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ABSTRACT: Metabolic flux analysis (MFA) methods use
external flux and isotopic measurements to quantify the
magnitude of metabolic flows in metabolic networks. A key
question in this analysis is choosing a set of measurements
that is capable of yielding a unique flux distribution (identi-
fiability). In this article, we introduce an optimization-based
framework that uses incidence structure analysis to deter-
mine the smallest (or most cost-effective) set of measure-
ments leading to complete flux elucidation. This approach
relies on an integer linear programming formulation Opt-
Meas that allows for the measurement of external fluxes and
the complete (or partial) enumeration of the isotope forms
of metabolites without requiring any of these to be chosen in
advance. We subsequently query and refine the measure-
ment sets suggested by OptMeas for identifiability and
optimality. OptMeas is first tested on small to medium-size
demonstration examples. It is subsequently applied to a
large-scale E. coli isotopomer mapping model with more
than 17,000 isotopomers. A number of additional measure-
ments are identified leading to maximum flux elucidation in
an amorphadiene producing E. coli strain.
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Introduction

Metabolic fluxes are key descriptors of a cell’s physiology
(Nielsen, 2003) and targets of metabolic engineering for
overproduction (Bailey, 1991). Metabolic flux analysis
(MFA) is the gold standard method for the quantification of
the fluxes (Stephanopoulos, 1999). These analysis methods
infer intracellular fluxes using external flux and isotopic
measurements (Sauer, 2006). The flux inference relies on
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a mathematical model describing the propagation of
labeled atoms, for which a variety of techniques have
been developed including positional enrichment (Sonntag
et al., 1993), isotopomers (Schmidt et al., 1997; Zupke and
Stephanopoulos, 1994), cumomers (Wiechert et al., 1999),
bondomers (van Winden et al., 2002), and elementary
metabolite units (EMUs) (Antoniewicz et al., 2007b).

A common practice in MFA methods is to make as many
as possible measurements so as the mathematical model
becomes over-determined and the fluxes can thus be reliably
estimated by solving a least squares problem (Riascos et al.,
2005; Yang et al., 2007). However, the nonlinearities in
isotopic balances make it difficult to guarantee that even a
seemingly encompassing set of measurements can uniquely
determine all fluxes. Indeed, it was shown that a single label-
ing experiment is unlikely to uniquely determine the great
majority of fluxes especially when large-scale isotope map-
ping reconstructions are employed (Suthers et al., 2007).

The task of analyzing the potential uniqueness of the flux
distribution belongs to the class of identifiability problems.
There have been several efforts to address this challenge
including mathematical approaches for structural identifia-
bility (Isermann and Wiechert, 2003; van Winden et al.,
2001; Wiechert, 1995), and statistical approaches quantify-
ing the confidence of flux estimate (Antoniewicz et al., 2006;
Möllney et al., 1999). Alternatively, an integer programming
approach (Rantanen et al., 2006) and a heuristic sequential
approach (Ghosh et al., 2006) have been proposed to choose
isotopic measurements for unique flux elucidation. How-
ever, current methods are not designed to choose from both
external fluxes and isotopic measurements for large-scale
isotopomer models while minimizing an appropriate cost
function that quantifies the relative difficulty/expense of
these measurements.

This experimental design task is mathematically equi-
valent to an NP-hard problem (Rantanen et al., 2006) due to
the difficulty in ensuring identifiability in the absence of a
priori knowledge on which measurements are to be made.
In this article, we decide to bypass this difficulty by first
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enforcing a relaxed identifiability condition to generate a
candidate measurement set and subsequently tightening the
relaxation if necessary. This relaxed identifiability condition
is constructed by using incidence structure analysis inspired
from linear systems structural controllability analysis
(Lin, 1974; Shields and Pearson, 1976). We demonstrate
the applicability of the analysis in choosing flux and isotopic
measurements, and present the framework used for ex-
perimental designs resulting in the maximum identifiable
system at the minimum relative cost.

The remainder of this article is organized as follows. In
Materials and Methods Section, we define the MFA
identifiability problem of interest and introduce incidence
structure analysis as a way of analyzing the identifiability
question. We next formulate the experimental design
problem as an integer linear programming (ILP) problem
OptMeas, and propose a solution procedure. In Results
and Discussion Section, we demonstrate OptMeas and the
solution procedure with metabolic models of increasing
complexity. Finally, we summarize the main results and
discuss further extensions of the current work.
Materials and Methods

Overview of Mathematical Analysis for MFA

For the systematic representation of the metabolites, iso-
topes and fluxes present in MFA models, we use the
following sets throughout the article:

Sets:

I ¼ fig : metabolite pools

IN � I : intermediate metabolites

J ¼ fjg : unidirectional fluxes

Ki ¼ fkg : isotopomers of metabolite i 2 I

Each reversible reaction is split into forward and
backward fluxes. We subsequently define parameters and
state variables on these sets:

Parameters:

Sij ði; jÞ 2 IN � J : stoichiometry matrix

IMM
j
i0!i;k0!k ðk0; kÞ 2 Ki0 � Ki; ði0; i; jÞ 2 I � IN � J

: isotopomer mapping matrix ðIMMÞ

Continuous variables:

vj � 0 j 2 J : flux values

Iik 2 ½0; 1 k 2 Ki; i 2 I : isotopomer distribution vectors ðIDVsÞ

Here, Sij> 0 if flux j produces metabolite i and Sij< 0 if

j consumes i. IMM is nonnegative, and IMM
j

i0!i;k0!k
> 0

only if isotopomer k0 of metabolite i0 contributes to the

formation of k of i via flux j. IMM takes fractional values for

the indistinguishable isotopomers of symmetric molecules.

