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Abstract

A key consideration in metabolic engineering is the determination of fluxes of the metabolites within the cell. This determination

provides an unambiguous description of metabolism before and/or after engineering interventions. Here, we present a computational

framework that combines a constraint-based modeling framework with isotopic label tracing on a large scale. When cells are fed a

growth substrate with certain carbon positions labeled with 13C, the distribution of this label in the intracellular metabolites can be

calculated based on the known biochemistry of the participating pathways. Most labeling studies focus on skeletal representations of

central metabolism and ignore many flux routes that could contribute to the observed isotopic labeling patterns. In contrast, our

approach investigates the importance of carrying out isotopic labeling studies using a more comprehensive reaction network consisting of

350 fluxes and 184 metabolites in Escherichia coli including global metabolite balances on cofactors such as ATP, NADH, and NADPH.

The proposed procedure is demonstrated on an E. coli strain engineered to produce amorphadiene, a precursor to the antimalarial drug

artemisinin. The cells were grown in continuous culture on glucose containing 20% [U-13C]glucose; the measurements are made using

GC–MS performed on 13 amino acids extracted from the cells. We identify flux distributions for which the calculated labeling patterns

agree well with the measurements alluding to the accuracy of the network reconstruction. Furthermore, we explore the robustness of the

flux calculations to variability in the experimental MS measurements, as well as highlight the key experimental measurements necessary

for flux determination. Finally, we discuss the effect of reducing the model, as well as shed light onto the customization of the developed

computational framework to other systems.

r 2007 Elsevier Inc. All rights reserved.
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1. Introduction and objectives

In recent years, high-throughput methods have enabled
rapid advances in the rate of data generation in genomics,
transcriptomics, and proteomics. Despite a number of
advances in the experimental measurement and analysis
techniques metabolic flux elucidation (i.e., metabolic flux
analysis (MFA), Vallino and Stephanopoulos, 1993) have
not yet become commonplace as the above-mentioned
omics analyses. This is because flux elucidation is context-
e front matter r 2007 Elsevier Inc. All rights reserved.
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specific requiring sensitive NMR and/or gas chromatogra-
phy–mass spectrometry (GC–MS) measurements, accurate
metabolic network reconstructions and powerful computa-
tional techniques to match experimental observables with
underlying models.
The elucidation of metabolic fluxes is important for a

number of reasons. First, the set of fluxes through a cell’s
metabolic pathways is a key descriptor of its physiology
(Nielsen, 2003) and for evaluating mechanisms for meta-
bolic engineering (Bailey, 1991; Stephanopoulos and
Vallino, 1991). While gene transcripts, protein levels and
metabolite concentrations tend to vary in a seemingly
unpredictable fashion, metabolic fluxes are the only
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invariant that seems to most effectively capture a cell’s
metabolic state. They provide the only unambiguous
means for pinpointing the effect of engineering interven-
tions (e.g., knock-outs/ins, up/down regulations) on
cellular metabolism alluding to their effectiveness and
suggesting additional engineering strategies. While optimi-
zation-based hypotheses such as biomass yield maximiza-
tion (Varma and Palsson, 1994), minimization of metabolic
adjustments (MOMA) (Segre et al., 2002) and others have
in certain cases led to accurate flux predictions, they cannot
be relied upon to always reliably deduce the correct flux
distributions. Flux measurements (especially internal ones)
are needed to provide a reference state (i.e., for MOMA),
test the effectiveness of different maximization hypotheses
and provide clues as to how to construct new ones.

The potential of using 13C-labeled isotopes to elucidate
metabolic pathways has long been recognized in the
metabolic engineering community. Early efforts relied on
NMR spectra of metabolites which were related to the
underlying pathways used to create them (Jeffrey et al.,
1991). NMR spectra could also be used to elucidate the flux
through metabolic pathways (Bacher et al., 1998; Kelleher,
2001). NMR-based recapitulations of central metabolism
fluxes in Escherichia coli were accomplished using uni-
formly labeled glucose (Szyperski, 1995). This work was
later expanded to resolve central metabolism fluxes in
E. coli under a variety of conditions (Sauer et al., 1999).
The central metabolic fluxes and assumptions about
reversibility in Bacillus subtilis were also explored using
NMR data that were analyzed within an isotope isomer-
(isotopomer)-balancing framework (Dauner et al., 2001).
These experimental protocols were subsequently employed
to examine the changes in flux distributions in E. coli when
pyruvate kinase activity was removed (Emmerling et al.,
2002).

The use of NMR is hampered by the fact that it is time
consuming and requires high concentrations of the
metabolites. Alternatively, fluxes can be deduced by
generating GC–MS spectra of primarily amino acids (and
other metabolites) to de-convolute the metabolic flux
distributions. Based on the observed fragment weight
patterns the distribution of isotopes can then be deduced.
One of the earliest such contributions involved using
13C-labeling MFA GC–MS to determine the central
metabolism fluxes for Corynebacterium glutamicum (Marx
et al., 1996) using enrichment data for 11 amino acids.
Similar approaches were used for profiling strains from
successive generations of C. glutamicum (Wittmann and
Heinzle, 2002). Notably 13C-labeling based MFA has also
been informative when characterizing regulatory mutations
(Van Dien et al., 2003).

Both GC–MS and/or NMR spectra information must
first be mapped onto metabolic fluxes before any elucida-
tion procedure can be deployed. One of the first such
modeling contributions is the introduction of atom
mapping matrices (AMMs) (Zupke and Stephanopoulos,
1994) that tracks the transfer of carbon atoms from
reactants to products. This concept was subsequently
generalized in the form of isotopomer mapping matrices
(IMMs) by Schmidt et al. (1997). The use of IMMs enables
the formulation of all isotopomer mass balances of a
metabolite pool as closed-form nonlinear algebraic equa-
tions. The variables in these representations include the
metabolic fluxes and the isotopomer distribution vectors
(IDVs) that quantify the fraction of each metabolite being
present in a particular isotope form. These modeling
developments were used to elucidate central metabolic
maps of E. coli (Schmidt et al., 1999).
A potential problem with the use of IMMs is that even

for a given flux distribution the identification of the
underlying IDVs yields a set of equations which remain
nonlinear. The elegant cumomer concept (Wiechert et al.,
1999) was later introduced to first prove that there exists a
unique IDV assignment that satisfies any given feasible flux
distribution and subsequently devise an IDV identification
procedure by solving a cascade of linear equations.
However, the nonlinear coupling between metabolic fluxes
and IDVs remains. An alternative method for reducing the
dimensional space of the isotopomer problem is the
concept of the theoretical bondomer (van Winden et al.,
2002). A limitation of this method of analysis is that it
requires the use of a single, uniformly labeled substrate.
Also, Forbes et al. (2001) introduced the isotopomer path
tracing concept which identifies all isotopomer paths that
produce an observable isotopomer. Most recently, the
elemental metabolic unit (EMU) framework has been
developed that dramatically reduces the number of
variables necessary to calculate the mass isotopomer
distribution of a measured metabolite (Antoniewicz et al.,
2007a).
The above-described modeling developments link iso-

topomer fractions (codified though a variety of different
variable sets) and metabolic flux information into a set of
algebraic equations that allowed for the straightforward
identification of IDVs given a feasible flux distribution.
The next step is to solve for the fluxes that best explain the
observable data. Most approaches rely on gradient-based
minimization searches that minimize the sum of the squares
of the differences between measurements and observations.
These include the Levenberg–Marquardt algorithm (Zhao
and Shimizu, 2003), the generalized reduced gradient
method (Klapa et al., 2003) and trust region methods
(Yang et al., 2004). Efforts to decrease the computation
time led to the development of analytical derivation
techniques for the Jacobian matrix (Wittmann and Heinzle,
2002). Alternatively, evolutionary algorithms such as
simulated annealing employed by Schmidt et al. (1999)
attempt to avoid being trapped in local minima.
A potential shortcoming of these approaches is that by
relying on essentially local optimization procedures they
may get trapped in sub-optimal solutions. To remedy this
global optimization approaches relying on branch and
bound (e.g., BARON, Tawarmalani and Sahinidis, 2004, a
deterministic global optimization package) coupled with
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convex relaxation of the problem have recently been used
to quantify the fluxes (Ghosh et al., 2005, 2006; Riascos
et al., 2005).

While the mathematical rigor gained by pinpointing the
globally optimal solution is noteworthy, the practical
benefit of this is diluted by the fact that experimental error
in the measurements may render the true flux distribution a
sub-optimal solution. This motivates the importance of
assessing and quantifying the impact of measurement
uncertainty on all obtained solutions. Earlier on, linearized
statistics were used (Dauner et al., 2001; Emmerling et al.,
2002; Wiechert and de Graaf, 1997). In addition, Monte-
Carlo stochastic simulation has been used to examine how
the elucidated fluxes change when uncertainty in the form
of normally distributed noise is added to the data (Forbes
et al., 2001; Wittmann and Heinzle, 2002; Zhao and
Shimizu, 2003). More recently new techniques were
introduced that allow for determination of the upper and
lower bounds that do not use local estimates of the
standard deviations and can therefore be non-uniform
(Antoniewicz et al., 2006). Instead, the flux whose
sensitivity is under investigation is increased step-by-step
until a threshold w2 value is reached.

