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bstract

Modeling and analysis of the dynamics of signaling transduction networks can be powerful tools to understand and predict how cells will
espond to native signals and artificial perturbations. This is of special interest for analyzing disease processes associated with signal transduction
alfunctioning and to contribute to the development of efficient drug treatment strategies. In this work we examine the advantages of a kinetics-based
ramework as compared with purely topological approaches to identify input sets and disruption strategies that preserve desired cellular functions
hile blocking undesired disease states in signaling networks. These differences are highlighted through two examples where the mechanistic-based

pproach captures information that the topological-based analysis is unable to reveal.
2008 Published by Elsevier Ltd.
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. Introduction and background

Regulation of the physiological functions of a living system
epends in part on its ability to process information coming from
ts environment. The mechanism by which cells achieve this task
s known as signal transduction. Broadly speaking, signal trans-
uction requires first sensing of an environmental perturbation
nd then its transduction into a suitable signal for the regula-
ory machinery in charge of the coordination of gene expression
nd protein levels. Generally, sensing is carried out by pro-
eins at the membrane of the cell (receptors) that bind with high
pecificity biochemical signals (ligands) such as hormones, neu-
otransmitters, growth factors and cytokines. Ligand–receptors
omplexes then trigger or suppress cascades of various proteins
hich can undergo and/or catalyze biochemical transforma-

ions (e.g., phosphorylation, complex formation) that ultimately
esult in the activation or deactivation of transcription factors.
he collection of proteins and other biomolecules that partici-

ate in the transduction of a signal form a signaling pathway.
ignaling pathways are not necessarily linear series of reac-

ions but multiple branches and feedback loops are common
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otifs. Moreover, signaling pathways do not operate indepen-
ently but interact with others through proteins that participate
n multiple pathways. These interacting pathways constitute
n intricate web, commonly referred to as signaling network,
omprising a large number of components. In humans the sig-
aling network is comprised by the products of more than
wo thousand genes that encode mainly for receptors, kinases
nd phosphatases (Papin, Hunter, Palsson, & Subramaniam,
005). This vast collection of proteins has to process, gen-
rally in parallel, multiple signals coming from a complex
icroenvironment.
The complexity of signaling process and the availability of

n enormous amount of experimental data have motivated the
evelopment of mathematical models to systematically integrate
nd analyze information and generate meaningful hypotheses
hat can be tested experimentally. Clearly, due to the large
umber of components and their intricate interactions, map-
ing the complete hierarchy of receptor signaling networks and
heir activation sequences is a significant challenge. A compre-
ensive review of modeling frameworks is beyond the scope
f this paper. Here, we comment on the main features of the

toichiometric and kinetic models. The reader may refer to
Eungdamrong & Iyengar, 2004; Orton et al., 2005; Vayttaden,
jay, & Bhalla, 2004) for a broad classification of models typi-

ally used for modeling signaling networks.

mailto:armaou@psu.edu
dx.doi.org/10.1016/j.compchemeng.2007.10.022


2 Chem

i
b
D
i
n
T
o
a
M
a
a
m
o
w
(
P
d
i
w
d
r

a
c
t
f
(
S
w
t
a
N
w
s
2
&
r
o
i
d
s
f
s
W

w
s
s
t
T
2
s
i
p
u
t

T
t
o
o
D
w
n
d
a
M
g
e
(
a
t
f
i
m
b
n
2

f
r
I
m
s
fi
i
s
d
i
F
t
e

2

o
(
n
a

w
c
j
o
tion of the participating species including reactants, products,
066 F.G. Vital-Lopez et al. / Computers and

The simplest signaling network models available are graph-
cal abstractions representing various species as nodes and
iochemical transformations as interconnections between them.
ue to the large amount of stoichiometric information regard-

ng protein interactions, these models are able to span large
etworks (i.e., hundreds to thousands of biotransformations).
his information is available in a number of databases devel-
ped to systematically organize protein interaction data such
s TRANSPATH (Krull et al., 2003; Schacherer et al., 2001),
olecular Pages database (Li et al., 2002), database of inter-

cting proteins (Xenarios et al., 2002), and PANTHER (Mi et
l., 2005). Graphical models can be converted into a mathe-
atical representation analogous to the stoichiometric models

f metabolic networks. These models are amenable to net-
ork analyses such as correlation and topological analysis

Dasika, Burgard, & Maranas, 2006; Maslov & Sneppen, 2002;
apin & Palsson, 2004). However, such models do not han-
le explicitly the level of the network components, but instead
nputs and outputs are considered to be either active or inactive
hereas the presence of inhibitors/activators implies complete
isruption or activation of the corresponding transformation,
espectively.