Note that symbol I has subscripts i and k when it refers to

isotopomer fractions.
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The metabolic network under study is assumed to be at a
steady-state yielding a number of overall metabolite and
isotope balance equations. Constraint (1) imposes a flux
balance for each intermediate metabolite:

X
j2J

Sijvj ¼ 0; i 2 IN : (1)

Constraint (2) stipulates that the sum of the isotopomer
fractions of any metabolite must be equal to 1

X
k2Ki

Iik ¼ 1; i 2 I (2)

whereas the production and consumption terms for every
isotopomer form of each intermediate metabolite must be
equal to each other (see Suthers et al., 2007 for a derivation):

X
j Sij>0j

Sijvj

Y
i02I

X
k02Ki0

IMM
j
i0!i;k0!kIi0k0

0
@

1
Aþ

X
j Sij<0j

SijvjIik

¼ 0; k 2 Ki; i 2 IN : (3)

The product symbol P in (3) signifies nonzero term-by-
term multiplication of the isotopomer fractions that
generate isotopomer k of metabolite i. With Equation (3),
accounting for the presence of a stoichiometric coefficient
that is equal to neither one nor zero requires the splitting of
the corresponding metabolite by the introduction of ‘‘extra’’
metabolites. Split metabolites are interconverted by using
‘‘extra’’ unimolecular fluxes.

Given a set of measurements, a flux distribution is
calculated by solving (1–3) and then tested for uniqueness.
This identifiability question has been addressed before using
local isolation of the solution (van Winden et al., 2001) and
global analysis for unique solvability (Isermann and
Wiechert, 2003). In this work, we focus on the unique
solvability for physiologically relevant metabolic flux bounds.
We embed this identifiability concept into the experimental
design problem of choosing measurements. Solving directly
the nonlinear system of Equations (1)–(3) to identify all flux
distributions that are acceptable as solutions and testing for
uniqueness is computationally intractable for large-scale
metabolic maps (i.e., for over 100 reactions). Therefore, we
chose to circumvent the effect of nonlinearities by simply
tracking whether a particular variable (flux or isotopomer
fraction) participates in any given balance equation as
discussed next.
Incidence Structure Analysis

Unique flux distribution, given a set of measurements, is
reached when the number of fluxes nf that can be
independently varied (i.e., the number of degrees of
freedom) is equal to zero. For a linear system (1), nf is



equal to jCj � rT , where rT is the rank of matrix S and
R ¼ frg and C ¼ fcg the rows and columns, respectively.
However, assessing nf for nonlinear systems (3) is not as
straightforward (Cox et al., 2007). Therefore, in this article
we adopt incidence structure analysis to approximate nf

while avoiding dealing directly with nonlinearities. Inci-
dence structure analysis uses an incidence matrix which
catalogues the occurrences of variables in equations of the
original system. For example, consider a simple convergent
network with each metabolite containing one carbon atom:

v1: A ! C; v2: B ! C; v3: C !
The balance equations around intermediate metabolite C are

metabolic balance v1 þ v2 � v3 ¼ 0
isotopic balance v1IA1 þ v2IB1 � v3IC1 ¼ 0

(4)

where IA1, IB1, and IC1 are the fractions of labeled
isotopomers. Denoting the appearance of a variable in an
equation by X (indicating a nonzero value), the incidence
matrix of (4) is

v1 v2 v3 IA1 IB1 IC1

metabolic balance X X X

isotopic balance X X X X X X

(5)

Each variable can be the output variable of an equation in
which it participates. Conversely each equation can have up
to one output variable. For instance, we can assign v1 and v2

to the metabolic and isotopic balances, respectively. This
assignment implies that by measuring the labeling status of
all three metabolites (IA1, IB1, and IC1) and external flux v3,
we can calculate v1 and v2. The maximum number of such
output assignment pairs is referred to as the generic rank rG

of the incidence matrix, which is equal to two for the above
example.

The generic rank corresponds to the maximum cardina-
lity matching of a bipartite graph (Fig. 1) which can be
solved in polynomial time (Hopcroft and Karp, 1973).
Figure 1. Two equivalent representations of the structure information in a

system of equations. Incidence matrix (left) and bipartite graph (right) are equivalent

ways of representing the structure information. Nonzero elements of the incidence

matrix correspond to edges (both solid and broken) in the bipartite graph. The circled

elements of the incidence matrix and the directed solid edges of the bipartite graph

correspond to an example of maximum output variable assignments. The shaded

column/node corresponds to a variable that needs to be known in advance to uniquely

determine the system. [Color figure can be seen in the online version of this article,

available at www.interscience.wiley.com.]
However, we decided to use the following ILP formulation
GenRNK that assigns columns to rows of an incidence
matrix A (Georgiou and Floudas, 1989; Gupta et al., 1974),
because it can be easily extended to account for using
different cost values for experimental measurements:

ðGenRNKÞ rG ¼ max
P
r2R

P
c2C

yrc

s:t:
P
c2C

yrc � xr ¼ 0 r 2 R;P
r2R

yrc � zc ¼ 0 c 2 C;

yrc 2 f0; 1g; xr 2 f0; 1g; zc 2 f0; 1g:

In GenRNK, binary variable yrc is equal to one if variable

with index c is an output of equation in row r. Corres-

pondingly, binary variables xr and zc model if row r and

column c participate in any output assignments respectively.

