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1 Introduction

Increasing demands for renewable energy and en-
vironmental concerns have stimulated an interest
towards the production of second generation bio-
fuels from renewable sources [1]. For the past few
decades, bio-ethanol was considered as a substi-
tute for transportation fuels. More recently, long-
chain alcohols (C3–C5) have also emerged as bio-
fuel alternatives because of their higher energy
density and ease of storage [2]. Microorganisms
from diverse environments naturally produce

ethanol during fermentation. However, the natural
synthesis of higher alcohols is not as commonplace
except within certain Clostridia strains [3, 4]. One
possible production alternative for 1-butanol and
1-propanol is to use native pathways in Clostridium
acetobutylicum [5–9]. An alternative approach is to
integrate non-native pathways into standard mi-
crobial production hosts (i.e., Escherichia coli or
yeast) by exploiting the conversion of key interme-
diary amino acids into long-chain alcohols [10, 11].
In this regard, numerous efforts have been made in
the recent past to clone and express Clostridia
genes (butyryl-CoA dehydrogenase, bcd) responsi-
ble for the production of 1-butanol in E. coli
[12–14]. Homologs and isoenzymes of bcd from
Megasphaera elsdenii [15, 16] and crotonoyl-CoA
reductase (ccr) from Streptomyces coelicolor [17]
have been tested. Recently, enzymes catalyzing the
final steps of the Ehrlich pathway [18] in yeast
were recruited in E. coli to convert 2-ketoacids into
1-butanol and isobutanol [19]. The global aim of
converting biomass to energy has led to an in-
creased interest in transferring non-native meta-
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bolic pathways and enzymes into industrial pro-
duction hosts such as E. coli [20, 21] or Saccharo-
myces cerevisiae [22].

An important goal of this research requires ex-
tending the metabolic confines of microbial hosts
by recruiting non-native biosynthetic pathways. So
far, studies concerning the incorporation of het-
erologous pathways relied largely on human intu-
ition and literature reports followed by experimen-
tation [23, 24]. Nowadays, rapidly expanding com-
pilations of biotransformations such as KEGG [25]
and BRENDA [26] are increasingly being prospect-
ed to identify biosynthetic routes to long-chain al-
cohols.With a combined size that accounts for over
60 000 enzymatic reactions and 250 000 metabo-
lites, these databases include reactant and product
designation, stoichiometric coefficients, organism
assignment, and occasional thermodynamic infor-
mation for pathways [27]. Several optimization and
graph-based methods have been employed to com-
putationally assemble novel biochemical routes
from these sources. Given a set of reactions (i.e.,
Universal database) the OptStrain [28] procedure
uses a mixed-integer linear optimization represen-
tation to identify the minimal number of reactions
to be added (i.e., knock-ins) into a genome-scale
metabolic model to enable the production of the
new molecule. However, the developed universal
database, at that time, was limited to only approxi-
mately 4000 reaction entries.The combinatorial na-
ture of the problem poses a significant challenge to
the OptStrain methodology as the number of reac-
tion database entries increase from a few to tens of
thousands. At the expense of not enforcing stoi-
chiometric balances graph-based algorithms have
inherently better-scaling properties for exhaus-
tively identifying all min-path reaction entries that
link a source with a target metabolite. For instance,
Ma and Zeng [29] employed the shortest pathway
algorithm for reactions in databases for recon-
structing genome-scale metabolic models. Hatzi-
manikatis et al. [30] introduced a graph-based
heuristic approach (BNICE) to identify all possible
biosynthetic routes from a given substrate to a tar-
get chemical by hypothesized enzymatic reaction
rules. Recently, the BNICE framework was used to
identify novel metabolic pathways for the synthe-
sis of 3-hydroxypropionate in E. coli [31]. Based on
a similar approach, a new scoring algorithm [32]
was introduced to evaluate and compare novel
pathways generated using enzyme-reaction rules.
The identified pathways may involve interconver-
sions for which no enzymatic activity has been iso-
lated before. While this could shed light to truly
novel production avenues, it may be more time-
consuming to implement. In addition, several tech-

niques such as PathMiner [33], PathComp [34],
Pathway Tools [35, 36], MetaRoute [37], PathFinder
[38] and UM-BBD Pathway Prediction System [39]
are in use to search for bioconversion routes in re-
action databases. Most of these methods, so far,
have been employed to aid metabolic pathway re-
constructions by matching putative enzymes with
reference pathways, while their contribution to-
wards strain optimization has so far been limited.