Knowledge of network components and their interactions is
very important step toward understanding the signaling cas-

ades. However, to understand many critical signaling events
hat control cell responses such as growth, survival and dif-
erentiation, it is imperative to analyze their dynamic behavior
Haugh & Lauffenburger, 1998; Hornberg et al., 2005; Ni &
avageau, 1996). Ideally, detailed models for signaling net-
orks should explain their behavior in both space (e.g., across

he entire cell volume) and time. In recent years, consider-
ble amount of research has been directed to achieve this goal.
otable contributions include kinetic modeling of signaling net-
orks (Schoeberl, Eichler-Jonsson, Gilles, & Muller, 2002),

patially distributed analysis (Takahashi, Arjunan, & Tomita,
005), and stochastic modeling of signaling networks (Tian

Burrage, 2006). In contrast to stoichiometric models, cur-
ent mechanistic models include only a few pathways. The use
f kinetic information enables a more detailed description of
nputs/outputs and the effect of activators/inhibitors on process
ynamics. This is important to track in cases where responses
uch as high-detect, low-detect or band-detect behavior change
rom low to high intensity and vice-versa depending upon the
trength of the input (Basu, Gerchman, Collins, Arnold, &
eiss, 2005).
Proper functioning of every component of a signaling net-

ork is important for the correct response to an environmental
ignal. Mutations in one of several of its proteins may cause
erious disregulations in a signaling pathway, contributing to
he development of severe illness such as cancer (Adnane,
rail, Taylor, & Wilhelm, 2006; Janssens, Janicot, & Perera,
006). This has motivated considerable research towards under-
tanding signal transduction in normal and impaired pathways

n order to design strategies to prevent, correct and/or com-
ensate for malfunctions. Contributions in this direction make
se of computational models to address relevant questions in
he design of therapeutic strategies and target identification.

a
e
e
(
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opological models have been used to elucidate the struc-
ural properties of signaling networks within the framework
f extreme pathways analysis (Papin & Palsson, 2004) based
n the algorithm of Schilling, Letscher, and Palsson (2000).
asika et al. (2006) proposed an optimization-based frame-
ork to efficiently explore the topological space of signaling
etworks seeking for solutions for two meaningful problems in
rug development studies. The first one is the identification of
ll sets of inputs that can trigger an output of interest (coined
in-Input problem). The second one is the identification of tar-

eted disruptions within the network to “shape” its response, to
liminate undesired outputs while preserving the desired ones
coined Min-Interference problem). Mechanistic models have
lso been used to identify key component of signaling networks
hrough an extension of metabolic control analysis to account
or transient behavior (Hornberg et al., 2005) and time depend-
ng sensitivity analysis (Hu & Yuan, 2006). In other works,

echanistic models were used to predict the effect of pertur-
ations of intuition-guided selected components of biological
etworks (Araujo, Petricoin, & Liotta, 2005; Christopher et al.,
004).

In this work, using kinetic descriptions we extent the
ramework introduced in Dasika et al. (2006) to address the
elevant problems previously described (Min-Input and Min-
nterference). We illustrate these frameworks using a prototype
odel of overlapping MAPK cascades and a simplified MAPK

ignaling network where a unique targeted disruption is identi-
ed due to the bistability of the network. The rest of the paper

s organized as follows. We begin with the description of neces-
ary mathematical preliminaries to formulate the generic kinetic
escription of signaling networks. Subsequently, we mathemat-
cally formulate the Min-Input and Min-Interference problems.
inally, the advantages of incorporating network dynamics into

he optimization problems are illustrated through numerical
xamples using the models just mentioned.

