (M1 and M2), respectively,
that either consider all parental fragments at every position
or allow for specific fragment skipping. Both models have
the same structure as those in the OPTCOMB procedure
developed by Saraf et al. (2005) where, instead of a
scoring function, the number of clashes was used to deter-
mine library fitness. We refer the reader to Saraf et al.
(2005) for many of the details in the model derivation.
Here, we highlight the parts of the model that change due
to the use of the scoring function S2.

We first define two sets consisting of the aligned positions
in the proteins, i ¼ 1, . . . , N, and the collection of parental
proteins, k ¼ 1, 2, . . . , K. The contacting residue information
described in the S2 scoring system is used to characterize
which pairs of residues are in contact with one another. We
then use the S2 scoring system to populate the parameter

Si1,i2
k1,k2, defined only over (i1,i2) with Ci1,i2 ¼ 1, which con-

tains the scores of each pair of contacting residues with a
different parental origin. The scores are calculated as before;
however, the parameter is only populated for the pairs of
contacting residues. As in the SCHEMA algorithm (Voigt
et al., 2002), we treat contacting residues from the same
parent as being non-disruptive. Therefore, we do not include
the scores of contacting pairs that originate from the same
parental sequence since we are interested in pinpointing
recombination locations.

Model M1: For model M1, the following additional para-
meters are needed—M, the total number of junctions; Lmin,
the minimum length of a fragment; Lmax, the maximum
length of a fragment.

The following variables are used to describe whether a
particular sequence location i is a junction point:

Yi ¼
1 if a junction occurs at residue i

0 otherwise

�

Zi1;i2 ¼
1 if there exist at least one junction

between residues i1 and i2

0 otherwise.

8<
:

The objective function of the M1 model formulation is:

maximize
XN�1

i1¼1

XN

i2¼i1þ1
Ci1;i2¼1

XK

k1¼1

XK

k2=k1

S
k1;k2
i1;i2 Zi1;i2: ð1Þ

This function maximizes the overall score of the library by
accounting for all possible fragment combinations. This is
accomplished by scoring additively all fragment pairs origi-
nating from different parents with at least one junction
between them. Constraint (2)

XN

i¼1

Yi ¼ M; ð2Þ

sets the sum of all junctions equal to the target M. Inequality
(3)

Xi0þLmin�1

i¼i0
Yi � 1; 8i ¼ 1; . . . ;N � Lmin þ 1; ð3Þ

ensures that no oligomer is shorter than the desired minimum
fragment length of Lmin. For all positions i starting from the
first to Lmin21 before the terminal position, the sum of the
number of junctions between that position and the position
which is Lmin amino acids away can be no greater than one.
Thus, if position i

0
is a junction, then the Lmin21 positions

after i
0

cannot be a junction. Similar to inequality (3), con-
straint (4) ensures that the maximum desired fragment
length, Lmax is not exceeded.

Xi0þLmax�1

i¼i0
Yi � 1; 8i ¼ 1; . . . ;N � Lmax þ 1: ð4Þ

For all positions i starting from the first to Lmax21 positions
from the last, the sum of the number of junctions from any
position i to Lmax21 positions ahead must be at least equal
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to one. This guarantees that no fragment is longer than Lmax.
Equality (5) prevents the placement of a junction less than
Lmin amino acids from the terminal position by forcing the
sum of the number of junctions within that range equal
to zero.

XN

i¼N�L minþ2

Yi ¼ 0; ð5Þ

Inequality (6) is used to determine which contacting pairs
have junctions between them.

Zi1;i2 � Yi; i ¼ i1 þ 1; . . . ; i2 ð6Þ

If any position i between a contacting pair is a junc-
tion, then Zi1,i2 must assume a value of at least one.
Inequality (7) ensures that contacting pairs that do not
have a junction between them are not included in the S2
score calculation.