Here we introduced a min-path graph proce-
dure for overcoming the complexity associated
with exhaustively identifying all possible ways of
linking a source with a target metabolite. The pro-
cedure is designed to remain tractable even when
reaction database entries reach hundred of thou-
sands. The first step involved the incorporation of
reaction and metabolite entries from both KEGG
[25] and BRENDA [26] databases into a single
repository. A customized min-path algorithm [40]
was then employed to compute all possible path-
ways that enable the bio-production of a target al-
cohol molecule. We further scrutinized the identi-
fied pathways by first incorporating them into the
genome-scale metabolic model of the production
host microorganism, and subsequently examining
their maximum theoretical yields, number of enzy-
matic steps needed and cofactor availability. We
demonstrated our integrated framework by explor-
ing pathways from pyruvate (produced in E. coli) to
1-butanol. We then selectively added one or more
of these pathways to the latest genome-scale meta-
bolic model of E. coli, iAF1260 [41] and used our 
recent OptForce [42] procedure to predict metabol-
ic interventions (i.e., up-/down-regulations and
knockouts).

2 Materials and methods

The graph-based procedure discussed here is
aimed at elucidating all possible biochemical
routes from compounds found in the metabolic
network of a desirable production host to a target
molecule of interest. Alternatively, the procedure
can also be used to track native routes that may in-
crease productivity over known synthesis path-
ways by restricting the reaction entries to the ones
present in the metabolic model of the production
host. To provide the search procedure with known
metabolic routes, we downloaded the most up-to-
date version of the KEGG database [25] and ex-
tracted approximately 9000 reactions and 16 000
metabolites. Unfortunately, the KEGG database
does not contain complete production pathways of
long-chain alcohols.We therefore added a few hun-
dred reaction entries from the BRENDA database
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[26] that are relevant to biofuel production to re-
store the metabolic connectivity to long-chain 
alcohols. It is important to note that we did not
globally reconcile the entire KEGG database with
BRENDA database (containing ~250 000 metabo-
lites and 67 191 reactions). Instead, for all reactions
in BRENDA associated with the synthesis of the
target alcohol, we manually recorded identifiers for
all the reactants, products and stoichiometric coef-
ficients and integrated them with the KEGG entries
into a single database.

Sorting out the naming inconsistencies for com-
pounds was the most time-consuming step. To ac-
complish this, we made use of available synonym
data from PubChem [43] to arrive at unique meta-
bolite identifiers. Reactions with generic descrip-
tions (e.g., metabolites named as “alcohol”, “alde-
hyde”, etc.) for reactant/product compounds, with
unknown stoichiometry or that involve macromol-
ecules (e.g., RNAP) were excluded. The integrated
database used in this work spans 9921 reactions
and 17 013 metabolites from both BRENDA and
KEGG (see Text S1).

We used the min-path procedure as depicted in
Fig. 1 to trace all possible paths between a source
and a target metabolite. We first computationally
transformed the information contained within the
stoichiometric coefficients (Sij) that track participa-
tion of metabolites in reactions into a directed
metabolite-to-metabolite graph (Nii) where nodes
represent metabolites. A directed arc with a weight
of one exists between two nodes if one or more re-
actions in the database allow the direct bioconver-
sion from one metabolite to the other. If no such re-
action exists, then a very large cost value was as-
signed to signify that their direct interconversion is
disallowed. Whenever no information was avail-
able on the directionality of reactions we assumed
that the reaction could operate in both directions.
Small molecules (e.g., water, carbon dioxide) and
cofactors (e.g., NADP, ATP) are involved in a large
number of reactions and thus can link reaction
steps that do not share any additional metabolites.
We therefore excluded all such associated directed
arcs before employing the shortest path algorithm.
A list of all small metabolites and cofactors is com-
piled in the supplementary Text S1. Next we com-
puted all k-shortest “loopless” pathways [40] be-
tween a source and a target alcohol molecule. We
started from the shortest path (k =1) and exhaus-
tively sampled the combinatorial space of alterna-
tive pathways by subsequently eliminating arcs,
one at a time, belonging to the shortest pathway.
Given a target number of pathways (K), we incre-
mented the value of ‘k’ (from 1 to K) whenever we
identified a new pathway between the source and