. Mathematical modeling

The dynamics of a signaling network is described by a set
f coupled, generally nonlinear, ordinary differential equations
ODEs) derived from component balances. These ODEs for a
etwork comprised of N = {1, . . ., n} chemical transformations
nd M = {1, . . ., m} chemical species are written as:

dCi

dt
=

n∑

j=1

Sijrj(C, p), ∀i ∈ M (1)

here Ci denotes the concentration of species i, Sij is the stoi-
hiometric coefficient of chemical entity i in the transformation
, and rj is the corresponding flux of transformation j. The flux
f each transformation is a nonlinear function of the concentra-
ctivators and inhibitors, and the kinetic parameters (p). Typical
xamples of rj (C, p) are Michaelis–Menten, Hill equation, Gen-
ralized mass action (GMA) kinetics, or S-system descriptions
Savageau, 1979).
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. Mathematical formulations

.1. Min-Input problem

The initial objective is to identify sets of inputs that can acti-
ate an output of interest. The kinetic description of a signaling
etwork confers flexibility to represent the state of its compo-
ents. For instance, an output can be considered activated if the
oncentration level of a given chemical species is higher than a
iological meaningful threshold value either at steady state or at
ome point in time during its trajectory. Considering this output
escription and the kinetic description outlined in the previous
ection the Min-Input problem can be mathematically recast as
ollows:

in
∑

i ∈ Min

Yi (2)

.t.

dCi

dt
=

n∑

j=1

Sijrj, Ci(0) = C0,i, ∀i ∈ Mbal (3)

i ∈W∗, ∀i ∈ Mout, (4)

≤ Ci(t) ≤ Cu
i Yi, ∀t ∈ [0, T ], ∀i ∈ Min, (5)

i ∈ {0, 1}, ∀i ∈ Min (6)

The objective function represents the total number of inputs
equired to activate a desired set of outputs. The optimization
ariables in this formulation are Yi and Ci(t), ∀i ∈ Min, where
in ⊂ M is the set of inputs. Ci(t) is the concentration pro-

le of input i, which is allowed to be active (i.e., Ci(t) > 0)
nly if Yi = 1 (constraint 5). Constraint 3 represents the dynam-
cs of the signaling network, where Mbal ⊂ M is the set of
pecies for which a mass balance is available. Mout ⊂ M is the
et of outputs of interest, T is the final time, C0,i is the ini-
ial concentration of specie i, and Cu

i is the upper limit on
he input concentrations. W∗ is the set of active outputs. For
xample, if one is interested in the steady-state level of Ci, the
et is defined as W∗ = {Ci(T )|Ci(T ) > C∗

i } and constraint 4
ssumes the form Ci(T ) ≥ C∗

i . When the maximum level of Ci

t any point in time is important, constraint 4 is replaced by
max
≤t≤T

Ci(t) ≥ C∗
i .

.2. Min-Interference problem

The objective of the problem is to identify the set of pos-
ible manipulations within the network to obtain a desired
emporal response from the network. For example, identify a
et of disruptions within a network such that a given set of
ndesired outputs can be eliminated while preserving the rest
f the desired outputs. In Dasika et al. (2006) the problem

as formulated as a bilevel optimization problem. The inner

evel problem identifies the worst-case scenario response of
he network by maximizing the flow to the undesirable output.
ubsequently, the outer problem guarantees that the solution

s
c
a
d

ical Engineering 32 (2008) 2065–2071 2067

o the inner problem is equal to zero by systematically dis-
upting a minimal number of transformations. We reformulate
his problem by accounting for the dynamical behavior of the
etwork into the optimization problem. The aim of the cur-
ent study is to demonstrate the qualitative and quantitative
ffect of accounting of network dynamics on the output of the
in-Interference problem. Given the dynamics of the network

nd the maximum number of allowable disruptions, the opti-
ization problem successively computes strategies such that an

ndesirable output is blocked by disrupting minimal number of
ransformations. Mathematically, the problem is formulated as
ollows:

min
j,wj

n∑

j=1

Yj (7)