A common feature key to all the studies so far is that
they focus on relatively small subsets of cellular metabo-
lism such as the tricarboxylic acid (TCA) cycle, the
pentose-phosphate pathway (PPP), or core metabolism
using a coarse description of metabolism with 15–75
reactions at most. This lumping of reaction steps not
only obscures detail but also could lead to the erroneous
conclusion that the available data are sufficient to
elucidate a unique flux distribution. Notably, when lumped
metabolic models are projected onto large-scale models
significant ambiguity in flux allocation is revealed. In-
herently, any bias in the generation of the lumped
metabolic model is thus propagated when the flux
distribution is elucidated. In addition, considering indivi-
dual parts of metabolism in isolation of the rest may lead
to the elucidation of flux distributions that are not
physiologically relevant. A consequence of this is the
inability to handle cofactor balancing which in many cases
is the bottleneck in the desired product generation. These
limitations motivated in this paper the construction of a
detailed isotopomer mapping network reaction consisting
of 238 reactions (350 fluxes) and 184 metabolites in E. coli

which fully accounts for cofactor balancing and biomass
drain requirements.

When faced with a much larger isotope mapping model,
the computational challenge of resolving fluxes becomes
much more pronounced, notably in the determination of
the global optimum. To this end, we have devised an
iterative optimization procedure for identifying a number
of flux distributions that are (local) minima to the
minimum square discrepancy problem. After enumerating
a multitude of solutions we can then use statistical analysis
and biological insight to home in to the physiologically
relevant one(s). Finally, by feeding all identified solutions
to an F-test based significance procedure, confidence levels
can be assigned to different flux distributions that are
supported by the data.
The specific experimental system examined is part of a

larger effort to develop strains of E. coli for the production
of terpenoid compounds. Terpenoids are a class of
isoprenoids often isolated from plants, and are currently
used for a variety of applications including anticancer and
antimicrobial drugs. For example, artemisinin is a powerful
natural antimalarial drug first isolated from wormwood
(Dhingra et al., 2000), and Taxol is a drug effective in
cancer treatment extracted from the Pacific yew (Cragg,
1998). Because compounds such as these are normally
produced in extremely small quantities, purification from
biological material is difficult and resource consuming.
Furthermore, chemical synthesis of terpenoids is expensive
and inefficient (Avery et al., 1992). Production of these
compounds in a microbial host would eliminate many
of these problems, and a strain of E. coli producing
amorphadiene, the precursor to artemisinin, as a model
terpenoid compound has recently been developed (Martin
et al., 2003). Flux analysis was performed in order to better
understand how the metabolic physiology of the organism
changes with the introduction of heterologous pathways,
and to evaluate how productivity could be improved.
In the following sections we first describe the isotopomer

model construction procedure, followed by the optimiza-
tion procedure and statistical analysis techniques. Com-
prehensive results are next presented for the amorphodiene
producing strain followed by a discussion and summary.

2. Materials and methods

2.1. Experimental system

The labeling experiments were performed in the chemo-
stat with amorphadiene-producing strains of E. coli. The
amorphadiene-producing strain (Martin et al., 2003)
harbored three plasmids: pMevT, expressing an exogenous
pathway for the synthesis of mevalonate from acetyl-CoA;
pMBIS, expressing an exogenous pathway for the conver-
sion of mevalonate to the isoprenoid precursor IPP as well
as the native E. coli isoprenoid genes idi and ispA; and
pADS, expressing the amorphadiene synthase gene for the
conversion of farnesyl diphosphate to amorphadiene.
Chemostat cultivations were carried in mineral salts

media (Neidhardt et al., 1974) supplemented with
thiamine, iron and micronutrients, using a 1-L benchtop
fermentor (Sartorius, Göttingen, Germany) at a working
volume of approximately 600mL. The carbon source used
was glucose, supplied at 20% uniformly 13C-labeled
(U-13C-glucose), with an overall concentration of 10.0 g/L.
pH was controlled at 7.0 by the addition of NaOH, the
temperature was set at 37 1C, and the vessel was aerated
with sterile air. The agitation rate was set at 500 rpm and
the dissolved oxygen level was at 450% of saturation at
all times. The vessel was inoculated with 30mL of culture
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already grown for several generations at the appropriate
label concentration. Once stable optical density was
reached, steady state was insured by waiting an additional
three vessel volume changes before sampling was begun.
Flowrate was maintained to give a dilution rate of 0.19 h�1,
and the average OD600 of the culture during the sampling
period was 3.9. After taking each 50mL sample, the vessel
was immediately filled to the original volume using fresh
media, and the system was allowed to return to steady state
(three volume changes) before the next sample.

Samples were harvested, total protein was extracted and
hydrolyzed and the resulting amino acids were derivatized
with N-(tert-butyldimethylsilyl)-N-methyl-trifluroacetamide
(TBDMS-FA) (Siddiquee et al., 2004). Derivatized amino
acids were analyzed using a Hewlett-Packard HP 5971A gas
chromatograph-quadrupole mass selective detector (electron
impact), equipped with a DB-5 column (Agilent Techno-
logies). Each derivatized sample was injected four times,
thus providing at least eight total data points for the
calculation of means and variances. Raw mass isotopomer
data were corrected for naturally occurring 13C in the
derivatization reagents and non-carbon isotopes in the entire
fragment using an infinite dimensional matrix calculus
method (Wahl et al., 2004). In addition, the aqueous phase
of culture supernatants was assayed for residual glucose
(2300 STAT Plus glucose analyzer, YSI Life Sciences,
Yellow Springs, Ohio) and acetate (kit from R-Biopharm
AG, Darmstadt, Germany), while the concentration of
amorphadiene was determined in the organic phase.
Amorphadiene was measured by first diluting 10ml of the
dodecane phase in 990ml ethyl acetate, and then quantifying
using GC–MS by comparison to an amorphadiene standard
run on GC–MS.

2.2. Construction of large-scale isotopomer mapping model

The isotopomer model was constructed using as a
starting point the large-scale stoichiometric model of
E. coli metabolism, iJR904 (Reed et al., 2003), which has
been successfully applied to predict the phenotypes of
various E. coli strains, both wild-type and mutant, under
certain conditions (Fong and Palsson, 2004; Ibarra et al.,
2002). The iJR904 model contains 931 intracellular
reactions although many of these reactions do not
contribute to the labeling patterns of the examined amino
acids. Accordingly, in this study, we developed a smaller,
though still biologically comprehensive, metabolic model
for the flux elucidation. The model reduction procedure
first involved removing from iJR904 all blocked reactions
defined as reactions that cannot carry flux during aerobic
growth on glucose due to stoichiometric limitations
(Burgard et al., 2004). Examples of blocked reactions
include transporter reactions for components absent from
the media such as xylose, glycerol, or fructose, and
reactions involved in their utilization. This enabled the
removal of nearly one third of the reactions from iJR904.
In addition, reactions in the cell envelope, membrane lipid,
nucleotide, and cofactor biosynthetic pathways were not
explicitly included in the model enabling the removal of
approximately another one third of the reactions from
iJR904. However, because these biosynthetic pathways can
affect amino acid labeling patterns by draining precursor
metabolites away from central metabolism, the biomass
equation, which was based largely on the one described in
Edwards and Palsson (2000), was modified to account for
these additional drains on central metabolism. Lastly, we
assumed that the catabolic reactions in the nucleotide
salvage pathways do not contribute significantly to the
labeling patterns of the amino acids.
The model constructed for this study contained 238

reactions (including biomass) and 184 metabolites, as well
as 32 exchange fluxes. This total includes a set of reactions
absent from iJR904 that enable amorphadiene production
via the non-native mevalonate pathway (Martin et al.,
2003). Reversible reactions were broken into their forward
and backward components to enable the investigation of
how reaction reversibility affects the labeling patterns of
the amino acids. The network contained 80 such reversible
reactions, bringing the total number of flux describing
variables to 350. The model included all reactions of
Embden–Meyerhoff–Parnas (EMP) and Entner–Doudoroff
(ED) glycolysis, the tricarboxcylic acid (TCA) cycle, and
the PPP. In addition, all of the anaplerotic reactions
and amino acid biosynthesis and degradation pathways
were included. Finally, the model enforced the explicit
balancing of all metabolic cofactors (e.g., ATP, NADH,
NADPH) by including reactions for energy generation
via substrate-level and oxidative phosphorylation as well as
transhydrogenase activity.
The AMMs, which describe the transfer of carbon atoms

from the reactants to products (Zupke and Stephanopou-
los, 1994), were calculated using Pipeline PilotTM (SciTegic
Inc., San Diego, CA), a high-throughput data analysis and
mining system for chemoinformatic applications, using a
structural matching algorithm. AMMs are matrices where
the columns represent carbon atoms in the reactant and
the rows represent carbon atoms in the product. The
numbering scheme is consistent with the order of atoms
represented in the molecule (.mol) file. There is one AMM
per reactant–product pair. The input to the program was a
list of reactions with associated reactants and products
and their KEGG ID numbers (http://www.genome.jp/
kegg/ligand.html). The program then extracted the
appropriate molecule files (.mol format) and calculated
the predicted AMM as well as a score indicating the
quality of the match. The above procedure was applied
for the reactions in the E. coli model described above,
and the results checked manually based on known
biochemistry. Approximately 80% of the auto-generated
AMMs were found to be correct while the remaining
were subsequently corrected manually. These corrected
AMMs are summarized in compact atom transformation
form, using letters to represent the carbon atoms, in the
Supplementary material.