All unassigned columns must be measured to fully

determine the system. The number of unassigned variables

nsf is therefore equal to Cj j � rG (i.e., nsf¼4, in previously

discussed example). It must be noted that nsf may not be

identical to nf; instead it provides a valid lower bound for

linear systems (Neumaier, 1997). For nonlinear systems, nsf

is only an approximation of nf. A reconciliation procedure

that closes the approximation gap between nf and nsf is

discussed in Solution Strategy Section.
Application to MFA

The incidence matrix shown in Figure 2 is constructed by
tracking the occurrences of variables vj and Iik in Equations
(1)–(3). Note that one isotopomer balance equation for each
intermediate metabolite is excluded in Equation (3) in order
to eliminate inherent redundancy in the system. We denote
Figure 2. Generic incidence matrix of MFA for OptMeas. Here, KI is the union of

all the isotopomers and K 0
I is the same as KI except that one isotopomer balance is

dropped for each metabolite. Note that Equations (1) and (2) are linear but (3) is

nonlinear. The shaded submatrices correspond to structurally nonzero regions. [Color

figure can be seen in the online version of this article, available at www.interscience.

wiley.com.]
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Table I. Relative measurement costs.

Measurements

Relative

weight

External fluxes Liquid-phase 1

Gas-phase 10

Isotopic distributions IDV of source metabolite 1

IDV of secreted liquid product 2

IDV of gas product 3

MDV of amino acida 2–3

MDV of R5Pb 5

IDV of small intermediary metabolitec 50

Intracellular fluxes are not part of candidate measurement set. More
detailed discussion on the experiment cost of NMR analytes in terms of their
abundance and signal strength can be found in Ghosh et al. (2006).

aThe relative cost of available MDV measurement of amino acids
(15 amino acids in the article) is assumed to be equal to two or three
depending on the number of carbons and fragments to be analyzed. All
other amino acids are not measured (e.g., Trp).

bRibose 5-phosphate (R5P) is obtained relatively easy from the cellular
ribonucleotide pools that are readily extracted.

cThe complete characterization of IDV is measured only for small
molecules (up to three carbons). IDV measurement of metabolites with
more than four carbons is not allowed except if it is either easily analyzable
substrate or product.
the binary variable zc in GenRNK for this incidence matrix as
zj for vj and zik for Iik. By solving GenRNK, we identify the
measurements (unassigned variables) that fully determine
the system. Additional restrictions arising in MFA analysis
include the fact that every time a metabolite is deemed as
measured all associated isotopomer fractions become
specified. In addition, both measurement effort/time and
potential to resolve fluxes are not the same for all
measurement candidates. For example, external fluxes are
considered to be easier to measure than isotopic distribu-
tions (Wiechert, 2001). This implies that the measurements
must be carefully selected so as to eliminate any ambiguity in
computing the remaining fluxes at a relative minimum of
cost.

For the sake of clarity of presentation, we present the
OptMeas formulation for the case of complete isotopic
measurements. However, most current label measurement
techniques do not directly measure isotopomer fractions but
rather functions of isotopomer fractions, such as positional
enrichment or multiplet peaks measured by NMR and mass
distribution vectors (MDVs) by GC/MS. In Appendix A, we
extend OptMeas to account for such partial IDV measure-
ments.

OptMeas requires the introduction of an additional
binary variable ui that encodes whether metabolite i is
measured. Here, ui¼ 1 implies that the IDV of metabolite i is
not measured and thus it remains a variable that can only be
fathomed as the output of an equation. This new variable ui

is used to ensure that zik for all isotopomer fractions is either
equal to zero or one depending on whether the correspond-
ing metabolite is measured or not, respectively

zik � ui; k 2 Ki; i 2 I (6)

OptMeas minimizes the sum of a weighted combination
of all chosen measurements by using the following objective
function

X
j2J

qjð1 � zjÞ þ
X
i2I

qið1 � uiÞ (7)

where qj and qi are relative weights. The relative weights used
in this article are summarized in Table I. These weights are
not exact estimates of the measurement costs but rather
provide rough approximations of the order of their relative
difficulty. These weights can be readily adjusted to better
reflect different experimental settings. Figure 3 pictorially
shows how OptMeas identifies the smallest measurement set
that renders the incidence matrix of variables-equations of
full column rank.
Solution Strategy

We first preprocess the network to detect redundancy and
inherent unidentifiability, remove obviously unobservable
fluxes and reduce the size of the model using the method of
1042 Biotechnology and Bioengineering, Vol. 100, No. 6, August 15, 2008
van Winden et al. (2001). This is followed by the step-wise
procedure described next.