Zi1;i2 �
Xi2

i¼i1þ1

Yi i1; i2 ¼ 1; . . . ;N

with i1 , i2 and Ci1;i2 ¼ 1

ð7Þ

This is accomplished by making Zi1,i2 no greater than the
sum of the junctions between the start and the end of a con-
tacting pair.

Y1 ¼ 1; ð8Þ

Finally, equality (8) simply ensures that the first position in
the protein is treated as a junction to flag the beginning of
the first fragment. Also, the upper and lower bounds of Zi1,i2

are set equal to one and zero to ensure that the above con-
straints can only assign integral values to Z. Yi is defined as
a binary variable.

Collectively, Eqs. (1)–(8) define the formulation of the
M1 model which belongs to the class of mixed-integer linear
(MILP) optimization problems. The junctions are placed in
such a manner that they maximize the overall S2 score of the
library while still meeting all the constraints imposed by
Eqs. (2)–(7).

Model M2: M2 departs from M1 by allowing for
parental sequence-dependent fragment skipping at certain
locations. Fig. 2 shows this difference between M1 and
M2, with M1 being option a and M2 option b. By not
including in the recombination mixture certain parental
fragments contributing poor S2 scores, the M2 model
explores whether the overall S2 library score can be sub-
stantially increased.

Model M2 retains the same set definitions described for
M1 in addition to the parameters Lmin and Lmax and the
binary variable Yi. Since fragments can now be excluded, the
library size is no longer simply the number of parents raised
to the power of the number of fragments. A new parameter
LS is needed that directly defines the desired library size.
Variable Zi1,i2 is generalized to Zi1,i2

k1,k2 to reflect the fact that
the presence or absence of a junction between any two
sequence positions is now a function of the parental
sequences, k1 and k2, examined. The following new

variables were also added to M2 to model the additional
complexity associated with fragment skipping:

wi;k ¼
1 if at position i a fragment from parent k exists

in the protein library

0 otherwise

8<
:

yi;k ¼
1 if at position i a fragment from parent k begins

0 otherwise

�

Ni;k ¼
1 if exactly k parents are contributing at junction Yi

0 otherwise.

�

In the M2 model formulation, the objective function remains
essentially unchanged from M1, with the only exception of
using Zi1,i2

k1,k2 instead of Zi1,i2. This means that the objective
function of M2 takes the form of:

maximize
XN�1

i1¼1

XN

i2¼i1þ1
Ci1;i2¼1

XK

k1¼1

XK

k2=k1

S
k1;k2
i1;i2 Z

k1;k2
i1;i2 : ð9Þ

Equations (3), (4), (5) and (8) remain unchanged. The first
additional constraint in M2 relates Yi with yi,k:

Yi � yi;k; i ¼ 1; . . . ;N and k ¼ 1; . . . ;K ð10Þ

This inequality is used to ensure that a fragment from any
parent can only begin at a position that is a junction:

Yi �
X3

k1¼1

yi;k; i ¼ 1; . . . ;N and k ¼ 1; . . . ;K ð11Þ

Inequality (11) guarantees that there is no section of
the protein that is left without at least one parent contribut-
ing a fragment at that location. Constraints (12–15) collec-
tively ensure that variable wi,k, assumes the proper value
according to its definition given values for variables yi,k

and Yi.

wiþ1;k � wi;k þ yiþ1;k

wiþ1;k � 1� Yiþ1 þ yiþ1;k

wiþ1;k � wi;k � Yiþ1 þ yiþ1;k

wi;k � yi;k

9>>=
>>;

i ¼ 1; . . . ;N
k ¼ 1; . . . ;K

ð12Þ
ð13Þ
ð14Þ
ð15Þ

Specifically, constraint (12) makes sure that it is only poss-
ible for a fragment from parent k to exist at position i þ 1 if
a fragment from parent k existed at position i or if a fragment
from parent k begins at position i þ 1. Constraint (13)
ensures that if position i þ 1 is a junction point then parent k
can only exist at that position if a fragment from parent k is
starting at that position. Constraint (14) quantifies that if
position i has a fragment from parent k then the next position
i þ 1 will also have a fragment from parent k unless there is
a junction at i þ 1. If there is a junction at position i þ 1,
than Equation (15) guarantees that if a fragment from parent
k ‘begins’ at a position i then the same fragment must also
‘exist’ at the same position in the library. The next set of
constraints relate the imposed library size, LS, to the
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remaining variables.