http://www.genome.jp/kegg/ligand.html
http://www.genome.jp/kegg/ligand.html
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Fig. 1. Pictoral representation of the variable Iik and the parameter MDV for a sample molecule. For a molecule, i, that contains three carbons there are

23, i.e., 8, different labeling patterns that make up the k members of the isotope fraction Iik. The relative fraction of each is contained in the Iik. During

GC–MS, the molecule is derivitized and can be fragmented into different-sized species, f, that are then analyzed. The mass distribution vector, MDV,

contains the information about the relative fractions of each fragment that contains m labeled carbons. Because only the total mass of each instance of a

fragment is determined, the mass distribution vector is made by collecting various isotopomers by mass, as shown for two different fragments.
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IMMs were then calculated directly from the AMMs
using the algorithm introduced by Van Dien et al. (2003).
IMMs indicate the possible product isotopomers that
can be created from each reactant isotopomer (Schmidt
et al., 1997). IMMs were used in the isotopomer balance
equations to determine the IDVs for each metabolite.
The numbering scheme shown in Fig. 1 is used for the
isotopomers.

The final step of the initial analysis was to calculate the
mass distribution vector (MDV) for all observed products
from the mass spectrometry data (Wittmann and Heinzle,
1999). For each amino acid that was detected, elements of
the IDV with the same number of labeled carbons were
summed to yield an element of the MDV, as shown in
Fig. 1. For amino acid fragments (for example, a common
fragment is missing the carboxy-terminal carbon), the
procedure was modified to include only the relevant carbon
atoms. The process was facilitated by a Matlab program
that makes use of matrix algebra (Van Dien et al., 2003;
Wittmann and Heinzle, 1999).

2.3. Mathematical analysis of flux elucidation

The problem of calculating the fluxes and labeling
patterns for a given set of GC–MS data is formulated as
a nonlinear optimization problem (FluxCalc) that is given
in Appendix A. This problem minimizes the sum of the
variance-weighted differences between the experimental
data and the calculated values for the MDVs of the
measured amino acid fragments by solving isotope
balances (see Fig. 2). (FluxCalc) is solved multiple times
using CONOPT version 3 accessed within the GAMS
modeling environment. The uniformly labeled glucose was
modeled to be 99% isotopically pure, with the 12C
impurities being equally distributed among each of the
carbons. Only isotope forms having five labeled carbons
were considered for the impurities; each of the six
possibilities was equally likely. The initial flux distributions
are provided by solving (FluxInit) that generates a set
of random feasible flux distributions; it is also briefly
described in Appendix A, using CPLEX version 10, also
accessed within GAMS. Given to the non-convex nature of
(FluxCalc), the size of the resulting formulation and the
experimental variability in the experimental MDV, we
pursue the identification of as many local optima solutions
as possible.

2.4. Probability distribution of least squares objective

function

The iterative procedure described in the previous section
identifies many different local optima with potentially
highly varying flux distributions. Due to the variability
and measurement imprecision of the mass spectrometry
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Fig. 2. The isotope labeling of species is governed by an isotopomer distribution vector balance and the isotope mapping matrix. Two reactions, j1 and j2,

form the species E; the first is unimolecular and the second is bi-molecular. E is also consumed by two reactions j3 and j4; again, the first is unimolecular

and the second is bi-molecular. The isotope labeling of E is given by IEk. Each carbon-containing compound has an associated isotope fraction for each

labeling pattern, Iik. The isotope labeling balance of the system is at the top, with the first term of the right-hand side of Eq. (3) on the left and the second

term on the right. The product symbol
Q

is used for term by term multiplication. The isotope labeling, Iik, and the isotope mapping matrix,IMM
j

i0!i;k0!k
,

that describes the contributions from the k0 isotopes forms of the reactant i0 on the k isotopes forms of product E are shown for the two production

reactions. Note that the unimolecular reaction j1 creates bilinear terms, and the bi-molecular reaction j2 creates trilinear terms, as indicated. For the

consumption terms, on the right, only the overall labeling patterns of E are considered.
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measurements that yield MDV
i;exp
f ;m;r, the key question is how

many (if any) of these flux distributions are statistically
indistinguishable representations of the metabolic state of
the system. To address this question, validation of the fit
was performed using a w2-based goodness-of-fit test.
2.5. Identification of lower/upper bounds on elucidated

fluxes given an objective value cutoff

Upon identifying the top scoring solution, a confidence
level (i.e., 95%) may be imposed using the method from
Antoniewicz et al. (2006) to determine an objective
function cutoff. The flux ranges can be calculated by
maximizing/minimizing each net flux and exchange flux
separately subject to the constraints of formulation
(FluxCalc) along with the following limit on the objective
function: z(l)pzcutoff to obtain the upper and lower bounds

(nU;isotopomer
j and nL;isotopomer

j , respectively). We refer to this

formulation as (FluxRange). As in the case of (FluxCalc)
formulation, (FluxRange) is non-convex. Therefore, it is
solved iteratively from multiple initial guesses and only the
best solutions are recorded. Fluxes whose maximization
and minimization under (FluxRange) yield exactly the
same value are referred to as fully resolved. Fluxes that
yield solutions of the (FluxRange) formulation that are
identical to the upper and lower bounds found by the
relaxed problem for which only overall mass balance is
considered (nU;stoichiometry
j and nL;stoichiometry

j , respectively) are
referred to as unresolved, whereas fluxes that yield narrower
ranges are referred to as partially resolved. These flux
ranges were quantified by defining the variable d, the
degree of resolution:

dj ¼ 1�
ðnUj � nLj Þ

isotopomer

ðnUj � nLj Þ
stoichiometry

; 8jjðnUj � nLj Þ
stoichiometrya0.

(1)

The higher the value of d is for a flux, the greater its
resolution is. Thus, the degree of resolution is equal to zero
for those fluxes that are unresolved, between zero and one
for those that are partially resolved, and equal to one for
those that are fully resolved.

3. Results and discussion

Three macroscopic measurements from the chemostat
experiment were used to constrain the system. These
measurements are comprised the initial glucose concentra-
tion minus the residual glucose concentration (6.170.2 g/L),
the cell density (1.670.2 g/L), and the final amorphadiene
concentration (0.07770.005 g/L) all of which were taken
in replicate. The dilution rate was held constant at
0.19h�170.00h�1. The glucose entering the system was
assumed to be converted to biomass, amorphadiene, CO2,
or acetate. Although the fluxes towards biomass and
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Table 1