Step 0: Initialization. Construct OptMeas formulation for
the processed model. This OptMeas is updated by
introducing integer cuts in the course of the algorithm.
We define set T containing the list of optimal solutions, and
initialize it to be empty.
Step 1: Solve OptMeas. Solve the current realization of
OptMeas using CPLEX 10 (ILOG, 2006) ILP solver and
obtain (J�, I�) as optimal measurement choices for external
fluxes and isotopic distributions.
Step 2: Remove linearly dependent flux measurements.
Remove columns J� from S. If the resulting matrix has
full column rank, then continue with Step 3. Otherwise,
introduce the following integer cut into OptMeas and return
to Step 1: X

j2JnJ�

zj �
X
j2J�

zj < jJnJ�j: (8)

Step 3: Check for a unique flux elucidation. Test if the
suggested measurement set (J�, I�) fully determines all fluxes
in the network. This is accomplished by solving formulation
TestUniq described in Appendix B. Essentially, TestUniq
assesses if any fluxes can change values in the presence of
the imposed measurement set (J�, I�). If (J�, I�) uniquely
determines all fluxes, then move to the next step. Otherwise,
go to Step 5.

Step 4: Check for solution optimality. Test if (J�, I�) is optimal
by solving TestOpt given in Appendix B. Conceptually,
TestOpt removes one measurement at a time from the set
(J�, I�) and tests whether the value for this freed measure-
ment variable is still locked at the same value. If so, then this
measurement is redundant and can be removed from (J�, I�).



Figure 3. OptMeas modifies the structure of the incidence matrix through variable elimination. By measuring fluxes and/or isotopomer distributions, they cease to be

variables implying that the corresponding columns in the incidence matrix can be removed, eventually producing a full-column rank matrix that is structurally nonsingular.

[Color figure can be seen in the online version of this article, available at www.interscience.wiley.com.]
Step 5: Termination criterion. If the current optimal solution
has a higher relative cost than a predefined threshold, then
terminate and report the current T as the final collection of
all optimal measurement sets. Otherwise, include the
current solution in T, introduce the following integer cut
to OptMeas to remove (J�, I�) from the feasible region and
go back to Step 1:

X
j2JnJ�

zj þ
X

i2InI�

ui �
X
j2J�

zj þ
X
i2I�

ui

 !

< jJnJ�j þ jInI�j: (9)

Implementation

A set of Python codes were written for the automatic
calculation of parameters (Sij; IMM

j

i0!i;k0!k
, and q’s) from

user-provided input files (a list of reactions and their atom
transitions and a list of available measurements and their
relative costs). A Python script was also written to generate
EMU networks from the input files utilizing EMU reduction
(Antoniewicz et al., 2007b) and network decomposition
with block decoupling (Young et al., 2007).

A Cþþ program making use of CPLEX 10 Concert
technology (ILOG, 2006) was written to solve OptMeas
while exploiting its sparse nature. The program was run on a
Linux cluster box of four 2.6 GHz Pentium 4 processors
with 8 GB memory. TestUniq and TestOpt were solved
using GAMS/CONOPT 3 (Drud, 1994). GAMS/BARON
7.5 (Tawarmalani and Sahinidis, 2004) and the EMU
representation were also used whenever possible to ensure
global optimality during the verification process.
Results and Discussion

Small Network Example

OptMeas correctly predicted the minimal measurement sets
for extensively studied small networks including a hypo-
thetical analog network (Forbes et al., 2001; Ghosh et al.,
2006), a branching network (Wiechert et al., 1999), and
spiral networks (Isermann and Wiechert, 2003). As an
illustrative example, we describe here a small metabolic
network (see Fig. 4) adapted from Antoniewicz et al. (2006).
This network has three free fluxes (eight flux variables minus
five flux balance equations), but measuring all three external
fluxes does not determine the system because of linear
dependency. Because one external flux must be measured as
a reference for other flux values, this implies that one or two
of the remaining unresolved fluxes should be fixed through
isotopic measurements.

We applied OptMeas to find all measurement sets at a
minimum relative cost. Relative costs were assumed to be
equal to one for external fluxes and IA, two for ID and IE,
and 50 for IB and IC. After the first iteration, OptMeas
suggested measuring ðv1; v6; v8Þ at a total cost of three. The
identifiability check in Step 2, though, detected that this
Chang et al.: Measurements Identification for MFA Experiments 1043
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Figure 4. Illustrative example based on Antoniewicz et al. (2006). Metabolites

are shown with a number of circles corresponding to the number of carbons. A dashed

box separates the source and intermediary metabolites. External fluxes cross the

dashed box while internal fluxes are entirely encircled within. Material flows and

pseudo-fluxes are shown as solid and dashed arrows, respectively. E1 is a fictitious

metabolite introduced to model the non-binary stoichiometry of reaction 5 under the

mathematical formalism. E is directly measurable whereas E1 is not. [Color figure can

be seen in the online version of this article, available at www.interscience.wiley.com.]
measurement set is linearly dependent. In the second
iteration, the identified measurement set was ðv1; IA; IDÞ at a
total cost of four. TestUniq and TestOpt were solved
globally and verified that this measurement set is indeed
both optimal and fully determines the metabolic system.
Through the use of integer cuts and successive iterations,
we also identified ðv6; IA; IDÞ and ðv8; IA; IDÞ as alternate
though still optimal solutions. Additional iterations revealed
measurement sets with higher overall relative costs thus
proving the existence of only three alternative optimal
measurement sets.