the target metabolite. We recomputed the shortest
paths until we recorded the remaining “K – 1”
shortest possible metabolic linkages to the target
molecule.

We next evaluated the multiple identified path-
ways based on criteria such as maximum theoreti-
cal yield, number of reaction steps needed and co-
factor requirements. Given a choice of a pathway to
be added, we used our recent OptForce procedure
[42] to identify additional strain manipulations
(knockouts, up/down-regulations for fluxes) that
guarantee a pre-specified yield for the alcohol mol-
ecule. The OptForce procedure uses metabolic flux
measurements available for the wild-type strain
and identifies which fluxes must depart from the
original ranges to ensure the overproduction target
for the desired alcohol molecule. Notably, the Opt-
Force procedure [42] identifies the necessary
changes (i.e., MUST sets) by contrasting the maxi-
mum range of flux variability for the wild-type
strain (characterized by flux measurements)
against the flux ranges consistent with the over-
producing network. Based on these necessary net-
work changes, we combinatorially identified the
minimal set of engineering interventions that re-
sult in a new flux distribution consistent with an
overproducing strain of host microbe. All lexico-
graphic searches needed to integrate database en-
tries were performed using Python (version 2.4.3)

Figure 1. Graph-based procedure to min novel pathways from reaction
databases using Yen’s shortest path algorithm.
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and the algorithm for the identification of shortest
paths was coded using C++ on a 2.6 GHz AMD
Opteron Processor with 32 GB of ECC RAM.

3. Results and discussion

3.1 Pathways from pyruvate to 1-butanol

We demonstrated our min-path procedure by 
identifying all synthesis routes using KEGG and
BRENDA database entries for producing 1-butanol
from pyruvate. We first selected promising path-
ways and subsequently integrated them with the
genome-scale metabolic model of E. coli, iAF1260
[41]. Using OptForce [42] we next pinpointed meta-
bolic engineering strategies for overproduction.
Traditionally, two distinct synthesis routes have
been employed in E. coli for the production of 1-bu-
tanol. The first pathway involves a fermentative
transformation of pyruvate and acetyl-CoA to 1-
butanol by the action enzymes from C. aceto-
butylicum [21]. The second pathway takes advan-
tage of enzymes with broad-range substrate speci-
ficity to convert natural amino acids in E. coli into
ketoacid precursors [19, 20] and eventually 1-bu-
tanol. In both pathways, pyruvate acts as an impor-
tant precursor and a branching metabolite for bu-
tanol synthesis [44].The fate of pyruvate at the end

of glycolysis depends on the engineering strategies
imparted to the production host.Therefore, here we
selected pyruvate as a source metabolite in explor-
ing pathways to 1-butanol (sink metabolite).

Figure 2 illustrates all identified pathways from
pyruvate to 1-butanol using the integrated reaction
database. With the exception of the thiobutanoate
pathway (present in the BRENDA database), all
other pathways involved butanoyl-CoA and 1-bu-
tanal as shared intermediates that are converted to
1-butanol using secondary alcohol dehydrogenase
(adhE) from C. acetobutylicum. The min-path pro-
cedure recapitulated both the fermentative and ke-
toacid pathways for 1-butanol synthesis (shown in
dotted lines). In addition, the algorithm uncovered
a number of possible transformations to butanoyl-
CoA involving intermediate metabolites that are
produced in E. coli. For example, pyruvate can be
converted into acetyl-CoA using pyruvate dehy-
drogenase natively present in E. coli. However, the
conversion from acetyl-CoA to butanoyl-CoA is not
favored because 1-butanal produced along the
pathway is used up as a co-reactant along other re-
actions in the same pathway.This severely reduces
the flux of the 1-butanol to less than 10 mmol/
gDW h, which is about ten times less than the yields
from existing pathways [2, 19]. Similarly, pathways
involving methylmalate and methylbutanoate as
intermediates require cofactors, which in turn, ad-