Fragments of the amino acids experimentally measured by GC–MS and

simulated using the IMM models

Amino acida Monitored

ions

Amino acid

carbon atomsb
Fragment

Val-159 186–192 1-2-4-5 M-C7H15O2Si

Val-85 260–266 1-2-4-5 M-C5H9O

Val-57 288–295 1-2-3-4-5 M-C4H9

Gly-85 218–221 2 M-C5H9O

Gly-57 246–249 1-2 M-C4H9

Ala-85 232–235 1-3 M-C5H9O

Ala-57 260–264 1-2-3 M-C4H9

Glu-159 R 330–335 1-2-4-5 M-C7H15O2Si

Glu-85 R 404–409 1-2-4-5 M-C5H9O

Glu-57 R 432–438 1-2-3-4-5 M-C4H9

Asp-159 R 316–320 1-2-4 M-C7H15O2Si

Asp-57 R 418–423 1-2-3-4 M-C4H9

Asp-15 R 460–465 1-2-3-4 M-CH3

Met-159 218–223 1-3-4-5 M-C7H15O2Si

Met-85 292–297 1-3-4-5 M-C5H9O

Met-57 320–325 1-2-3-4-5 M-C4H9

Leu-159 200–205 1-2-4-5-6 M-C7H15O2Si

Leu-85 274–280 1-2-4-5-6 M-C5H9O

Ile-159 200–205 1-2-4-5-6 M-C7H15O2Si

Ile-85 274–280 1-2-4-5-6 M-C5H9O

Pro-159 184–189 1-3-4-5 M-C7H15O2Si

Ser-159 R 288–291 1-3 M-C7H15O2Si

Ser-85 R 362–365 1-3 M-C5H9O

Ser-57 R 390–394 1-2-3 M-C4H9

Thr-85 R 376–379 1-2-4 M-C5H9O

Thr-57 290–294 1-2-3-4 M-C4H9

Thr-57 R 404–408 1-2-3-4 M-C4H9

Phe-159 234–243 1-2-3-4-5-6-7-9 M-C7H15O2Si

Phe-85 308–317 1-2-3-4-5-6-7-9 M-C5H9O

Phe-57 336–345 1-2-3-4-5-6-7-8-9 M-C4H9

Lys-159 R 329–335 1-2-4-5-6 M-C7H15O2Si

aThe number after the amino acid is the size of the fragment removed

from the molecule with both N and C groups derivatized. An R following

a fragment denotes that the R-group is also derivatized.
bThe carbon numbering follows that in the .mol file from the KEGG

database (Kanehisa et al., 2006). For those fragments that have a removed

C, it corresponds to that of the carboxyl.
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amorphadiene were fixed based on the experimental
measurements, the employed metabolic model was free
to appropriately partition the fluxes towards CO2 and
acetate while attempting to match the observed labeling
patterns of the amino acids. The measured acetate flux
(10.2–12.8mM/h) was not used as an explicit constraint on
the system, but rather was left as a final consistency check.
All computational results are reported using a basis glucose
uptake rate of 10mM/h.

Using GC–MS, we observed the mass distributions
(MDV) for fragments of 13 amino acids collected from
two samples taken at different time points. Each deriva-
tized sample was injected four times and the standard
deviations for each sample and an overall standard
deviation were calculated. In general, the overall standard
deviations of the mass distributions among replicate
measurements were less than the instrument error of
0.4%, which is consistent with previous estimates of
instrument error (Wittmann et al., 2002). Next, the
measurement error was estimated as the quadrature
addition of the instrument error and the standard deviation
(Taylor, 1990). After correcting for naturally occurring
13C, we validated the internal consistency of the MDV
distributions of the fragments for each amino acid.

The 32 fragments used for MFA are listed in Table 1.
These fragments contain 162 mass entries giving
162�32 ¼ 130 independent mass measurements for use in
the MFA. The mean values of the experimental mass
measurements and corresponding estimates of the mea-
surement error are given in Table 2. The best computa-
tionally derived MDV values (weighted residual sum of
squares ¼ 56.4) are also given for each fragment. Although
the unweighted differences are quite small, we performed a
goodness-of-fit analysis. The isotope model contains 130
free fluxes. Using direct experimental flux measurements,
three internal fluxes (glucose uptake, amorphadiene pro-
duction, and biomass production) and 22 exchange fluxes
were set, giving a total of 105 independent flux variables
for (FluxCalc) to determine. A w2 distribution with
130�105 ¼ 25 degrees of freedom yields a maximum
allowable objective value of 37.7, at the 95% confidence
level. Thus the model fit is statistically not acceptable
(P(w2[25]o56.4) ¼ 0.9997) implying significant errors in
the measurements. As seen in the table, most of the error
lies in the serine and lysine fragments. A normal
probability plot of the weighted residuals was linear.

Given that no single solution emerged as a clear-cut
candidate for the correct flux distribution, we set out to
determine if our model contained degrees of freedom that
had no bearing on the carbon labeling and thus made the
goodness-of-fit test too conservative. First, we tested
whether the observed SSE are indicative of true elucidation
of metabolic fluxes and not an artifact due to the numerical
scaling of the problem. To do this we generated random
but feasible flux distributions and then calculated the
corresponding SSE and contrasted them against the ones
obtained for the solutions obtained with (FluxCalc). As
seen in Fig. 3A, the root mean square error for the inferred
fluxes was always much smaller than those for randomly
generated feasible fluxes. This lack of overlap suggested
that the obtained low SSE values were not caused by the
numerical scaling of the problem but instead were driven
by correctly apportioning fluxes in accordance with the
observed experimental data and suggested that the good-
ness-of-fit test might have been too conservative.
Thus, the next step was to characterize the tightness of

elucidation (i.e., resolvability) of each flux in the network.
First, we calculated the variability in all fluxes subject to
only network stoichiometry, the three fixed macroscopic
measurements (i.e., glucose, biomass, and amorphadiene),
and the fixed exchange fluxes. This involved solving the
(FluxRange) formulation without imposing the isotopomer
balance constraints. The flux ranges for central metabolism
(see Fig. 4A) are provided in the third and fourth columns
of Table 3 while the ranges for the entire network are
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Table 2

Experimentally measured and simulated mass distributions (mol %) of amino acid fragments

Fragment M+0 M+1 M+2 M+3 M+4 M+5 M+6 M+7 M+8 M+9

Val-159 Measa 61.970.6 5.370.6 27.670.5 2.170.4 3.170.4

Simb 62.2 5.6 27.9 1.2 3.1

Val-85 Meas 61.770.5 6.070.6 27.870.5 1.470.4 3.170.4

Sim 62.2 5.6 27.9 1.2 3.1

Val-57 Meas 59.670.6 7.570.5 16.470.7 12.970.6 1.170.4 2.670.4

Sim 59.5 7.5 16.1 13.1 1.1 2.7

Gly-85 Meas 80.970.5 19.270.5

Sim 80.6 19.4

Gly-57 Meas 77.870.5 5.670.5 16.770.4

Sim 77.9 5.6 16.5

Ala-85 Meas 78.770.5 3.670.6 17.870.5

Sim 78.9 3.5 17.6

Ala-57 Meas 75.070.8 6.270.8 3.770.8 15.170.7

Sim 75.5 6.1 3.4 15.1

Glu-159 R Meas 58.170.7 13.571.1 23.370.7 2.970.5 2.270.4

Sim 58.2 13.4 23.4 2.8 2.2

Glu-85 R Meas 58.170.8 13.671.2 23.470.7 2.770.5 2.170.4

Sim 58.2 13.4 23.4 2.8 2.2

Glu-57 R Meas 51.970.7 15.370.8 21.470.4 8.170.4 2.370.4 1.170.4

Sim 52.1 15.1 21.5 7.9 2.3 1.0

Asp-159 R Meas 65.770.6 16.170.7 11.970.4 6.270.5

Sim 66.1 16.2 11.8 5.9

Asp-57 R Meas 60.770.5 16.570.5 10.670.6 9.670.5 2.770.4

Sim 60.9 16.5 10.4 9.7 2.5

Asp-15 R Meas 60.870.6 16.370.5 10.670.6 9.670.5 2.870.5

Sim 60.9 16.5 10.4 9.7 2.5

Met-159 Meas 53.670.5 25.870.5 12.770.5 6.970.5 1.170.4

Sim 53.3 25.9 12.6 7.0 1.1

Met-85 Meas 53.271.0 25.870.6 12.870.5 7.070.6 1.270.7

Sim 53.3 25.9 12.6 7.0 1.1

Met-57 Meas 49.270.6 24.970.6 11.670.5 9.870.5 4.070.5 0.570.4

Sim 49.1 25.1 11.6 9.8 3.9 0.5

Leu-159 Meas 50.570.5 15.970.6 23.970.5 6.370.4 2.970.4 0.670.4

Sim 50.1 16.6 23.6 6.4 2.7 0.6

Leu-85 Meas 50.370.5 16.470.5 23.770.5 6.370.4 2.870.4 0.670.4

Sim 50.1 16.6 23.6 6.4 2.7 0.6

Ile-159 Meas 52.070.5 15.170.7 21.770.4 7.970.5 2.370.4 1.070.4

Sim 52.1 15.3 21.5 7.9 2.3 1.0

Ile-85 Meas 51.570.5 15.570.7 21.770.4 8.070.4 2.370.4 1.070.4

Sim 52.1 15.3 21.5 7.9 2.3 1.0

Pro-159 Meas 58.870.7 13.371.1 23.170.7 2.670.5 2.170.5

Sim 58.2 13.4 23.4 2.8 2.2

Ser-159 R Meas 77.570.7 6.270.8 16.370.7

Sim 78.3 4.7 17.0

Ser-85 R Meas 77.470.8 6.270.9 16.470.7

Sim 78.3 4.7 17.0

Ser-57 R Meas 75.070.5 6.170.5 3.770.5 15.270.5

Sim 75.7 5.7 3.4 15.2

Thr-85 R Meas 66.070.5 16.470.7 11.770.5 5.970.5

Sim 66.0 16.4 11.8 5.8

Thr-57 Meas 61.070.5 16.570.6 10.370.5 9.570.5 2.770.4

Sim 60.8 16.6 10.5 9.6 2.5

Thr-57 R Meas 60.670.5 16.770.5 10.570.6 9.670.5 2.670.4

Sim 60.8 16.6 10.5 9.6 2.5

Phe-159 Meas 43.670.7 10.770.7 20.970.7 9.570.7 8.870.7 3.170.7 2.770.7 0.470.7 0.370.7