P3
k¼1

yi;k ¼
P3
k¼1

kNi;k

P3
k¼1

Ni;k ¼ Yi

log10ðLSÞ �
PN

i

P3
k

Ni;k log10ðkÞ

9>>>>>>>>=
>>>>>>>>;

i ¼ 1; . . . ;N
k ¼ 1; . . . ;K

ð16Þ
ð17Þ
ð18Þ

Inequality (16) forces the correct Ni,k binary variable to
assume a value of 1 at all positions of i. For example, if all
three parents contribute a fragment at residue 49, a junction
point, then N49,1 ¼ 0, N49,2 ¼ 0 and N49,3 ¼ 1. Inequality
(17) makes sure that only one Ni,k variable assumes a value
of 1 at each junction. Finally, constraint (18) relates the
library size parameter LS to the Ni,k variables in logarithmic
space to preserve the linearity of the model. The next group
of constraints assigns the proper value to Z i1,i2

k1,k2 which
encodes the set of contacting pairs with a junction in
between to be included in the S2 calculation.

Z
k1;k2
i1;i2 � wi1;k1 þ wi2;k2 þ Yi�2

Z
k1;k2
i1;i2 �

Pi2
i¼i1þ1

Yi

Z
k1;k2
i1;i2 � wi1;k1

Z
k1;k2
i1;i2 � wi2;k2

9>>>>>>>=
>>>>>>>;

i1; i2 ¼ 1; . . . ;N
i1 , i2

Ci1;i2 ¼ 1

k ¼ 1; . . . ;K

ð19Þ
ð20Þ
ð21Þ
ð22Þ

In essence, constraints (19–22) recast in an equivalent linear
form the trilinear term wi1,k1 wi2,k2 Yi ¼ Z i1,i2

k1,k2. It implies that
Z i1,i2

k1,k2 assumes a value of one only if both positions i1 in
parent k1 and position i2 in parent k2 are contributing frag-
ments and also there is a junction between positions i1 and
i2. Finally, constraint set (23) identifies variables Yi, yi,k and
Ni,k as binary and Z i1,i2

k1,k2and wi,k as continuous. Both the con-
tinuous variables have their upper and lower bounds defined
to be 1 and 0, respectively.

Collectively, equations (3)–(5), (8)–(23) define model
M2, which, as in the case of M1, is an MILP. Because of the
additional complexity associated with the flexibility of skip-
ping parental fragments model M2 is typically more time
consuming to run.

OPTOLIGO
Recombination of parental sequences is a conservative
method of sampling sequence space as it simply rearranges
the already present genetic diversity. New genetic diversity
can be accessed through protocols that rely on the accumu-
lation of point mutations to a single sequence. Given the
popularity of such library generation protocols, we
designed the OPTOLIGO optimization model that uses the
S2 scoring system to determine the type of optimal amino
acid substitutions for a given library size. The challenge
here is to identify which residue positions should be
allowed to mutate and also what mutations to permit for

Fig. 2. The OPTCOMB and OPTOLIGO combinatorial library creation models. In options a (M1 model) and b (M2 model) junction points are selected and
the parent sequences are recombined without and with fragment skipping, respectively. In OPTOLIGO, specific design locations are mutated to create the
combinatorial library.
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each location. Because of the exponential growth of the
library size for an increasing repertoire of mutation choices
the mutation sites and choices must be judiciously chosen.
OPTOLIGO maximizes the average S2 library score by
summing over contacting amino acid combinations present
in the library. The key decision variable here is Yi,a which
is equal to 1 if amino acid a is allowed at position i and 0
otherwise. Additional considerations include excluding the
presence of two very similar amino acids for the same
position or even constraints on the overall diversity of the
library.