We next used OptMeas to see if any of the full IDVs of A
and D in the three suggested measurement sets could be
replaced by less costly MDVs without affecting identifia-
bility. We used a relative MDV measurement cost that is half
of the corresponding IDV measurement cost. We found
that the IDV of either A or D can be replaced by its MDV.
Alternatively, if only the MDVs of both A and D are
measured, then we need to measure two external fluxes.
OptMeas found a total of nine such pairwise combinations
(see Table II) that replace IDV by MDV measurements.
Table II. Optimal measurement sets identified by OptMeas for the

illustrative small network.

Measurement seta External flux IDV MDV Relative cost

1 v1 A D 3

2 v6 A D 3

3 v8 A D 3

4 v1 D A 3.5

5 v6 D A 3.5

6 v8 D A 3.5

7 v1, v6 — A, D 3.5

8 v1, v8 — A, D 3.5

9 v6, v8 — A, D 3.5

aAll the measurement sets with total relative cost less than 4 are listed.
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These included the (v1, IA, and the MDV of D) measurement
set proposed in Antoniewicz et al. (2006).
Medium Scale Model for E. coli Metabolism

We next considered the metabolic model of the 1,
3-propanediol (PDO) producing Escherichia coli strain
including 74 metabolites, 75 reactions, and 4,806 iso-
topomers (Antoniewicz et al., 2007c). All fluxes are num-
bered and metabolites are named in agreement with the
nomenclature scheme used in Antoniewicz et al. (2007c). As
in the original article, we did not account for the symmetry
of glycerol to allow for a fair comparison of the obtained
results. In Antoniewicz et al. (2007c), eight external fluxes
ðv66-72; v75Þ, four IDVs (Gluc, Cit, Glyc, and CO2), and
partial measurements from 12 amino acids (23 distinct
fragment MDVs) were measured to obtain the best-fit flux
distribution in the model. According to the relative costs of
Table I, this original measurement set has a total relative cost
of 58. The large number of measurements is, in part, due to
the fact that uncertainty in the measurements was taken into
account.

We first analyzed the network to detect as many
unidentifiable fluxes as possible, which were excluded
from further investigations. These include the exchange
rates of most bidirectional reactions and oxidative decar-
boxylations of malate (reactions 28 and 29) coupled with
transhydrogenation reaction 64.

We next looked for new measurement sets with possibly a
lower relative cost but with at least as good flux elucidation
capability. It is important to stress that here we do not
explicitly consider the effect of measurement imprecision.
We identified 22 distinct alternate optimal measurement
sets consisting of two external fluxes (O2 and glucose uptake
rates), four IDVs (Gluc, Cit, Glyc, and PDO), and fragment
MDVs of three amino acids (Phe plus two interchangeable
amino acids) at an overall cost of 21. We found that five (i.e.,
the oxygen uptake rate, the IDVs of Gluc, Cit, and Glyc, and
the MDV of Phe) are essential independent of the cost
structure, two (i.e., the glucose uptake rate and the IDV of
PDO) are critical to maintain the optimal cost of 21, and two
(i.e., the MDVs of two interchangeable amino acids) may
differ. The measurement sets have similar flux elucidation
capability as the original measurement set (data not
shown) while substantially reducing the total relative cost
and number of measurements (less than half of those of the
original measurement set).

Closer inspection revealed that the oxygen uptake rate
(v72) is essential for the elucidation of oxidative phosphor-
ylation (reactions 62 and 63). Phe measurement is critical
because it is the only amino acid whose fragments encode
the labeling information of E4P in the pentose phosphate
pathway (see Fig. 5A). The additional fragment MDVs of
select pairs of amino acids (see Fig. 5B) are needed to infer
the sub-networks of glycolysis and citrate cycle. Note that
a new measurement choice revealed by OptMeas is IPDO



Figure 5. Network representation of the partial measurements for the medium-size E. coli network (Antoniewicz et al., 2007c). Panel (A) shows the biosynthesis of each

amino acid whose fragment MDVs were measured. Source metabolites are circled, and the measured product (PDO) is boxed by a solid line. Measured amino acids are also boxed

by solid lines and their direct carbon sources are indicated by dotted arrows. Some metabolites (in dotted squares) appear more than once to make the figure more readable. Panel

(B) shows the complete set of alternatives for the two partial measurements (22 combinations in total) required in addition to the suggested core measurements. Only amino acid

pairs connected with a line are valid measurement choices. [Color figure can be seen in the online version of this article, available at www.interscience.wiley.com.]
absent in the original article (Antoniewicz et al., 2007c),
which helps resolve the PDO biosynthesis pathway. We
tested the effectiveness of IPDO measurement by adding it
to the original measurement set and solving TestUniq
for various substrate labeling patterns (cf. Theorem 3 of
Isermann and Wiechert (2003)). We found that IPDO

reduces the sum of all flux ranges (see Suthers et al., 2007) by
about an order of magnitude.