Sim 43.4 11.3 19.9 9.3 9.1 3.4 2.9 0.4 0.3

Phe-85 Meas 43.470.7 10.870.7 21.070.7 9.470.7 8.770.7 3.170.7 2.670.7 0.370.7 0.670.7

Sim 43.4 11.3 19.9 9.3 9.1 3.4 2.9 0.4 0.3

Phe-57 Meas 42.470.5 11.370.4 12.370.4 16.770.4 8.570.4 4.170.4 2.970.4 1.370.4 0.370.4 0.370.4

Sim 42.0 11.6 12.1 16.1 9.0 4.2 3.0 1.4 0.4 0.3

Lys-159 R Meas 51.970.8 15.571.1 21.670.7 7.970.7 2.270.7 1.170.7

Sim 50.1 17.8 21.8 7.2 2.3 0.7

aMeas are the values measured experimentally, reported as mean 7 experimental error. The mass distributions are corrected for naturally occuring

isotopes.
bSim are the values simulated by the isotope model, reported for the lowest objective (56.4).
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Fig. 3. Inferred fluxes and propagation of error. Panel (A) shows that the

objective values determined for inferred fluxes do not overlap those from

randomly generated feasible fluxes, suggesting that the fit of the data

requires correctly apportioning fluxes in accordance with the observed

experimental data. The same total of solutions occur for each histogram.

Panel (B) shows that these solutions cluster tightly for the most part and

that many of solutions could be statically acceptable once experimental

error is propagated onto the objective values. Those to the left of the

maximal w2 value (solid vertical line) are retained for use as inputs into

(FluxRange) whereas those to the right are discarded.
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available as supplementary material. Table 4 reveals that
125 fluxes of the total 270 net fluxes are fixed by
stoichiometry alone. However, as expected, nearly all
central metabolic fluxes span wide ranges of values
motivating the need for 13C-based MFA.

We next reran the (FluxRange) formulation after
including the isotopomer balancing constraints to deter-
mine (i) which fluxes (if any) were fully resolved; (ii) how
many of them were only partially resolved; and (iii) if there
were any remaining fluxes in the model that are completely
unaffected by the isotopomer data. A cut-off objective
value of 66.0 was determined for (FluxRange) as the 95%
percentile using an F-test statistic (Kleijn et al., 2006). The
calculated flux ranges for central metabolism under this
scenario are provided in the fifth and sixth columns of
Table 3, while the remaining flux ranges are included as
supplementary material. The identified classifications of the
fluxes based on their resolution status are summarized in
Table 4. Of the 145 net fluxes that were not fixed due to
stoichiometry, 131 were partially resolved with bound
ranges spanning magnitudes from 0.2% to 98% of the flux
range allowable by the stoichiometry alone. These ranges
can be characterized by defining the degree of resolution, as
shown in Fig. 5. Examples of partially resolved fluxes with
significantly narrower (and more biologically realistic)
ranges after the imposition of the isotopomer balancing
constraints included the PPP reactions (RPE, RPI, TKT1,
TKT2, and TAL), the TCA cycle reactions (ACONT,
ICDHy, AKGD, and SUCOAS), and the anaplerotic
reactions (ICL, MALS, PPC, and PPCK).
Closer investigation of columns five and six of Table 4

reveals that additional manual intervention is needed
when resolving fluxes based on a large model, particularly
in cases where there exist pathways with redundant
labeling patterns. For example, the labeling pattern of
pyruvate is unaffected regardless of whether glucose is
metabolized via EMP glycolysis (GAPD, PGK, PGM,
ENO, and PYK) or via the methylglyoxal pathway
(MGSA, LGTHL, GLYOX, and LDH_D2). In fact, one
feasible, though obviously unrealistic, flux distribution
involved a high gluconeogenic flux (�20mM/h) coupled
to an even higher flux (�40mM/h) through the methyl-
glyoxal pathway. In cases such as these, care must be
taken to prune the model using biological intuition
without compromising its ability to match the experimental
labeling observations. Although this involves making
assumptions about the current metabolic system, it
provides a systematic way of cataloging these assumptions
that can be later verified via expression measurements,
enzyme assays, or additional labeling studies with different
labeled substrates. Candidate reactions for removal
must have (i) flux ranges that start at zero and (ii) no
effect on the objective value of any (FluxCalc) solutions
upon removal. Thus by using information from the
large-scale model, reactions can be identified whose
removal does not affect the quality of agreement with the
data. This removal of 33 fluxes in effectively redundant
pathways from the model (see Table 5) selected using
biological intuition and the requirement of not worsening the

objective led to the derivation of a ‘reduced’ model.
We note that with the removal of these reactions that
have no bearing on the effective carbon labeling, given
the substrate labeling, that the model contains fewer
degrees of freedom. There are 99 free fluxes in the
reduced model, giving a total of 74 independent flux
variables for (FluxCalc) to determine. An updated good-
ness-of-fit test (having 130�74 ¼ 56 degrees of freedom) is
passed, with a maximum allowable objective of 74.4. Thus,
we can accept the reduced model as statically valid
(P(w2[56]o56.4) ¼ 0.5401).
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As shown in Fig. 3B, most of the 521 inferred optima had
objective values in the range 56–107 with most (all but 100)
outside the significance level of 74.4. The lowest objective
value obtained was 56.4 which occurred six times (for
comparison, 56.5 occurred 20 times). A total of 49 different
optimum values were observed when rounding to 0.1; 12 of
these were below the statistical cutoff. Given the plethora of
identified locally minimum solutions with very similar
objective function values acceptable by w2 criteria but with

quite different flux distributions, the next step was to deduce
flux ranges in equivalent solutions given the experimental
error in the measurements. This result further validated the
decision to identify as many statistically equivalently
solutions as possible rather than homing in on a single
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Reapplication of the (FluxRange) formulation, using an

updated cutoff of 60.6 owing to the increased degrees of
freedom, lead to far more biologically realistic ranges for the
glycolytic fluxes GAPD, PGK, PGM, and ENO as shown in
columns seven and eight of Table 3. Note that this reduced
model also depends upon the specific experimental labeling
conditions; that is, a flux that is redundant for one
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a tighter flux range for the oxidative branch of the PPP
(G6PDHy, PGL, and PGDH). Improvement in the overall
degree of resolution was also observed for this reduced
model as seen in Fig. 5. We again observed that some fluxes
that had consistent values for the optimum solutions (e.g.,
ICL had a value of zero) did in fact have a range of values
they could take when accounting for measurement noise,
thus emphasizing the importance of range calculations. Of
especial note is the acetate transport flux. Although the
allowable stoichiometric range remained the same as for the
full model (from 0 to 12.3mM/h), the allowable range for
the isotopomer model shrank to a range from 8.4 to
11.5mM/h. This narrow range was in good agreement with
the experimentally observed values (10.2–12.8mM/h), and
thus served as a validation of the model.
Finally, we tested the value added by using a relatively

large-scale model of metabolism in contrast to existing
metabolic representations used in similar efforts (Christensen
and Nielsen, 1999; Fischer et al., 2004; Ghosh et al.,
2005). Instead of choosing one such representation, we
decided to simply prune additional reactions from our
model to make it resemble previously employed metabolic
representations. In contrast with the reduced model
described above, the construction of the ‘basic’ model
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Table 3