Figure 2. Pathways identified from
pyruvate to 1-butanol using the
graph-based procedure. Widely
spaced dotted arrows represent the
ketoacid pathway and the closely
spaced arrows represent the 
fermentative pathways for 1-butanol
synthesis. The thiobutanoate 
pathway is shown in gray.
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versely reduce the yield of 1-butanol. Upon inte-
grating these reactions in the metabolic model of E.
coli, we estimated that the maximum theoretical
yield of 1-butanol synthesis was only around
32 mmol/gDW h.The maximum butanol flux values
and cofactor usages of these pathways are shown in
Table 1.

The thiobutanoate pathway recruits a decar-
boxylase and a reductase enzyme and defines a
novel synthesis route distinct from the two existing
pathways. Instead of using dehydrogenases to con-
vert butyraldehyde into 1-butanol, the new path-
way proceeds with the transamination of methion-
ine into 2-oxomethylthiobutanoate and eventually
into 1-butanol. Notably, a native transaminase (EC
2.6.1.42) enzyme in E. coli is known to catalyze the
conversion of L-methionine to L-glutamate with 2-
ketoglutarate as a co-reactant [45]. The intermedi-
ate product, 2-methylthiobutanoate, is subsequent-
ly decarboxylated (EC 4.1.1.72) to 3-methylthio-
propanal. This conversion is native in Lactococcus

lactis [46]. Subsequently, 3-methylthiopropanal is
reduced (EC 1.1.1.265) to 1-butanol by a reductase
present in yeast [47]. It is important to note that the
decarboxylase reaction removes a considerable
amount carbon in the form of carbon dioxide, re-
ducing the yield of 1-butanol by ~22% in compari-
son to the ketoacid pathway.

Next, we integrate these reactions in the
iAF1260 metabolic model of E. coli and used Opt-
Force [42] to identify metabolic interventions to
meet an imposed overproduction target. The iden-
tified results were contrasted against the ones de-
rived when the ketoacid pathway was integrated
into the E. coli model. In both the case studies, the
initial strain was first characterized by estimating
the maximal range of flux variability using the in-
tracellular flux measurements [48] available for the
wild-type strain of E. coli, BW25113. The OptForce
employed a bilevel optimization procedure to first
identify the reaction fluxes that must increase or
decrease (MUST sets) outside the wild-type flux

Table 1. Maximum flux values for 1-butanol using the identified pathways from pyruvate

List of identified pathways between pyruvate and 1-butanol and intermediate reactions Maximum flux value for 1-butanol 
(in mmol/gDW h)

Thiobutanoate pathway:
L-Glutamate + pyruvate ↔ 2-ketoglutarate + L-alanine 74.8
2-Ketoglutarate + L-methionine → 2-keto methylthiobutyrate + L-glutamate
2-Keto methylthiobutyrate → 3-methylthiopropanal + CO2
3-Methylthiopropanal + NADPH → 1-butanol + NADP

Fermentative pathway: 
CoA + NAD + pyruvate → Acetyl-CoA + CO2 + NADH 100
2 Acetyl-CoA ↔ acetoacetyl-CoA + CoA
Acetoacetyl-CoA + NADPH + H+ ↔ 3-hydroxybutanoyl-CoA + NADP
3-Hydroxybutanoyl-CoA ↔ crotonoyl-CoA + H2O
Crotonoyl-CoA + NADH + H+ ↔ butanoyl-CoA + NAD+
Butanoyl-CoA + NADPH + H+ ↔ 1-butanal + CoA + NADP+ 
1-Butanal + NADH + H+ ↔ 1-butanol + NAD+