In summary, in this example we demonstrated that a
preliminary implementation of OptMeas can exhaustively
generate minimal measurement sets without requiring any
measurement to be pre-selected in advance for small to
medium-size metabolic models. By rank-ordering different
measurement choices with respect to their relative costs it
provides a systematic way to decide on what needs to be
measured. As a by-product of this analysis, OptMeas
pinpoints all essential measurements that must be part of
any measurement set for complete flux elucidation as well as
catalogues the unidentifiable fluxes.
Large-Scale Model for E. coli Metabolism

Finally, we revisited the recently published large-scale
isotopomer model of amorphadiene producing E. coli strain
with 184 metabolites, 238 reactions, and 17,346 isotopomers
(Suthers et al., 2007). The abbreviations for all metabolites
and fluxes follow the conventions used in Suthers et al.
(2007) and Reed et al. (2003). In Suthers et al. (2007), three
external fluxes ðvAMDNt; vBIOMASS EC ISO; vEX glc�DÞ, the
IDV of Glc-D(e), and 22 distinct fragment MDVs of 13
amino acids were monitored. By using these measurements,
Suthers et al. (2007) were able to tighten the ranges of flux
values, but concluded that much ambiguity remained in flux
elucidation, in part, due to the choice of substrate labeling.

To remedy this ambiguity in flux elucidation we explored
computationally the potential effectiveness of performing
additional labeling experiments. In addition to the thirteen
monitored amino acids, we allowed the measurement of
fragment MDVs of Arg and Tyr (Antoniewicz et al., 2007a).
The biosynthesis of these fifteen measured amino acids is
shown in Figure 6 on a map of central metabolism of the
large-scale model. We modified the full model of the original
article (Suthers et al., 2007) by treating reversible reactions
H2Ot5, NH4t, O2t, PIt6, ACACT1r, HMGCOAS, and
ADK1 as unidirectional in the direction of their net flux. In
addition, we excluded the inherently unidentifiable and
poorly resolved fluxes listed in Table III.

By solving OptMeas for the adjusted model using the relative
costs of Table I, we identified four alternate optimal solutions.
Common in all these alternate optimal solutions were six
external fluxes ðvEX h; vEX h2o; vEX nh4; vEX o2; vEX pi; vEX so4Þ
and ATP maintenance (vATPM). These seven flux measure-
ments are deemed to be essential measurements. In addition, a
Chang et al.: Measurements Identification for MFA Experiments 1045
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Figure 6. Biosynthesis of the amino acids measured in the large-scale E. coli model (Suthers et al., 2007). The 13 amino acids measured in Suthers et al. (2007) are shown in

bold while two amino acids (Arg and Tyr) that can be measured in the current study are shown in italic. Metabolites are named using the conventions defined in iJR904 (Reed et al.,

2003), and thus are slightly different from those in Figure 5A. [Color figure can be seen in the online version of this article, available at www.interscience.wiley.com.]
single interchangeable measurement (i.e., IDV of acetate, IDV
of external CO2, MDV of Arg, or MDV of Tyr) is also needed
for complete flux elucidation.

We found that if the glucose substrate is not uniformly
labeled but rather contains glucose with only the first carbon
labeled, then tracking the seven fluxes and the full IDV of
acetate would allow us to resolve completely all remaining
net fluxes with only a few exceptions for fluxes insensitive
to any labeling scheme under stationary conditions. The
identified additional measurements improved the objective
value of TestUniq (sum of squared differences, SSD) from
22.1 of the original measurement set in Suthers et al. (2007)
to 18.3.

We also tested other substrate labeling patterns for their
potential to further improved flux resolution in conjunction
with the proposed additional measurements. Specifically,
we tried 25% [U-13C] and 75% [n-13C] glucose labeling,
where n can be any integer from 1 to 6 meaning that a single
glucose carbon atom is labeled at a time. The SSD of these
patterns was always within the range 16.1–18.9 (18.3 when
n¼ 1 as seen above) and the smallest SSD was achieved when
n¼ 5. In contrast, using the proposed additional measure-
ments, the 20% [U-13C] and 80% non-enriched glucose
resulted in a higher SSD value of 19.7. We believe this
is due to the enhanced separation capability of the
n-13C towards the G3P produced by glycolysis and pentose
1046 Biotechnology and Bioengineering, Vol. 100, No. 6, August 15, 2008
phosphate cycle. This result shows that the substrate labeling
can affect the range of fluxes that can be reliably determined
(Möllney et al., 1999).
Summary

In this work, we introduced the OptMeas formulation and
procedure to identify the minimal measurement sets
that determine all the identifiable fluxes in a metabolic
network. OptMeas makes use of incidence structure analysis
to approximate the identifiability constraint. This scheme
enables OptMeas to generate all the alternative sets of the
minimal measurements required to determine the system
and to do so very quickly (one solution of OptMeas required
only a few minutes of CPU time even for the large-scale
E. coli model). This good scalability enables the exhaustive
identification of all alternative optimal solutions. We also
introduced a systematic set of tests that queries and refines
the solution of OptMeas for both optimality and feasibility.