Conceptually, OPTOLIGO uses the S2 scoring system to
evaluate and determine the optimal amino acid choices at
select design positions. OPTOLIGO allows the user to define
positions that can be mutated, as well as the size of the
library desired. To accomplish this, OPTOLIGO makes use
of three sets: the number of aligned positions in the protein,
i ¼ 1, . . . , N; the amino acid alphabet, a ¼ 1, . . . , 20; and
the maximum number of amino acid substitutions permitted
at each design position, k ¼ 1, . . . , K. Several parameters are
used in the formulation of the model.

S i1,i2
a1,a2¼S2 score for amino acid pair a1, a2 at positions

i1, i2, respectively; LS ¼ library size.

yo
i;a ¼

1 if amino acid a is present at non-design position i

0 otherwise:

�

Parameter yia
o defines the original sequence used as a tem-

plate before adding mutations to form the library. It can be
either a specific wild-type sequence or simply the consensus
sequence generated from a protein family. Other parameters
used in the formulation include:

Ci1;i2 ¼
1 if positions i1, and i2, are in contact

0 otherwise

�

di ¼
1 if position i is a design position

0 otherwise:

�

Parameter Ci1,i2, as before, defines the contacting residues
in the protein estimated from structural information of the
template or any other protein homologue. Parameter di

denotes the positions that are allowed to mutate. The number
of positions that can be mutated must be kept small or the
library size quickly makes the model extremely computation-
ally intensive. Typically, the most variable positions in the
protein family and/or positions close to the active site are
chosen as design positions.

Binary variable yi,a, denotes whether amino acid a can
be present at position i. Binary variable Ni,k identifies the
number of different amino acids selected for design pos-
ition i. It is equal to 1 if exactly k amino acids are
selected for position i, and 0 otherwise. Variable w i1,i2

a1,a2 is
equal to the product of yi1,a1 yi2,a2. The above defined par-
ameters and variables are used to construct the
OPTOLIGO formulation.

The objective function of OPTOLIGO is:

Maximize
XN�1

i1¼1

X
i2¼i1þ1
Ci1;i2¼1

di1þdi2�1

N X20

a1¼1

X20

a2¼1

S2
a1;a2
i1;i2 w

a1;a2
i1;i2 ð24Þ

This objective function maximizes the sum of the S2
scores of all positions that are in contact with at least one
design position. This function is subject to the following
constraints.

yi;a ¼ yo
i;a i ¼ 1; . . . ;N and a ¼ 1; . . . ; 20

with di ¼ 0
ð25Þ

Constraint (25) ensures that non-design positions are
assigned the correct amino acid choices.

X
k

kNi;k ¼
X

a

yi;a

)
i ¼ 1; . . . ;N ð26Þ

X
k

Ni;k ¼ 1 ð27Þ

Equalities (26) and (27), as described before for model
M2, ensure that N, encodes the correct number of residues k
for every position i.

logðLSÞ �
XN�1

i1¼1

X
k¼1

di1=0

Ni;k logðkÞ ð28Þ

Inequality (28) uses the assigned values of z from equali-
ties (26) and (27) to enforce the minimum desired library
size. This constraint effectively ensures that the library size,
which is the product of the number of amino acid selections
at each position, must be at least the size of the desired
library

w
a1;a2
i1;i2 � yi1;a1

w
a1;a2
i1;i2 � yi2;a2

w
a1;a2
i1;i2 � yi1;a1 þ yi2;a2 �1

9>>>>=
>>>>;

i1; i2 ¼ 1; . . . ;N
di1 þ di2 � 1

Ci1;i2 ¼ 1

a1; a2 ¼ 1; . . . ; 20

ð29Þ
ð30Þ

ð31Þ

Inequalities (29) through (31) linearize exactly the product
of yi1,a1 and yi2,a2.