Ketoacid pathway:
Pyruvate → L-threonine (isoleucine, serine and threonine metabolism) 100
L-Threonine ↔ oxobutanoate + NH3
Oxobutanoate + acetyl-CoA  + NAD ↔ 2-ketovalerate + CO2 +  NADH
2-Ketovalerate ↔ 1-butanal + CO2
1-Butanal + NADH + H+ ↔ 1-butanol + NAD+

Methylmalate pathway:
Acetyl-CoA + pyruvate + H2O ↔ 2-methylmalate + CoA 32
Acetyl-CoA + 2-methylmalate ↔ acetate + butanoyl-CoA + CO2+ H2O
Butanoyl-CoA + NADPH + H+ ↔ 1-butanal + CoA + NADP+ 
1-Butanal + NADH + H+ ↔ 1-butanol + NAD+

Other pathways:
Pyruvate ↔ acetaldehyde + CO2 9.3
Acetaldehyde + CoA + NAD+ ↔ acetyl-CoA + NADH + H+
ATP + butanoic acid + CoA ↔ AMP + diphosphate + butanoyl-CoA
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ranges to meet the overproduction target. A mini-
mal set of direct interventions (i.e., knock-up/
down/outs) that guarantee a pre-specified yield for
1-butanol was next extracted from the MUST sets.
All abbreviations for reactions and metabolites ad-
here to the iAF1260 metabolic model conventions.

3.2 Case 1: 1-Butanol synthesis using
thiobutanoate pathway

Figure 3 lists the identified MUST set of reactions
considering one reaction at a time. The yield for 1-
butanol was set at 95% of its theoretical maximum,
while allowing the production of 5% biomass to
support growth. The thiobutanoate pathway
branches away from 2-ketoglutarate along the ox-
idative arm of the TCA cycle.To increase the pool of
oxaloacetate available for the TCA cycle, the fluxes
of reactions in the glycolytic pathway [phosphate
isomerase (PGI), phosphoglycerate mutase (PGM),
phosphoglycerate kinase, phosphoenol pyruvate
carboxylase (PPC), etc.] increase beyond their ini-
tial ranges. Many reactions in the pentose phos-
phate pathway (e.g., GND,TKT1/2,TALA, etc.) were
also classified in the MUSTU sets. The increase in
the fluxes for these reactions replenishes the gly-
colytic intermediary metabolites. Since methionine
is required as an important precursor for 1-butnaol
pathway, reactions in methionine biosynthesis
(e.g., CYSTL, METS, MTHFR2, CYSS) were also
members of the MUSTU set.The fluxes of reactions
leading to competing by-products, pyruvate kinase

(PYK) and pyruvate formate lyase (PFL) decrease
below their initial ranges. Since biomass produc-
tion is reduced to 5% of its theoretical maximum,
reactions in amino acid biosynthesis that are di-
rectly coupled to growth appear in the MUSTL sets.

As expected, more complex flux changes are re-
vealed in the network of MUSTUU, MUSTUL and
MUSTLL sets shown in Fig. 4. These results under-
score the importance of increasing the flux through
the oxidative arm of the TCA cycle (FUM, etc.) or at
the same time negating the drain towards by-prod-
ucts such as acetate and ethanol. Additionally, in
the MUSTUU set, the flux of propanoyl CoA:suc-
cinyl CoA transferase (PPCSCT) or the flux of suc-
cinyl CoA synthetase (SUCOAS) must increase.
Both of these fluxes are in close proximity to 2-ke-
toglutarate, which is an important branching
metabolite in the TCA cycle for the thiobutanoate
pathway.We carried out this hierarchical classifica-
tion by considering three reactions at a time
(Fig. 5).The increase in fluxes for IPPMI, IMPC and
AIRC3 further boosts the synthesis of precursors
for methionine through amino acid biosynthetic
pathways.

Notably, the MUST set of reactions represent
the changes that must take place in the metabolic
network for overproduction that can be directly or
indirectly imparted by metabolic interventions.
OptForce identifies the minimal set of reaction in-
terventions (culled from the MUST sets) that forces
the target yield for 1-butanol. Figure 6a shows the
FORCE set of reactions for overproducing 1-bu-
tanol in E. coli using the thiobutanoate pathway.
Up-regulating one of the two glycolytic fluxes, glu-

Figure 3. MUSTU and MUSTL set of reactions for 1-butanol synthesis in 
E. coli using the thiobutanoate pathway.