A key novel aspect of OptMeas is that it does not
require any measurement to be fixed or picked in advance.
Thus, it can be applied to any experimental situation to
rank-order different measurement choices. Although we
specifically focused on 13C isotopomer representation in
the manuscript, OptMeas formulation is applicable to



Table III. Fluxes removed from the large-scale E. Coli model.

Category Removed fluxes

Inherently unidentifiablea Exchange rates of all the reversible reactions

ALAR, ALATA_L, ASPT, ASPTA1, DAAD, VPAMT

PGMT

PPA

AGPR

ACONT, AKGD, CITL, CS, FRD2, FRD3, FUM, ICDHy, MDH, SUCD1i, SUCOAS

SERAT

FTHFD, GLYCL, MTHFD

GLNS, GLUDy, GLUN

GHMT2, PGCD, PSERT, PSP_L

ENO, G1PP, GLCP, GLCS1, GLGC, HEX1, PDH, PFK, PGK, PGM, PPS, PYK

ADK1

ATPS4r, FDH2, LDH_D2, NADH6, NADH7, NADH8, NADH9, NADH10, NADH12, SUCD4, THD2, THD5

ACKr, ACS, LDH_D, PTAr

GLCpts, GLCt2

VALTA

Poorly resolvedb ASNN, ASNS1, ASNS2

ACGK, ACGS, ACODA, ACOTA, ARGSL, ARGSS, AST, CBPS, G5SADs, G5SD, GLU5K, OCBT, P5CD,

SADH, SGDS, SGSAD, SOTA

CYSS, TRPAS1

GLUSy

SERD_L

FBP

GLYOX, LGTHL, MGSA

EDA, PGDHy, PGL

CBMK2

Listed fluxes (grouped according to subsystem) were identified by solving FluxRange (Suthers et al., 2007) using 25% [U-13C] and 75% [1-13C] glucose
substrate. FluxRange is solved using local optimization, so the list may not be complete. The reactions removed in the reduced model of Suthers et al. (2007)
are underlined.

aInherently unidentifiable fluxes are those that are not fully resolvable (degree of resolution <0.95) by measuring all external fluxes and the IDVs of all
metabolites. Some linear dependencies such as the triplet (VPAMT, ALATA_L, VALTA) or the sextuplet (FRD2, FRD3, NADH7, NADH8, NADH9,
NADH10) were additionally detected using local analysis.

bPoorly resolved fluxes are those that are not fully resolvable (degree of resolution <0.95) by measuring all external fluxes and the available isotopic
measurements (see Table I).
any labeling scheme of any stable isotopes such as
2H, 13C, 15N, and 17[18]O using any representation of iso-
topic distribution such as cumomers and EMUs. It must be
noted that OptMeas for experimental design can integrate
with other identifiability analysis methods.

OptMeas correctly identified all the optimal measurement
sets for the small examples, including the branching network
that cannot be determined using positional enrichment
methods. When applied to the medium-scale E. coli model,
OptMeas predicted that the O2 uptake and Phe measure-
ments are mandatory for flux elucidation. It also suggested
an additional PDO measurement which we showed could
improve flux elucidation capability. OptMeas was success-
fully scaled-up to the large-scale E. coli model with 17,346
isotopomers to suggest additional measurements that would
be effective in tightening the range of flux estimate. OptMeas
is particularly useful for the ability to pinpoint essential
measurements, and these computationally derived insights
can be used to plan measurement experiments.

The proposed solution procedure can greatly benefit by
efficient global optimization algorithms as we demonstrated
for the small examples. However, currently available state-
of-the-art global optimization solvers are not capable
of handling even the medium sized E. coli model using
the most compact EMU representation. We are working
on the possibility of tuning commercial global optimiza-
tion solvers and other approaches to increase the size of
the identifiability problem that is globally solvable. This
extension is especially important for multiple labeled
atoms because of the extremely large number of resulting
isotopomers.

The major focus of this article has been the identification
of the minimal measurement sets with full flux elucidation
capacity under exact measurements. However, making
redundant measurements at the cost of increased expense
could be necessary to make the flux estimation more reliable
in the presence of measurement errors or modeling
uncertainties. Furthermore, substrate choices and their
labeling patterns can also be used as experimental design
variables in order to improve flux resolution. Finally,
exploring more elaborate measurement cost models that
account for savings due to the measurement of similar
metabolites could further improve flux elucidation
efficiency.
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Appendix A: ILP Formulation OptMeas for
the Identifiability in MFA

As noted in the article, most current label measurement
techniques do not directly measure IDVs but rather
functions of isotopomer fractions, such as MDVs by
GC/MS. In this section, we extend OptMeas to account
for such partial IDV measurements. In practice, an isotopic
measurement of metabolite i provides independent mea-
surements pim;m 2 Mið Mij j < Kij jÞ, which are related to Iik

through the following measurement equations:

P
k2Ki

aikmIikP
k2Ki

bikmIik
¼ pim; m 2 Mi; i 2 I (10)

where aikm and bikm are parameters linking Iik and pim. For
example, measurement linking equations between IDV and
MDV of acetate with two carbon atoms are:

IAc:00 ¼ pAc:M0; IAc:01 þ IAc:10 ¼ pAc:M1;

IAc:11 ¼ pAc:M2:

Here, isotopomers are named based on the labeling status of

each carbon (0 for 12C and 1 for 13C), and mass fractions by

M followed by the total number of 13C. There is a total

of three MDV measurements, but only two of them are

independent because pAc:M0 þ pAc:M1 þ pAc:M2 ¼ 1.