Constraints (24)–(31) define the core requirements for the
OPTOLIGO optimization model. New constraints can be
appended to reflect additional requirements. For example,
certain amino acids involve very similar property values
(e.g. Met and Leu). This implies that OPTOLIGO will
preferentially retain both amino acids to meet library size
requirements, instead of expanding the amino acid usage
repertoire. This can be prevented from happening by adding
constraints of the following form: yi,methionine þ yi,leucine � 1.
Furthermore, one could impose requirements on the overall
library diversity using similarity scores such as BLOSSUM
and constraining the overall library diversity to be above a
given cut-off.

Computational results

The effectiveness of both the OPTCOMB and OPTOLIGO
library optimization procedures and the S2 scoring system
are benchmarked by applying them to the design of combina-
torial libraries of Cytochrome P450 proteins. The obtained
computational predictions are contrasted against the results
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from the comprehensive study by Otey et al. (2006), where
the SCHEMA algorithm was used to minimize clashes
within a protein library generated from three parents with a
total of eight fragment sections. We used the same parental
sequences CYP102A1, CYP102A2 and CYP102A3 proteins
and library size.

First, the members of the cytochrome P450 protein family
were aligned one at a time to the three parent sequences.
After the alignment process had been completed, the top
1001 aligning proteins, as well as the three parent sequences,
were used to create the protein family used to calculate the
S2 score. A contact map was subsequently generated using
Swiss-Model (http://swissmodel.expasy.org//SWISS-MODEL.
html) and the sequence of parent CYP102A2. For both the
alignment process and the contact map, only residues 6–449

(on CYP102A2) were considered because of the poor align-
ment of the parent and family proteins for the terminal sec-
tions. With the protein family alignment and contact map
prepared, sufficient information was available to score
Cytochrome P450 proteins and compare the results against
the SCHEMA scoring method.

We used as a basis of comparison the cytochrome P450
protein library of 6561 hybrid proteins developed by Otey
et al. (2006). Out of 6561 hybrids, they sequenced 955 span-
ning both functional (620) and non-functional (335)
sequences. Fig. 3 shows the distribution of SCHEMA scores
for the two populations. The two populations are overlapping
significantly. Fig. 4 depicts the S2 scores for the same pro-
teins. We see that the S2 scoring system does a better job in
this case of separating the population of functional versus

Fig. 3. These are the SCHEMA results of the 955 proteins examined by Otey et al. There is an overlap of 74.0% between the two groups, and using a cut-off
of 30 leads to a library that is 77.0% functional proteins, and contains 54.5% of all the functional proteins.

Fig. 4. The S2 score for the same 955 proteins scored by SCHEMA in a shows a much better separation between the two groups of proteins. There is only a
55.91% overlap, and using a cut-off of 22.74 leads to a library that is 80.2% functional proteins and contains 81.0% of all the functional proteins.

Optimal protein library design
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non-functional members. Specifically, a cut-off of 22.74
leads to a library that has 80.2% functional members while
retaining 81.0% of the functional proteins.

The S2 scoring system is next used to score each one of
the contacting pairs in the parental proteins for all six combi-
nations resulting by enumerating all two at a time parental
combinations. This provided the necessary information for
the M1 and M2 models.

OPTCOMB results
We first tested the M1 model, as it yields recombination
protein libraries with no fragment skipping like the protocol
used by Otey et al. (2006). Minimum and maximum fragment
lengths of 40 and 60 were used in accordance with experimen-
tal constraints. These upper and lower bounds on fragment
lengths imply that the 444 amino acid long portion of the
sequence affords a minimum of 8 and a maximum of 11 frag-
ments in the generation of the protein library. In response to
this, M1 was used to generate four protein libraries with 8, 9,
10 and 11 crossovers, respectively, thus covering all feasible
fragment length combinations. Fig. 5 shows pictorially the
four libraries that maximize the total S2 score using fragment
sizes between 40 and 60 amino acids. It is evident that the
location of the junction points are not equidistant with certain
junction positions (e.g. 370, 410, etc.) reoccurring in most
libraries independent of size. Fig. 6 plots the overall score as
a function of number of crossovers and thus library size.
Interestingly, the S2 scores worsen as the total number of frag-
ments increases. That is because in this example additional
junctions end up further fragmenting the parental sequences
thus bringing in contact more residues originating in different
parental sequences. As the number of junctions increases, it
becomes increasingly difficult for M1 library designs to avoid

having poor scoring S2 combinations interrupted by a
junction.