.t.

dCi

dt
=

n∑

j=1

SijRj, Ci(0) = C0,i, ∀i ∈ Mbal (8)

j = wjrj(C, p), (9)

+ (wl
j − 1)Yj ≤ wj ≤ 1 + (wu

j − 1)Yj (10)

i ∈W∗, ∀i ∈ Mdes
out , (11)

i ∈W, ∀i ∈ Mundes
out , (12)

n

j=1

Yj ≤ K (13)

here wj represents the efficacy of the disruptions, wj = 0
ndicating complete disruption of the corresponding transforma-
ion and wj = 1 indicating no disruption.wl

j and wu
j represent

he lower and upper bounds for the available disruptions and
l
j = 0 and wu

j = 1 for the nominal case. The objective function
inimizes the total number of targeted disruptions (identified

y the corresponding binary number Yi = 1). Mdes
out ⊂ Mout is

he set of desirable outputs and Mundes
out ⊂ Mout is the set of

ndesired outputs where Mout is the set of all outputs of the
etwork. Constraint 8 represents the dynamics of the signal-
ng network. The disruption efficiency wj affects the dynamics
uch that the rate of the corresponding transformation is reduced
y the corresponding factor (constraint 9). Constraints 11 and
2 define whether the desired output is “present” (i.e., belongs
o set W∗) and the undesired output is “absent” (i.e., belongs
o set W). Incorporation of kinetic models in the formula-
ion allows flexibility in the definition of sets W∗ and W. For
nstance, we define the output as preserved if the correspond-
ng output concentration is greater than a lower threshold; this
s mathematically captured by enforcing a constraint such as

i ≥ Cthreshold can be enforced. Another way to ensure that the
utput is persistently greater than a given threshold, a con-

traint of the form f

∫ tf
0 ||Ci|| ≥ Δ can be enforced. Finally,

onstraint 13 ensures that the total number of disruptions
re less than or equal to the maximum number of allowable
isruptions.
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Table 1
Input–output relationships for the overlapping MAPK cascades model

Inputs Outputs

Stoichiometry Kinetic Kinetic
Steady state Steady state Dynamic

SP RP XP YP XP YP XP YP

• ◦ • ◦ • ◦
◦ • ◦ • ◦ •
• • • •

◦ • • ◦
◦ • ◦ • ◦ •
• •

• • • ◦ • ◦
◦ • ◦ • ◦ •
• • • •
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ig. 1. Schematic diagram of overlapping MAPK cascade. Dashed arrows indi-
ate the enzymes that catalyze the biochemical transformations, denoted by
ontinuous arrows.

It should be noted that there may exist multiple solutions
f the Min-Input and Min-Interference problems (i.e., multiple
ptima). A given output may be blocked through multiple disrup-
ion strategies or a desired output can be triggered by several sets
f inputs. Such alternate optima can be successively identified by
teratively solving the optimization problem and excluding the
reviously obtained solutions in the next iterations using integer
ut constraints (Floudas, 1995).

. Numerical examples

.1. Overlapping MAPK cascades

Incorporation of kinetic descriptions of signaling networks
n the formulation of the Min-Input problem allows to obtain
esults that are different from the ones obtained with stoichio-
etric models. This is demonstrated through an example using
prototype model of overlapping MAPK cascades proposed

y Somsen, Siderius, Bauer, Snoep, and Westerhoff (2002) to
xplain a possible mechanism for selective output activation
Fig. 1). The model is comprised of the mass balances of five
hemical entities that participate in twelve reactions and it has
wo inputs (SP and RP) that can activate two outputs (XP and
P). The model is represented by the following set of coupled
ifferential equations:

ȦP = kASSP
A

A + KAS
− VA

AP

AP + KA

ḂP = kBRRP
B

B + KBR
− VB

BP

BP + KB

İP = kIAAP
I

I + KIA
+ kIBBP

I

I + KIB
− VI

IP

IP + KI
X XP

(14)
ẊP = kXIIP
X + KXI

− VX
XP + KX

ẎP = kYIIP
Y

Y + KYI
− kYXXP

YP

YP + KYX
− VY

YP

YP + KY

t
b
k
1

he corresponding input or output is activated (•) or deactivated (◦).