Figure 4. MUSTUU, MUSTUL and MUSTLL set of reactions for 1-butanol
synthesis using the thiobutanoate pathway. Black ovals represent reaction
flux down-regulations while white ovals denote up-regulations.
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(SERD) and methylglyoxal synthase (MGSA)].
Down-regulation of PFL and lactate dehydroge-
nase (LDH) is needed to reduce carbon drain, oc-
curring presumably due to the proximity of the ke-
toacid pathway to the synthesis routes for natural
fermentation products (acetate, ethanol, formate,
lactate, etc.). Additionally, down-regulation of TCA
cycle reactions, fumarate reductase (FRD3) and
aconitase (ACONTa/b) also appear to be essential
network changes to ensure overproduction.

A notable difference between the two cases is
the down-regulation of phosphogluconate dehy-
drogenase (GND) using the ketoacid pathway.
While the flux of GND must increase for the
thiobutanoate pathway (i.e., member of MUSTU

set), OptForce suggests that its flux must be re-
duced to facilitate 1-butanol synthesis when using
the ketoacid pathway. In addition, while PGI and
PGM were identified as up-regulations for the
thiobutanoate pathway no glycolytic reactions
were up- regulated in the FORCE set for the ke-
toacid route. Since the ketoacid pathway branches
out from precursors synthesized at the end of gly-
colytic pathway, OptForce indicates that the deple-
tion of carbon can be minimized through a number
of down-regulations for competing pathways with-
out the need of overexpressing glycolytic enzymes.
However, in the thiobutanoate case, the anaplerot-
ic PPC is required to replenish oxaloacetate and to
sustain an increased flux through the TCA cycle.

4 Concluding remarks

We have presented a graph-based min-path proce-
dure that combines metabolic information from
online databases (KEGG and BRENDA) to identify
all possible biochemical synthesis routes to target
biofuel candidates. The results for 1-butanol path-
ways reveal several new heterologous synthesis
routes that can be computationally evaluated for
overexpression and cloning experiments. Our algo-
rithm was able to identify existing pathways (ke-
toacid and fermentative pathways) used for 1-bu-
tanol production. Existing strains of E. coli [2, 19, 21,
49] for the synthesis of 1-butanol have metabolic
pathways engineered to harness either pyruvate or
acetyl-CoA available at the end of glycolysis.These
two metabolites serve as entry points for non-na-
tive functionalities associated with 1-butanol syn-
thesis. In addition, acetyl-CoA can be formed from
pyruvate using the pyruvate dehydrogenase reac-
tion. We hence selected pyruvate as the starting
metabolite to identify the synthesis routes to 1-bu-
tanol. Interestingly, we observed that the results
also suggested several native synthesis routes to

Figure 5. Minimal set of network changes for triples (i.e., MUSTUUU, 
MUSTUUL, MUSTULL, etc.). Reactions whose fluxes must increase are
shown in white ovals while reactions whose fluxes decrease are shown in
black ovals.

cose-6-PGI or PGM, replenishes phosphoenol
pyruvate available for the anaplerotic conversion
to oxaloacetate. The up-regulation for PPC results
in increasing the amount of oxaloacetate for 
the TCA cycle. Increase in fluxes of PPCSCT or 
SUCOAS ensure the availability of 2-ketoglutarate
for transamination along the thiobutanoate path-
way. In addition, the FORCE sets also include
knockouts for PFL to reduce the drain towards by-
products (acetate and ethanol) and methylenete-
trahydrofolate dehydrogenase (MTHFD) to pre-
vent the drain of L-methionine away from the
thiobutanoate pathway. These coordinated sets of
interventions lead to a guaranteed yield for 1-bu-
tanol of 73 mmol/ gDW h.