Next we compare the junctions generated by SCHEMA in
the Otey et al. work against the M1 model predictions.
Because the maximum fragment length in the junctions
generated by SCHEMA exceeded our imposed maximum of
60 amino acids we proceeded to adjust our upper limit to 80
amino acids for consistency in the comparison. Fig. 5 depicts
the junctions generated by SCHEMA and model M1 along
with the S2 scores for the two designs. The M1-based design
yields a score improvement of 5.84% despite the small
differences between the two designs. Interestingly, even
when revisiting the more stringent constraint of a maximum
fragment length of 60, an improvement of 1.71% in the S2
score is observed despite the presence of one extra crossover.
In this example, we found that the differences between the
M1 and SCHEMA designs are not dramatic, which alludes to
the common element (i.e. use of contacting residues)
between the two scoring methods. These differences are
amplified when the M2 model is considered.

To facilitate the application of the M2 model we first used
M1 in an iterative fashion to pre-identify all promising junc-
tion points for different parental combinations and numbers
of fragments. Specifically, the M1 model was run for all
three pair-wise combinations (i.e. 1–2, 1–3 and 2–3) and all
three simultaneously of the three available parents for 8, 9,10
and 11 junctions, for a total of 16 runs. The identified junc-
tion points are shown in Figure SF8 (Supplementary data
available at PEDS online). We subsequently used only these
‘promising’ junction locations to restrict the placement of
junction points in model M2 so as to reduce computational
requirements. Five separate M2 libraries were constructed,
one for each junction set generated by M1 for fragment
numbers of 8, 9, 10 and 11, respectively, as well as a fifth
one using all the junctions generated by all four sets of frag-
ments. In all M2 runs, a minimum library size requirement
of 38, approximately 6500, was imposed to match the size
obtained by Otey et al. (2006). The actual library sizes gene-
rated were in some cases somewhat larger, depending on
how many junctions were present and how many fragments

Fig. 5. These are junctions used in the six protein libraries. Each library
contains the number of proteins equal to three raised to the power of the
number of fragments. The first four libraries were generated by M1 using
fragment lengths of 40–60 amino acids. The fifth library was generated by
SCHEMA-guided recombination by Otey et al. The sixth library was
generated by M1, using the same fragment sizes and number of fragments as
used in the SCHEMA-guided recombination. All junction points use the
actual numbering of the residues in the proteins, so the first amino acid is
the actual first amino acid of the protein instead of the first aligned protein
(which is the sixth).

Fig. 6. Shown is a graphical representation of the S2 scores of the four
M1-based protein libraries generated using fragment lengths of 40 and 60.
The number of fragments used to generate the library is shown across the
top of the graph, while the corresponding library size (equal to three raised
to the number of fragments) is depicted across the bottom. As the number
of fragments increases, the score of the library generated worsens.
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were excluded. The first library (eight fragments) exactly
conserves the M1 results, since the minimum library size
requirements prevent any fragment skipping. Library designs
with 9, 10 and 11 junctions allow for skipping of certain
fragments while still satisfying the same minimum library
size requirement of 6500. No obvious/persistent trends are
observed in the identified tiling patterns, implying that frag-
ments’ size limits rather than pair-wise S2 scores are the
dominant factors in the obtained library designs. Notably, the
overall S2 score progressively improves over the M1 design
with the same number of junctions. This improvement is as
much as 60.4% when all 11 junction positions are con-
sidered. This result alludes to the fact that fragment skipping
can in principle be a powerful library design tool for improv-
ing functionality. These initial M2 results are shown in
Figure SF9 (Supplementary data available at PEDS online).