The new system of equations with partial metabolite
measurements contains variables vj, Iik, pim and Equations
(1)–(3) and (10). We denote the binary variable zc in
GenRNK as z

p
im for the columns corresponding to pim. We

additionally introduce binary variable u
p
i with associated

relative cost parameter q
p
i to model the decision of making a

partial measurement of metabolite i. Variable u
p
i is involved

in the model in the same way as ui, thus:

z
p
im � u

p
i ; m 2 Mi; i 2 I: (11)

Obviously, there is no reason of measuring a metabolite i for
both complete and partial measurements. Therefore, we
introduce the following constraints into OptMeas:

ui þ u
p
i � 1; i 2 I: (12)

The cost objective function of OptMeas is extended to
account for partial measurements as follows:

X
j2J

qjð1 � zjÞ þ
X
i2I

ðqið1 � uiÞ þ q
p
i ð1 � u

p
i ÞÞ: (13)

The resulting modified OptMeas can be further extended
using the same line of analysis presented here to account for
multiple partial measurement options for isotopic distri-
butions of metabolites.
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Appendix B: NLP Sub-Problems for the
Proposed Procedure

In the proposed procedure, the current measurement set
(J�, I�) is tested if they under-determine (Step 3) or
unnecessarily over-determine (Step 4) the MFA system.
These tests are performed by solving nonlinear programm-
ing (NLP) problems described in this section. We first solve
a forward problem for a specific substrate labeling pattern
Iik 8i 2 InIN and flux distribution vj, and obtain all the
other IDVs Iik 8i 2 IN .
Uniqueness Test

In Step 3, in order to check if (J�, I�) uniquely determines all
fluxes within flux bounds ½vLO; vUP, the following NLP
problem must be solved to global optimality:

ðTestUniqÞ max
P

j2JnJ�
ðvj � vjÞ2

s:t: Equations ð1Þ-ð3Þ;
vj ¼ vj j 2 J�;
Iik ¼ Iik k 2 Ki; i 2 I�;
vLO

j � vj � vUP
j ; Iik 2 0; 1½ 

TestUniq is a variation of FluxRange of Suthers et al. (2007),

and has an objective function the sum of squared differences

(SSD) of all the fluxes that are not measured. Maximum SSD

corresponds to the maximum difference in flux distributions

that yield the same labeling pattern of the measured

metabolites. If the maximum SSD is zero, then (J�, I�)
uniquely determines all fluxes. If the maximum SSD is

larger than zero then the imposed measurements do not

uniquely determine the system. This numerical uniqueness

check relies on both the global optimality certificate and

Theorem 3 of Isermann and Wiechert (2003) which states

that almost all realizations of substrate labeling produce the

same identifiability results (with probability one) if the

measurement is noise free.
Optimality Test

In Step 4, in order to check if the current solution
corresponds to a minimal measurement set, we solve the
following NLP problems for each j� 2 J� and i� 2 I�:

ðTestOptðj�ÞÞ max ðvj� � vj� Þ2

s:t: Equations ð1Þ-ð3Þ;
vj ¼ vj j 2 J�nfj�g;
Iik ¼ Iik k 2 Ki; i 2 I�;
vLO

j � vj � vUP
j ; Iik 2 ½0; 1

ðTestOptði�ÞÞ max
P

k2Ki�
ðIik � IikÞ2

s:t: Equations ð1Þ-ð3Þ;
vj ¼ vj j 2 J�;
Iik ¼ Iik k 2 Ki; i 2 I�nfi�g;
vLO

j � vj � vUP
j ; Iik 2 ½0; 1



Essentially these formulations fix all measurements,
except for one at a time, and then explore if the ‘‘free’’
measurement variable is locked at its measured value due to
the fixing of all the other measured variables. If so, then this
measurement is redundant, otherwise it is indeed needed
for fully resolving the network. Therefore, if the optimal
value to TestOpt is larger than zero for some j

�
or i

�
, then the

corresponding measurement is essential given measure-
ments (J�, I�). Therefore, if all the optimal values to
TestOpt are larger than zero, (J�, I�) contains no redundant
measurement, and thus it is optimal. If the optimal value to
TestOpt is zero for some j

�
or i

�
, then this indicates that the

corresponding measurement is redundant.
References

Antoniewicz MR, Kelleher JK, Stephanopoulos G. 2006. Determination of

confidence intervals of metabolic fluxes estimated from stable isotope

measurements. Metab Eng 8(4):324–337.

Antoniewicz MR, Kelleher JK, Stephanopoulos G. 2007a. Accurate assess-

ment of amino acid mass isotopomer distributions for metabolic flux

analysis. Anal Chem 79(19):7554–7559.

Antoniewicz MR, Kelleher JK, Stephanopoulos G. 2007b. Elementary

metabolite units (EMU): A novel framework for modeling isotopic

distributions. Metab Eng 9(1):68–86.

Antoniewicz MR, Kraynie DF, Laffend LA, González-Lergier J, Kelleher JK,
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