Flux ranges

Abbreviationa Subsystem Relaxed modelb,c Full model Reduced model Basic model

Min Max Min Max Min Max Min Max

ICL Anaplerotic reactions 0.0 12.3 0.0 1.0 0.0 0.4 0.0 0.0

MALS Anaplerotic reactions 0.0 12.3 0.0 1.0 0.0 0.4 0.0 0.0

ME1x Anaplerotic reactions 0.0 75.9 0.0 4.0 0.0 3.7 0.0 0.0

PPA Anaplerotic reactions 0.8 129.4 0.8 107.2 0.8 80.1 0.8 83.1

PPC Anaplerotic reactions 0.0 130.1 1.1 6.8 1.1 5.5 1.4 5.5

PPCK Anaplerotic reactions 0.0 128.7 0.0 5.4 0.0 4.0 0.0 4.0

ACONT Citrate cycle (TCA) 0.5 12.8 0.8 4.3 0.9 3.2 0.9 3.1

AKGD Citrate cycle (TCA) 0.0 12.3 0.0 2.7 0.0 2.7 0.1 2.6

CITL Citrate cycle (TCA) 0.0 128.7 0.0 128.6 0.0 128.7 0.0 0.0

CS Citrate cycle (TCA) 0.5 141.0 0.8 109.4 1.4 82.4 0.9 3.1

FRD2 Citrate cycle (TCA) 0.0 68.7 0.0 58.6 0.0 0.0 0.0 0.0

FRD3 Citrate cycle (TCA) 0.0 68.7 0.0 58.6 4.0 41.5 0.0 0.0

FUM Citrate cycle (TCA) 0.4 281.5 1.0 230.0 0.7 14.3 0.8 5.5

ICDHy Citrate cycle (TCA) 0.5 12.8 1.1 3.2 0.5 3.2 0.9 3.1

MDH Citrate cycle (TCA) �59.1 281.5 �1.4 230.0 �1.1 14.3 0.8 5.5

SUCD1i Citrate cycle (TCA) 0.0 77.3 2.6 60.5 5.1 43.8 0.4 2.6

SUCOAS Citrate cycle (TCA) �12.3 18.4 �4.0 0.1 �2.6 11.6 �2.5 0.0

ENO Glycolysis/gluconeogenesis �44.3 18.8 �40.3 18.4 16.5 18.4 16.6 18.8

FBA Glycolysis/gluconeogenesis �0.3 9.6 0.2 9.6 7.7 9.6 7.9 9.6

FBP Glycolysis/gluconeogenesis 0.0 128.7 0.0 107.3 0.0 79.8 0.0 0.0

G1PP Glycolysis/gluconeogenesis 0.0 128.7 0.0 107.3 0.0 0.0 0.0 0.0

GAPD Glycolysis/gluconeogenesis �32.3 19.0 �20.1 19.0 17.2 19.0 17.3 19.0

GLCP Glycolysis/gluconeogenesis 0.0 128.7 0.0 107.3 0.0 0.0 0.0 0.0

GLCS1 Glycolysis/gluconeogenesis 0.1 128.7 0.1 107.4 0.1 0.1 0.1 0.1

GLGC Glycolysis/gluconeogenesis 0.1 128.7 0.1 107.4 0.1 0.1 0.1 0.1

HEX1 Glycolysis/gluconeogenesis 0.0 136.2 0.0 115.9 0.0 10.0 0.0 10.0

PDH Glycolysis/gluconeogenesis 0.0 27.1 0.0 16.4 0.0 16.4 0.0 15.3

PFK Glycolysis/gluconeogenesis 0.0 138.3 0.0 116.4 7.8 88.3 7.9 9.6

PGI Glycolysis/gluconeogenesis 0.0 9.9 0.0 9.9 4.4 9.9 4.7 9.9

PGK Glycolysis/gluconeogenesis �32.3 19.0 �20.1 19.0 17.2 19.0 17.3 19.0

PGM Glycolysis/gluconeogenesis �44.3 18.8 �42.3 18.4 16.5 18.4 16.6 18.8
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PPS Glycolysis/gluconeogenesis 0.0 128.7 0.0 108.4 0.0 79.8 0.0 0.0

PYK Glycolysis/gluconeogenesis 0.0 144.2 0.0 112.3 3.5 92.7 4.6 16.6

TPI Glycolysis/gluconeogenesis �41.6 9.6 �29.4 9.6 7.8 9.6 7.9 9.6

ATPS4r Oxidative phosphorylation �24.2 108.4 �24.2 106.6 �24.2 60.3 �24.2 63.5

CYTBO3 Oxidative phosphorylation 27.9 77.2 31.1 77.2 31.1 43.7 31.1 44.2

FDH2 Oxidative phosphorylation 0.0 27.1 0.0 27.1 0.0 15.3 0.0 15.3

LDH_D2 Oxidative phosphorylation 0.0 68.7 0.0 54.5 0.0 0.0 0.0 0.0

NADH10 Oxidative phosphorylation 0.0 68.7 0.0 58.8 0.0 0.0 0.0 0.0

NADH12 Oxidative phosphorylation 0.0 68.7 0.0 54.8 0.0 35.0 0.0 42.1

NADH6 Oxidative phosphorylation 0.0 68.7 0.0 53.7 0.0 35.0 0.0 42.1

NADH7 Oxidative phosphorylation 0.0 68.7 0.0 58.8 0.0 0.0 0.0 0.0

NADH8 Oxidative phosphorylation 0.0 68.7 0.0 58.8 3.0 41.5 0.0 0.0

NADH9 Oxidative phosphorylation 0.0 68.7 0.0 58.3 0.0 0.0 0.0 0.0

POX Oxidative phosphorylation 0.0 27.1 0.0 16.1 0.0 15.3 0.0 0.0

SUCD4 Oxidative phosphorylation �0.1 77.2 2.3 60.4 5.0 43.7 0.3 44.2

THD2 Oxidative phosphorylation 0.0 257.3 0.0 214.8 0.0 159.7 0.0 164.7

THD5 Oxidative phosphorylation 0.0 272.6 0.0 229.6 0.0 163.9 0.0 169.9

TRDR Oxidative phosphorylation 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

EDA Pentose-phosphate cycle 0.0 9.9 0.0 9.9 0.0 0.0 0.0 0.0

G6PDHy Pentose-phosphate cycle 0.0 9.9 0.0 9.9 0.0 5.5 0.0 5.2

PGDH Pentose-phosphate cycle 0.0 9.9 0.0 5.5 0.0 5.5 0.0 5.2

PGDHy Pentose-phosphate cycle 0.0 9.9 0.0 9.9 0.0 0.0 0.0 0.0

PGL Pentose-phosphate cycle 0.0 9.9 0.0 9.9 0.0 5.5 0.0 5.2

RPE Pentose-phosphate cycle �0.2 6.4 �0.2 4.5 �0.2 3.4 �0.2 3.2

RPI Pentose-phosphate cycle �3.5 �0.2 �2.6 �0.2 �2.1 �0.2 �1.9 �0.2

TAL Pentose-phosphate cycle �0.1 3.2 �0.1 2.3 �0.1 1.8 �0.1 1.7

TKT1 Pentose-phosphate cycle �0.1 3.2 �0.1 2.3 �0.1 1.8 �0.1 1.7

TKT2 Pentose-phosphate cycle �0.2 3.1 �0.2 1.7 �0.2 1.6 �0.2 1.6

ACt6 Transport, extracellular �12.3 0.0 �11.6 0.0 �11.5 �8.4 �11.5 0.0

GLCpts Transport, extracellular 0.0 10.0 0.0 10.0 0.0 10.0 0.0 10.0

GLCt2 Transport, extracellular 0.0 10.0 0.0 10.0 0.0 10.0 0.0 10.0

AMDNt Amorphadiene 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

BIOMASS Biomass 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

aAll flux values have units of mM/h and are relative to a glucose uptake rate of 10mM/h.
bThe relaxed model only uses stoichiometric data and not the 13C labeling data and serves as the allowable bounds for the fluxes. Shown here is the relaxed model of the full model.
cFlux abbreviations correspond to the names in Reed et al. (2003) and are shown in Fig. 4.
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Fig. 5. Flux degree of resolution. The proportion of fluxes with improved

(higher) degrees of resolution considerably increases for the reduced model

(open rectangles), as compared with the full model (closed rectangles),

once ambiguities in the flux elucidations are identified and the network is

selectively pruned with biological insight.

Table 4

Flux resolution classification

Number of fluxes

Full Reduced Basic

Set by experimental conditions 3 3 3

Pruned by experimental conditions/reductions 22 51 61

Stoichiometrically fixed 100 94 96

Fully resolved 0 3 0

Partially resolved 131 110 88

Unresolved 14 9 22

Table 5

Fluxes manually set or pruned

Abbreviationa Value Model

EX_glc �10 All

BIOMASS_Ec 0.46 All

EX_amdn 0.1114 All

EX_ala-L, EX_arg-L, EX_asn-L, EX_asp-L,

EX_cys-L, EX_etoh, EX_for, EX_gln-L,

EX_glu-L, EX_gly, EX_ile-L, EX_lac-L,

EX_leu-L, EX_lys-L, EX_met-L, EX_phe-L,

EX_pro-L, EX_ser-L, EX_succ, EX_thr-L,

EX_tyr-L, EX_val-L

0 All

MGSA, LGTHL, GLYOX, LDH_D2 0 Reduced,

basic

PGDHY, EDA 0 Reduced,

basic

FRD2 0 Reduced,

basic

ADHEr_b, ADHEr_f 0 Reduced,

basic

LDH_D_b, LDH_D_f 0 Reduced,

basic

G1PP 0 Reduced,

basic

METAT, ADMDC, SPMS, MTAN, MTRK,

MTRI, MDRPD, DKMPPD, DKMPD2,

P5CR, UNK3

0 Reduced,

basic

GLCP 0 Reduced,

basic

ASPT 0 Reduced,

basic

SERD_L 0 Reduced,

basic

TRPAS1 0 Reduced,

basic

FTHFD 0 Reduced,

basic

NADH7, NADH9, NADH10 0 Reduced,

basic

PGMT_f 0 Reduced,

basic

VALTA_f 0 Reduced,

basic

ME1x 0 Basic

ICL, MALS 0 Basic

POX 0 Basic

FBP 0 Basic

PPS 0 Basic

CITL 0 Basic

NADH8, FRD3 0 Basic

THRA_f, THRA_b 0 Basic

FBA_b, GAPD_b, PGK_b, PGM_b, ENO_b,

SUCOAS_f, ICDHy_b, ACONT_b,

G6PDHy_b, ASPTA1_f, PGI_b

0 Basic

aFlux abbreviations correspond to the names in Reed et al. (2003).