Once the initial round of M2 runs had been completed, we
explored whether improved solutions can be obtained by
allowing the identified junction locations to shift one position
to the left or right. This process was iteratively repeated until
no additional junction location shifts were observed. We
found that some junction points for the libraries with 9 and
10 junction points shifted after the first iteration but none did
during the second. No junctions shifted for the other two
libraries. The final results generated for each fragment size
by M2 are given in Fig. 7. Figure 8 shows a comparison of
the S2 scores before and after junction shifting for the four
libraries. It is worthwhile to note that while for M1-based
designs the overall S2 score decreases as the number of junc-
tions increases, M2 designs follow the opposite trend. The
reason for this seemingly inconsistent behavior is that while
in the case of M1 increasing the number of junctions yields a
corresponding increase in library size, in the case of M2 the
increase of the number of junctions does not yield an
increase in library size as it is offset by fragment skipping.
The M2 model, by judiciously excluding poor fragment com-
binations, enables the systematic improvement of the overall
S2 library score.

OPTOLIGO results
To examine the effectiveness of the OPTOLIGO model, we
tested it on the Cytochrome P450 family of proteins. Using
the same protein family alignment and information used to

test the M1 and M2 models, we created a consensus
sequence using the family sequence data. We then determine
the 10 most variable positions to be Arg 25, Thr 66, Gly 69,
Asn 161, Ser 177, Phe 181, Leu 184, Arg 185, Asp 191 and
His 441 (the amino acids are the ones present in the consen-
sus sequence). We also examined the properties of the amino
acids to determine which pairs of amino acids should not be
permitted to be substituted at the same design positions. A
pair of amino acids was eliminated if they had all three prop-
erties in adjacent or identical bins. Table I gives the pairs of
amino acids whose simultaneous presence is precluded.

OPTOLIGO was run for library sizes of 103, 104, 105, 106

and 107. The results revealed a number of interesting trends.
Notably, the optimal library design seems to be hierarchical
in nature. With only a handful of exceptions as the library
size increases previous choices are retained and new ones are
simply successively appended (Fig. 9). The only exception
was that methionine and leucine were substituted for one
another in consecutive size libraries. Interestingly, positions
with the same wild-type amino acids do not necessarily end

Fig. 7. These are the final results generated by M2 for the junctions from the M1 runs of the different fragment numbers. Sections where a parent is not
contributing are excluded in the picture as well. The sizes of the libraries generated are 6561 for the 8 and 9 fragment libraries, 7776 for the 10 fragment
library and 6912 for the 11 fragment library. The best overall solution, generated using all the junction points permitted in any of the libraries is identical to
the 11 fragment solution. The labeled junction points are the actual positions in the protein as opposed to the aligned positions, which start at residue 6.

Fig. 8. These are the scores generated by the best M2 runs the initial M2
runs, and the M1 runs for each fragment size. While the M1 scores get
worse as the number of fragments increases, the M2 scores improve. Also,
minimal changes were generated by allowing the original solutions to
perturb slightly; the two lines are essentially indistinguishable from one
another.
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up with the same redesigns. For example, in the consensus
sequence, residue 25 is Arg and residue 191 is Asp. Neither
of those amino acids is ever used in any OPTOLIGO protein
library at those locations. Also, as the library size increases
the overall library score decreases in accordance with the use
of increasingly penalizing residues.

We also applied OPTOLIGO to the recently published
green flourescent protein (GFP) library results (Treynor
et al., 2007) to contrast our findings. Unfortunately there are
only 132 GFP sequences available in Pfam. After the align-
ment process, removing duplicate sequences, and retaining
63.2% of the sequences, only 83 sequences were retained to
form the basis for S1 and S2. The size of this dataset is suffi-
cient for S1 but not for S2. We did generate the OPTOLIGO
results for a library of size 29, and the results were: P58D,

T59I, T62A, T63A, F64L, T65S, V68I, Q69L and S72A.
These results avoided the Q69R substitution that the paper
pointed out as problematic while proposing the beneficial
Q69L substitution. As expected, the S2 scores for the pro-
teins from the DBISORBIT and CORBIT libraries perform
rather poorly because the V61L and T65A substitutions rep-
resent changes to amino acids that are never present in any
of the 83 sequences used to create our basis.