3.3 Case 2: 1-Butanol using ketoacid pathway

Figure 6b contrasts the metabolic pathways and
branching points for the ketoacid and thiobu-
tanoate pathways on a metabolic map of E. coli,
respectively. While the thiobutanoate pathway
branches out from a TCA cycle intermediate, pyru-
vate serves as an important precursor for 1-butanol
produced via the ketoacid pathway. We integrated
the reactions along this pathway to iAF1260 meta-
bolic model of E. coli and applied our OptForce pro-
cedure to predict the MUST sets and, subsequent-
ly, the FORCE sets. Figure 6b shows the FORCE set
of eight engineering interventions for 1-butanol
synthesis in E. coli using the ketoacid pathway.
Here, OptForce suggested the up-regulation in 
the fluxes of reactions that convert key amino acids
to 1-butanol precursors [i.e., serine deaminase
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precursors of 1-butanol in E. coli. For example, sev-
en pathways from pyruvate to butanoyl-CoA in-
volved intermediate metabolites produced by nat-
urally occurring enzymes in E. coli. However, the
yield of 1-butanol using these pathways was limit-
ed. In addition, the algorithm also uncovered a new
alternative route to 1-butanol synthesis through
the thiobutanoate pathway. Although, the decar-

boxylation of methylthiobutanoate reduced 1-bu-
tanol production, the computationally derived yield
was comparable to the existing strains [2, 19, 21].

The results suggested by our OptForce proce-
dure [42] revealed the differing nature of metabol-
ic interventions required to overproduce 1-butanol
using the thiobutanoate and ketoacid pathway. Re-
cruiting the thiobutanoate pathway for 1-butanol

Figure 6. The FORCE set of reactions for 1-butanol synthesis using the thiobutanoate (left) and the ketoacid (right) pathways. All the reaction 
interventions are shown in bold. Up-regulations are denoted with (↑) symbol, down-regulations are denoted with (↓) symbol and the knockouts are shown
with (×) symbol.
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overproduction required up-regulations for gly-
colytic fluxes (PGI, PGM). On the other hand, the
ketoacid precursors were made available to 1-bu-
tanol synthesis by knocking down competing path-
ways (PFL, ACONTa/b, etc.). The flux changes ob-
served in the MUST sets for the two cases also
showcased contrasting patterns. For example, for
the thiobutanoate pathway, the fluxes of the pen-
tose phosphate pathway increased so that alterna-
tive routes for glutamate and other amino acids are
maintained to support growth. However, none of
the reactions from pentose phosphate pathway ap-
peared in the FORCE sets, on the contrary, the Opt-
Force procedure indicated that the fluxes of phos-
phogluconate dehydrogenase (GND) must be
down-regulated on using the ketoacid pathway to
synthesize 1-butanol.

Several interventions that were identified in the
FORCE sets have been used in existing strains to
produce 1-butanol. For example, recent strategies
to delete host competing pathways encoded by the
genes ldhA, frdBC, pta, pfl and adhE [2, 19, 21] have
resulted in a threefold increase in the yield of 1-
butanol. In addition, enhancing glycolytic fluxes 
by overexpressing NADH-regenerating enzymes
were implemented in an E. coli strain [49] that
yielded 580 mg/L 1-butanol. In addition to the ex-
isting interventions, the OptForce procedure also
uncovered new knockouts and up-regulations that
coordinate an increased synthesis of 1-butanol. For
example, the up-regulation of glycolytic fluxes and
PPC increase the amount of oxaloacetate for the
TCA cycle. However, to effectively utilize the
transamination pathway, OptForce suggested up-
regulations for PPCSCT and SUCOAS that are in
close proximity to the branching thiobutanoate
pathway.

Using the procedure detailed here all possible
metabolic routes to any target compound can be
enumerated. Alternatively, the graph-based proce-
dure can be used to identify alternative synthesis
routes found entirely within the production host by
selectively exploring pathways that are native. Cur-
rently, the procedure uses all the biotransforma-
tions found in the KEGG database [25, 50] and a se-
lected set of reactions from the BRENDA [26] data-
base. The min-path search procedure remains
tractable for much larger compilations of reac-
tions/metabolites. Notably, the interventions pro-
posed by OptForce pertain to the reactions. A com-
plete mapping between the reactions and the genes
is required for projecting the results at the gene
level.
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