EX_amdn is the amorphadiene exchange flux. Forward and

backwards directions of reversible fluxes are denoted by appending_f or

_b, respectively.
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was not based on using information from the elucidation in
the large model to decide which reactions can be removed.
A pictorial representation of the basic model is shown in
Fig. 4B. Specifically, we further pruned 26 transformations
(see Table 4) consisting primarily of reactions typically
assumed inactive for aerobic growth on glucose such
as fumarate reductase (FRD) and phosphoenolpyruvate
synthase (PPS) and also anapleurotic reactions such as
malic enzyme (ME1x) and the glyoxylate shunt (ICL).
Furthermore, many reactions were treated as irreversible as
was assumed in previous studies. In doing so, the residual
sum of squares for the measured labeling patterns of
the amino acids worsened from 56.4 to 559 in the best
case, indicating clearly that significant information is lost
when neglecting potentially active pathways present in
the large-scale model. Notably, all solutions to the
(FluxCalc) problem were well outside of the goodness-
of-fit cut-off objective value used in the previous
cenarios, and the model was also statistically unacceptable
(P(w2[80]o558) ¼ 1.0). A new F-test cut-off was calculated
and implemented for (FluxRange) as before. Using the
basic model and new objective value cut-off, many partially
resolved fluxes had tighter ranges than for the complete
model as shown in columns nine and ten of Table 3.
Although this may seem to be a desirable attribute, in
reality it means that by excluding some reactions the



ARTICLE IN PRESS
P.F. Suthers et al. / Metabolic Engineering 9 (2007) 387–405 401
smaller model cannot discern certain flux distributions that
lead to wider ranges in the elucidated fluxes and thus loss
of potentially useful information (Table 4). The impact of
removing each reaction individually on the objective was
also examined. Removal of FRD had the largest impact,
resulting in a 24% increase in objective value, but removal
of ME1x and the assumption of irreversibility for PGM
and ENO also caused 9% increases, by not allowing
changes in the labeling of PEP by the TCA cycle to affect
the labeling of the 3PG amino acids. Other reactions had
smaller effects individually.

4. Summary

In this paper we introduced a large-scale isotopomer
mapping model accounting for 238 reactions, 350 fluxes
and 184 metabolites which is at least fourfold larger than
existing mapping models. This model is available as
supplementary material. The novel aspect of this model is
the simultaneous presence of explicit cofactor balancing
and biomass drain used in conjunction with isotope data.
While others have previously introduced models that
included cofactor balances or isotope data (van Winden
et al., 2003) their simultaneous use was never exploited for
flux elucidation. The construction procedure of the
isotopomer mapping model by reducing a genome-scale
one enabled the seamless integration of MFA results
with FBA analyses. The model was adapted for the
amorphodiene producing strain (Martin et al., 2003) where
fragments from 13 amino acids were analyzed using
GC–MS. We found that many (i.e., tens) of different local
minima solutions fit the experimental data equally well.
This motivated the use of a goodness-of-fit test to
determine significance. We found that many of the local
minima were statistically indistinguishable from one
another implying that given the available data significant
ambiguity remained in flux elucidation. This ambiguity was
subsequently quantified by identifying lower and upper
bounds on all the fluxes given a required level of fit with the
experimental data. Using these results as a starting point
we subsequently removed unneeded, unobservable, or
effectively redundant pathways (from the perspective given
the experimental data) from the model by making sure that
their removal does not worsen the fit. Subsequently, with
fewer equivalent routes, the model was found to adequately
describe the data. The advantage of starting with a more
complete model and subsequently pruning inactive path-
ways was quantitatively demonstrated by simply removing
pathways typically absent in existing isotopomer mapping
models. This led to a statistically significant worse fit and
allowed us to pinpoint the reactions whose removal was
not warranted by the available data.

It is important to note that the methods described here
could be extended to take advantage of the EMU framework
(Antoniewicz et al., 2007a) for the rapid evaluation of the
labeling patterns using multiple isotopic tracers by coupling
it to the optimization procedure described herein, similar to
the very recent work on a 1,3-propanediol system (Antonie-
wicz et al., 2007b). Also, the developed isotopomer model is
not restricted to isotope data generated from GC–MS. For
example, NMR data could also be incorporated by mapping
the Iik predictions onto the NMR data in an analogous way
to that used to link the Iik with the MDV values obtained
from the GC–MS data. The NMR data may include the
fractional abundance of 13C-atoms at each position or the
relative amount of 13C–13C and 13C–12C carbons through
COSY NMR. Furthermore, the Iik predictions could also be
linked to positional isotopomer data generated by methods
such as Fourier transform-ion cyclotron resonance mass
spectrometry (FT-ICR MS) (Sleno et al., 2005) which would
enable even more accurate metabolic flux elucidations by
providing more specific flux labeling information.
In the present study, the inability to uniquely resolve

fluxes was a consequence of the limited set of derivatized
metabolites (i.e., only 13 metabolites), the limited set of
measured fragments, the choice of labeled substrate, and the
multiple routes with identical labeling patterns afforded by
the large-scale mapping model. While not explicitly covered
in this paper the proposed framework can be used to
systematically identify how many and which additional
metabolites to measure and what substrate carbon labeling
patterns to use to uniquely recapitulate all fluxes in the
network. For example, the inability to tightly resolve the
branch point between the PPP and glycolysis is in this
experiment was due to the use of uniformly labeled glucose.
Instead, using glucose labeled at position 1, would have
enabled the identification of the PPP/glycolysis branch ratio.
Note that the isotopomer mapping model can be used to
evaluate the changes in fluxes throughout the network upon
addition of exogenous genes or deletions made during the
engineering of pathways by simply appending or removing
the corresponding functionalities from the model. Finally
our study demonstrated that even if a smaller mapping
model is ultimately used, it is important to start with a more
complete reconstruction to base the decisions about which
reactions can be eliminated without compromising the
quality of agreement with the data.
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Appendix A

In the context of metabolic flux analysis (MFA) the
description of a metabolic network requires the definition
of the following sets, variables, and parameters.

Sets:
I ¼ {i}
 set of metabolites

J ¼ {j}
 set of reactions
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JR ¼ {j}
 set of reversible reactions

IF ¼ {i}
 Metabolites present in growth medium

IE ¼ {i}
 Metabolites that can cross cell boundaries
Parameters:
Sij
 stoichiometric matrix
Variables:
nj
 Fluxes
bi
 exchange fluxes
The set I contains all of the metabolites present while set J

enumerates all reactions composing the metabolic network.
The set IF is all of the metabolites that are contained in the
growth medium, and set IE contains all metabolites that
can cross cellular boundaries. Sij is the stoichiometric
coefficient of metabolite i in reaction j. nj quantifies the rate
of reaction j, and bi is the rate of transport (active or
passive) of metabolite i across cellular boundaries. Rever-
sible reactions are replaced by the difference of the
corresponding pair of exchange reactions thus maintaining
positivity of all reaction steps present in the model:

nj ¼ vforwardj � vbackwardj ; 8j 2 JR. (A.1)

Using the principle of stoichiometric analysis along with
the application of a pseudo-steady-state hypothesis to the
intracellular metabolites (Vallino and Stephanopoulos,
1993), an overall flux balance can be written as follows:X

j

Sij � nj ¼ bi; 8i 2 I . (A.2)

Metabolites that do not exchange across the cell’s
boundaries have no exchange flux. That is, bi ¼ 0;8ieIE.
Positive or negative values for b are allowed when a
metabolite can enter or leave the cellular boundaries,
respectively.