Discussion and summary

In this paper, we have introduced two new protein scoring
functions, S1 and S2, and corresponding library optimiz-
ation techniques, OPTCOMB and OPTOLIGO, which make
use of these scoring systems. S1 and S2 represent improve-
ments over currently existing scoring functions because they
can quantitatively identify the degree of clashes in hybrid
and mutant proteins. All current scoring systems simply
count the number or clashes present in a protein, and score
it accordingly. S1 and S2 are the first scoring systems
which can accurately predict the degree to which an indi-
vidual clash will be detrimental to the functionality of a
protein.

S1 and S2 accomplish this innovative feat by making use
of binned amino acid properties. Each of the 20 amino
acids was placed in a bin with other amino acids sharing
similar values for each of the three properties of volume,
charge and hydrophobicity. This allows S1 and S2 to ident-
ify clashes from changes in the amino acid property bins
for a given position or pair of contacting positions, instead
of being confined to using the amino acid identities.
Furthermore, using the statistics of top aligning protein
family members, S1 and S2 calculate the frequency with

Table I. This is a list of the pairs of amino acids that were not permitted to

simultaneously be substitutions in the OLIGOPT model

Eliminated pairs

Alanine Proline
Arginine Lysine
Asparagine Glutamic acid
Asparagine Threonine
Aspartic acid Serine
Aspartic acid Threonine
Glutamic acid Threonine
Glycine Serine
Leucine Methionine
Phenylalanine Tryptophan
Phenylalanine Tyrosine

They were eliminated because they have all 3 bins within þ/21 of one
another.

Fig. 9. These are the results for four of the 10 mutated residues used in OPTOLIGO. The substitution pattern is conservative from smaller to larger libraries.
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which a particular property bin or pair of bins occurs. This
information is in turn used to quantify the degree of the
penalty for clashes in proteins. The two scoring systems
generally need to be used in conjunction with one another.
S1 is useful for identifying whether or not a particular
protein belongs to a given protein family. S2, which is sig-
nificantly more sensitive to changes in the amino acid
sequence of a protein away from the statistics of the protein
family, can then be used to tell whether a hybrid or mutant
protein is functional or not. As shown in Figs. 3 and 4, the
S2 scoring system is more effective in this case at dis-
tinguishing between functional and non-functional proteins
than the currently employed SCHEMA algorithm.

The library optimization technique OPTCOMB uses scores
derived from the S2 scoring system. OPTCOMB has two
different formulation models, M1 and M2, each of which
designs recombination protein libraries. M1 uses the S2 scores
to determine the optimal locations to recombine parent pro-
teins to maximize the overall score of the protein library. M2
expands on this application by not only determining where
recombination junctions should be placed, but also by select-
ing which parents will contribute fragments at each location.
This difference allows for the potential to skip parent frag-
ments, potentially eliminating sections of one parent protein
that cause many clashes with fragments from other proteins.

The OPTOLIGO optimization model is designed to
create protein libraries through accumulated point mutations,
as opposed to the recombination techniques of OPTCOMB.
The user designates the number of design positions they
desire, along with the minimum library size, number of sub-
stitutions permitted at each location and which amino acids
cannot be substituted at the same locations. OPTOLIGO
then uses the S2 scoring system to determine the optimal
amino acid mutations to create a library of the desired size.
As the size of the library is increased, the results from
smaller library sizes are conserved with new additions
added on to reach the desired library size. This is in com-
parison with M2, which shows no consistent tiling patterns,
and M1, where the junction locations are forced to move
around in order to accommodate the growing number of
required junctions.
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