For this small problem all possible input combinations can
e analyzed exhaustively. We first consider only the steady-state
alue of the outputs, implying that constraint 4 assumes the
orm Ci(T ) ≥ C∗

i . The outputs that can be activated by each
nput combination are shown in the second and third columns of
able 1. Notably, the stoichiometry-only approach predicts that
ny output can be triggered by any input combination, however,
sing kinetics even at steady state reveals that output XP cannot
e elicited by the input RP and that no input combination can acti-
ate simultaneously both outputs. Next, we consider dynamic
ffects and explore whether at any time the maximum level of
P and YP are above a given threshold. In this case constraint
takes the form max

0≤t≤T
Ci(T ) ≥ C∗

i . The results for this case are

resented in the forth column of Table 1. It can be seen that
P can only activate YP, whereas XP cannot be triggered with-
ut activating YP by any input combination. Overall, the results
rom this small example demonstrate that kinetic information
eveals that a number of stoichiometrically valid input–output
ombinations are not feasible. In addition, the answer to the
uestion of what input can trigger what output becomes depen-
ent upon the dynamic or static nature of the response and
timuli.

.2. Simplified MAPK cascade

We consider a three-tier MAPK cascade based on the
os/MEK1/p42 MAPK cascade present in Xenopus oocytes

Angeli, Ferrell, & Sontag, 2004). The network is schematically
hown in Fig. 2. Active Mos (x) activates the phosphorylation
f unphosphorylated MEK (y1) to monophosphorylated MEK
y2) and also activates phosphorylation of y2 to biphosphory-
ated state (y3). In turn, y3 activates phosphorylation of p42

APK (z1) at two residues resulting in the formation of active
42 MAPK (z3). Ultimately, z3 promotes the Mos synthesis,
hus forming a positive feedback loop. The above cascade has

een extensively studied experimentally and some of the relevant
inetic parameters have been measured (Sohaskey & Ferrell,
999). The dynamics of the system can be modeled using a set
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Table 2
Kinetic parameters used in the MAPK cascade

Parameter Value

ytot Total MEK concentration 1200 nM
ztot Total p42 MAPK concentration 300 nM

V0 . . .
MAPK−PP−→ Mos 0.0015 s−1 nM−1

V1 . . . → Mos 0.000002 s−1

V2 Mos → . . . 1.2 nM s−1

K2 Mos → . . . 200 nM

V3 MEK
Mos-P−→MEK-P 0.064 s−1

K3 MEK
Mos-P−→MEK-P 1200 nM

V4 MEK-P
Mos-P−→MEK-PP 0.064 s−1

K4 MEK-P
Mos-P−→MEK-PP 1200 nM

V5 MEK-PP → MEK-P 5 nM s−1

K5 MEK-PP → MEK-P 1200 nM
V6 MEK-P → MEK 5 nM s−1

K6 MEK-P → MEK 1200 nM

V7 MAPK
MEK-PP−→ MAPK-P 0.06 s−1

K7 MAPK
MEK−PP−→ MAPK-P 300 nM

V8 MAPK-P
MEK-PP−→ MAPK-PP 0.06 s−1

K8 MAPK-P
MEK-PP−→ MAPK-PP 300 nM

V9 MAPK-PP → MAPK-P 5 nM s−1

K9 MAPK-PP → MAPK-P 300 nM
V
K

a
t
T
i
v

w
e
t

I
(MIDO) problems due to the presence of ODE constraints aris-
ing from the dynamic representation of signaling networks.
Moreover, the ODEs are nonlinear in nature due to the non-
linear dependence of reaction rates on the concentrations of
Fig. 2. Schematic diagram of Mos-MEK-p42 MAPK cascade.

f coupled differential equations:

ẋ = − V2x

K2 + x
+ vV0z3x + V1

ẏ1 = V6y2

K6 + y2
− V3xy1

K3 + y1

ẏ2 = V3xy1

K3 + y1
+ V5y3

K5 + y3
− V4xy3

K4 + y3
− V6y2

K6 + y2

ẏ3 = V4xy3

K4 + y3
− V5y3

K5 + y3

ż1 = V10z2

K10 + z2
− V7y3z1

K7 + z1

ż2 = V7y3z1

K7 + z1
+ V9z3

K9 + z3
− V8y3z2

K8 + z2
− V10z2

K10 + z2

ż3 = V8y3z2

K8 + z2
− V9z3

K9 + z3

(15)

here v denotes the strength of the feedback. The relevant
arameter values are tabulated in Table 2. For the nominal value
f feedback strength, v = 2, the p42 MAPK activation exhibits
istability. This implies that depending upon the initial condi-
ion, MAPK concentration evolves to either a positive stable
teady state (termed as the “on”-state) or to a stable “off”-state.
ig. 3 shows the system evolution from a number of initial con-
itions where the profiles converging to the on-state are drawn
n solid lines and profiles converging to the off-state are drawn
n dotted lines.

Using the modified Min-Interference framework we exhaus-
ively compute network disruption strategies that lead to
uppression of the output MAPK (z3).

Also, we seek solutions that are obtainable only through
nclusion of network dynamics into the optimization framework

nd which are otherwise unattainable through stoichiometry
lone. Fig. 4 shows one such disruption for the MAPK cascade,
here blocking the feedback path in which MAPK promotes
os synthesis ultimately leads to the inhibition of MAPK. The
10 MAPK-P → MAPK 5 nM s−1

10 MAPK-P → MAPK 300 nM

bove solution, that is non-intuitive based on the topography of
he network, is a manifestation of the dynamics of the network.
o understand this, we plot a set of trajectories from different

nitial conditions by setting the feedback strength to zero (i.e.,
= 0, which amounts to disruption of the feedback to the net-
ork). It is observed that disruption of feedback in this case

liminates the bistability property of the network and renders
he off-state to be the only stable steady state.

It should be noted that both the Min-Input the Min-
nterference problems are mixed integer dynamic optimization
Fig. 3. Trajectories of z3 for a number of distinct initial conditions.
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Fig. 4. Schematic diagram of Mos-MEK-p42 MAPK cascade

articipating species, activators and inhibitors. Consequently,
he solution of the resulting optimization problem is challeng-
ng. In the current work, the ODE constraints are first discretized
n time using finite differences to obtain a set of nonlinear
lgebraic constraints. This reformulated the original MIDO
roblem to a mixed integer nonlinear program (MINLP), which
s subsequently solved using standard solver DICOPT accessed
hrough GAMS. An alternative approach is to integrate the ODE
onstraints separately, keeping track of possible constraint vio-
ations, a technique known as control vector parameterization
Vassiliadis, Sargent, & Pantelides, 1994).

. Summary

This work outlines the development of a general framework
o address two important problems regarding the design of sig-
aling networks. The first is the identification of input sets that
re capable of eliciting a given output. The second is the identifi-
ation of disruption strategies within cell signaling networks to
anipulate their responses to external stimuli. At the core of the

olution strategies lies an optimization problem that systemati-
ally identifies input sets or the disruptions required to achieve
he above objectives. The dynamics of signaling networks have
een incorporated to (a) allow flexible and more detailed repre-
entations for inputs, outputs, inhibitors and activators involved
nd (b) to capture emergent properties of networks originated
ue to their dynamics. Finally, the effectiveness of the proposed
pproach is demonstrated using a prototype model of overlap-
ing MAPK cascades and a three-tier MAPK cascade. Even
hough the examples considered correspond to relatively small
etworks, the scheme can be readily extended to larger and more
omprehensive networks that have greater descriptive and pre-

ictive capabilities. Examples include detailed models of MAPK
ctivated by EGF receptor activation (Hornberg et al., 2005;
chacherer et al., 2001). Controlling the output of the above
ignaling network has practical significance since ERK profile
as implications on ultimate cell fate.

H

he inhibition of feedback and corresponding trajectories of z3.
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