When 13C substrate labeling is introduced, an additional
layer of detail is needed to fully characterize the network.
This information includes the substrate(s) labeling patterns
and descriptions of the fate of the carbon atoms in
each reaction. We express the labeling patterns using the
concepts of isotopomer distribution vectors (IDVs)
(Schmidt et al., 1997; Wittmann and Heinzle, 2002) and
isotopomer mapping matrices (IMMs) (see Section 2.2).
The following additional sets, parameters and variables are
required for the mathematical quantification.

Sets:
K ¼ {k}
 set of isotopomers

N ¼ {n}
 the number of carbon atoms
Parameters:
IMM
j

i0!i;k0!k

Isotopomer mapping matrix
Variables:

Iik
 isotopomer distribution vector
The set K enumerates all possible labeling patterns for a

given metabolite. Variable Iik, referred to as the IDV, is
defined as the fraction of metabolite i that exists in the
isotopomer form k. There are at most 2n isotopomers for
each metabolite containing n carbons, and the sum of all Iik

over k for a given metabolite i is equal to one. Parameter
IMM links the specific isotopomer form k0 of reactant i0

that contribute to the formation of product i in isotopomer
form k through reaction j. The corresponding entry for
IMM for such an indices combination is equal to one
unless it refers to a symmetric molecule i0 (e.g., succinate).
For symmetric molecules IMMs have a fractional entry to
account for the fact that an isotopomer k0 may map to
more than one isotopomers k for the same product
molecule i. Given the above definitions the mass balance
for every metabolite i in isotopomer form k can be written
as follows:

I ik � bi ¼
X

jjSij40

Sij � nj �
Y

i0jSi0jo0

X
k0

IMM
j

i0!i;k0!k
� I i0k0

0
@

1
A

þ
X

jjSijo0

Sij � nj � I ik; 8i 2 I ; k 2 K ðA:3Þ

in which the product symbol is used for term by term
multiplication. Fig. 1 pictorially illustrates the origin of
each term present in the isotopomer balance equation. The
balance equation acts as a mixing/splitting node where all
generation terms through different reactions j of metabolite
i in isotope form k are aggregated and then channeled
through to all consuming reactions at a fixed isotopomer
fraction. Note that the generation terms gives rise to all
nonlinearities between IMMs. Unimolecular reactions
yield products of metabolic fluxes times isotopomer
fractions (bilinear terms) while bimolecular reactions
contribute trilinear terms due to the presence of two
separate isotopomer fractions in the product. Thus, the
isotopomer balances abstracted through Eq. (A.3) relate
the Iik of each intracellular metabolite in terms of fluxes nj,
IMMs, and the isotopomer distribution in the feedstock
(Schmidt et al., 1997).
Experimental techniques such as mass spectrometry are

used to obtain isotope labeling data. However, instead of
providing the isotopomer distribution Iik directly, mass
spectrometry provides raw data on the mass distribution
vectors (MDV) for each measured metabolite. Because
essentially mass spectroscopy acts as a molecular level scale
that deduces the weight distribution of each measured
metabolite, MDV contain information only about the total
number of labeled carbons in a fragment generated by the
mass spectrophotometer but not their specific location.
These weight differences arise from the fact that different
isotope forms may contain different numbers of labeled
carbons. Each entry of the MDV contains a group of
isotopomers that all have the same mass (Wittmann and
Heinzle, 1999). Linking the IDVs and the MDV requires
the following additional definitions.



ARTICLE IN PRESS
P.F. Suthers et al. / Metabolic Engineering 9 (2007) 387–405 403
Sets:
minimize z ¼
P
i;f

P
m

MDV
i
f

�

subject to P
j

Sij � nj ¼ bi;

I ik � bi ¼
P

jjSij40

0
@

MDV i;sim
f ;m ¼

P
k

8m 2M ; f 2

njX0; LBjpnjp
0pI ikp1; 8iP
k

I ik ¼ 1; 8i
F ¼ {f}
 set of fragments

M ¼ {m}
 set of mass fractions

R ¼ {r}
 set of replicants

IM ¼ {i}
 set of measured metabolites
Parameters:
IDVMDV i
f ;k!m
isotopomer grouping matrix
si
f ;m
standard deviation
Variables:
MDV i
f ;m;r
mass distribution vector
MDV i
f ;m
mean mass distribution vector
Here set F contains all possible fragments generated upon
ionization for a measured metabolite i. Set IM is the set of
measured metabolites which in the current study are 14
amino acids. Set M represents the mass fractions observed
for any given fragment f, as shown in the illustrative example
in Fig. 2. The set R represents all measurement replicates, as
described above in the Experimental section. Parameter
IDVMDVi

f ;k!m links the specific isotopomer form k of
metabolite i with the mass distribution m associated with
fragment f of metabolite i. For a given fragment, all of the
isotopomers that have the same number of labeled carbon
atoms in them would be grouped together into the same
MDV i

f ;m;r, as shown for the example in Fig. 2. The variable
MDV i

f ;m is simply the algebraic mean of the mass distribu-
tion m of the replicates for a given fragment f of metabolite i,
and si

f ;m is the corresponding experimental error.
Using the notation listed above, the problem of

calculating the fluxes and labeling patterns for a given set
of GC–MS data is formulated as a nonlinear optimization
problem (FluxCalc):
;exp
;m
�MDV

i;sim
f ;m

si
f ;m

�2

ðFluxCalcÞ ðA:4Þ

8i 2 I ; ðA:1Þ

Sij � nj �
Q

i0 jSi0 jo0

P
k0

IMM
j

i0!i;k0!k
� I i0k0

1
Aþ P

jjSijo0

Sij � nj � I ik; 8i 2 I ; k 2 K ; ðA:3Þ

IDVMDVi
f ;k!mIik;

F ; i 2 IM; ðA:5Þ

UBj ; 8j 2 J; ðA:6Þ

2 I ; k 2 K

2 I : ðA:7Þ
In (FluxCalc), the objective function z in Eq. (A.4) is the
sum of the discrepancies between the experimental data
(exp) and the calculated values (sim) for the MDVs of the
measured amino acid fragments. Eq. (A.1) enforces mass
balance on metabolites and Eq. (A.3) does the same for
individual isotopomers. The mapping of MDV onto Iik is
performed by Eq. (A.5). Eq. (A.6) constrains all the fluxes
to be positive, and further restricts them between lower and
upper bounds; except for fluxes whose values are fixed,
these bounds were 0 and 100 times the observed glucose
rate. Eq. (A.7) enforce that Iik remains between zero and
one and that their sum is equal to one for each metabolite i.
Given the non-convex nature of (FluxCalc), the size of

the resulting formulation and the experimental variability
in the experimental MDV, we pursue the identification of
as many local optima solutions as possible. To facilitate the
enumeration of local optima, the additional formulation
(FluxInit) was constructed to generate a set of random
feasible flux distributions that are used as initial conditions
for the solution of the (FluxCalc) problem. (FluxInit)
essentially minimally perturbs an original randomly chosen
flux distribution so as to satisfy all metabolite balances.
The resulting linear optimization problem is as follows:

minimize z ¼
P

j

ej ; 8j 2 J ðFluxInitÞ ðA:8Þ

subject to P
j

Sij � nj ¼ bi; 8i 2 I ; ðA:2Þ

nrandj � njXejXnj � nrandj ; 8j 2 J; ðA:9Þ

njX0; LBjpnjpUBj ; 8j 2 J: ðA:6Þ

Here, Eq. (A.8) minimizes the sum of the distance from
feasibility for each flux vj encoded within variable ej.
Eq. (A.9) defines variable ej to be equal to the absolute
value of the difference between vj and nrandj which assumes
values drawn from a random uniform distribution within
prespecified upper and lower bounds UB, LB. The fluxes
are constrained as in (FluxCalc) by Eq. (A.6). The overall
mass balance is applied as before by Eq. (A.6). The overall
solution procedure is listed in a step-wise manner below.
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Step 1: Populate model parameters Sij, IMM
j

i0!i;k0!k
,

IDVMDV i
f ;k!m, MDV

i;exp
m;f ;r, I i2IF;k UBj and LBj based on

the experimental system setup and metabolic network
abstraction. Set iteration counter Iter to zero.

Step 2: Initialize nrandj using a random number generator
to construct a uniform distribution such that
LBjonrandj oUBj ; 8j 2 J.

Step 3: Solve (FluxInit) to determine an initial feasible
flux distribution ! nj .

Step 4: Initialize Iik by setting I i;k¼1 ¼ 1; 8ieIF;
I i;k41 ¼ 0; 8ieIF.

Step 5: Solve the nonlinear optimization problem
(FluxCalc) to generate a (local) solution nj, Iik and
MDV sim

m;f .
Step 6: Store solutions for current iteration, update

iteration counter Iter ’ Iter + 1, and return to Step 2 if
the maximum iterations limit is not exceeded.

Appendix B. Supplementary data

Supplementary data associated with this article can
be found in the online version at doi:10.1016/j.ymben.
2007.05.005.
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