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a b s t r a c t

Extending the scope of isotope mapping models becomes increasingly important in order to analyze

strains and drive improved product yields as more complex pathways are engineered into strains and as

secondary metabolites are used as starting points for new products. Here we present how the

elementary metabolite unit (EMU) framework and flux coupling significantly decrease the computa-

tional burden of metabolic flux analysis (MFA) when applied to large-scale metabolic models. We

applied these techniques to a previously published isotope mapping model of Escherichia coli accounting

for 238 reactions. We find that the combined use of EMU and flux coupling analysis leads to a ten-fold

decrease in the number of variables in comparison to the original isotope distribution vector (IDV)

version of the model. In addition, using OptMeas the task of identifying additional measurement choices

to fully specify the flows in the metabolic network required only 2% of the computation time of the one

using IDVs. The observed computational savings reveal the rapid progress in performing MFA with

increasingly larger isotope models with the ultimate goal of handling genome-scale models of

metabolism.

& 2009 Elsevier Inc. All rights reserved.
1. Introduction

Carbon labeling has been used to elucidate metabolic pathways
and biotransformations and, more recently, 13C-metabolic flux
analysis has allowed the determination of fluxes in metabolic
models. Most of the models employed have been of fairly limited
scope because of the computational challenges involved with flux
elucidation, and the time-consuming nature of constructing the
atom mappings. In particular, most of the models have included
only pathways within or close to central metabolism (i.e., 25–50
reactions) (Kim et al., 2008). Exceptions include a recently
published medium-sized model that contains 75 reactions
(Antoniewicz et al., 2007b) and a large-scale model containing
238 reactions (Suthers et al., 2007). As more complex pathways
are engineered into strains and as secondary metabolites are used
as starting points for new products (e.g., pharmaceuticals),
increasing the scope of models becomes important in order to
analyze strains and drive improved product yields.

There have been a number of modeling contributions that have
led to the expansion of the scope of metabolic flux analysis (MFA),
in part by formalizing how to construct the resulting equations.
One of the first such modeling contributions was the introduction
of atom mapping matrices (AMM) (Zupke and Stephanopoulos,
1994) that track the transfer of carbon atoms from reactants to
ll rights reserved.
products. This concept was subsequently generalized in the form
of isotopomer mapping matrices (IMM) (Schmidt et al., 1997). The
use of IMMs enables the formulation of all isotopomer mass
balances of a metabolite pool using isotopomer distribution
vectors (IDV) to quantify the fraction of each metabolite present
in a particular isotope form. The cumomer concept (Wiechert
et al., 1999) was later introduced to first prove that there exists a
unique IDV assignment that satisfies any given feasible flux
distribution and subsequently devise an IDV identification proce-
dure by solving a cascade of equations.

One of the recent model framework contributions is the
elementary metabolite unit (EMU) framework (Antoniewicz
et al., 2007a). This framework analyzes the atom transitions and
retains only the relevant combinations that give rise to the
experimentally measured mass distributions. Through its applica-
tion, a significant reduction in the number of variables can be
achieved, which leads to a reduction in the computations required
for flux elucidation, confidence intervals (Antoniewicz et al., 2006;
Kleijn et al., 2005) and degree of resolution (Suthers et al., 2007) of
each flux. The EMU framework has previously been applied to
medium-size network model of 75 reactions and 64 species
(Antoniewicz et al., 2007b).

Using flux balance analysis under steady-state conditions we
find that not all fluxes in a metabolic network are independent.
One method for determining the relationship for fluxes is flux
coupling analysis (Burgard et al., 2004). This method allows the
straightforward and computationally efficient means of determin-
ing which fluxes are fully, partially, or directionally coupled. This
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result suggests that the confidence interval needs to be calculated
only once per group of fully coupled fluxes, thus allowing for a
reduction in the computations required for statistical analysis.

As the scope of isotope mapping models increases, the number
of mass isotope distribution measurements needed to fully
elucidate fluxes grows accordingly. The OptMeas method was
recently proposed to determine measurement sets that enable flux
elucidation using incidence structure analysis (Chang et al., 2008).
The original implementation relied on an IDV description to track
isotope labeling. The method was successfully used to suggest
additional measurements for flux elucidation in a large-scale
isotope mapping model. Although the method was scalable to
large-scale models, improved efficiency would likely be needed for
its application to models of significantly increased scope, such as
genome-scale models.

In this report, we describe the application of the EMU
framework and flux coupling to the large-scale isotope mapping
model of Escherichia coli that includes the pathway for producing
amorphadiene, a precursor to the antimalarial drug artemisinin.
Their combined use led to substantial reductions in problem sizes
and computational times for both flux elucidation and identifica-
tion of additional measurements.
2. Materials and methods

For all calculations, the simulated environment was aerobic
glucose minimal medium, and follows the values used in Suthers
et al. (2007). Except where noted otherwise, all mass isotopomer
distribution measurements, the isotope mapping model and atom
transitions were identical to those in Suthers et al. (2007). Briefly,
the model includes all reactions of Embden–Meyerhoff–Parnas
(EMP) and Entner–Doudoroff (ED) glycolysis, the tricarboxcylic
acid (TCA) cycle, and the pentose phosphate pathway (PPP). In
addition, anaplerotic reactions and amino acid biosynthesis and
degradation pathways are accounted for. The model enforces the
explicit balancing of all metabolic cofactors (e.g., ATP, NADH,
NADPH) and included reactions for energy generation via
substrate-level and oxidative phosphorylation as well as transhy-
drogenase activity. Finally, the reactions enabling the production
of amorphadiene in E. coli are also included in the model.

The EMU framework was implemented in Python by following
the algorithm outlined in (Antoniewicz et al., 2007a). Briefly, the
code first parses the network and atom transitions. A list of source
metabolites and measurements are read and the measurements
are traced back to the corresponding EMUs. This procedure
continues until a source metabolite is reached and all EMUs are
traced. The implementation accounts for symmetric metabolites
and can also determine the reduced EMU network for isotopic
steady-state conditions. Flux elucidation calculations and degree
of resolution calculations were performed using CONOPT 3
accessed within the GAMS modeling environment as described
in Suthers et al. (2007), except for replacing isotope balances with
EMU balances. The block decomposition method (Young et al.,
2007) was used to group the EMU balances. The flux coupling was
performed as previously described (Burgard et al., 2004). Calcula-
tions were performed using CPLEX 11 accessed within the GAMS
modeling environment. The resulting coupling output was parsed
to extract those reactions that were fully coupled, as was the
constant ratio needed to interconvert their flux values. The EMU
network generation code is available at the authors’ website
(http://maranas.che.psu.edu).

The OptMeas framework uses incidence structure analysis to
determine the relaxed identifiability condition (Chang et al., 2008).
Briefly, this analysis abstracts the original algebraic system of
equations by assigning variables to equations based on their
incidence information. Each variable can be assigned to at most
one equation, and conversely each equation can have as an output
up to one variable. All unassigned variables are denoted as free
variables and they must be measured to fully determine the
system. In the original implementation, the variables were fluxes
and IDVs. In the current work, EMUs replaced the IDVs, and the full
EMU network was used during the construction of the incidence
matrix. All input files were generated using Python code. The
solution procedure follows that in Chang et al. (2008) using CPLEX
11 Concert technology and the measurement costs were set so that
they corresponded to that of the previous work. The complete
details of the EMU OptMeas extension are found in Appendix A.
3. Results and discussion

3.1. Flux elucidation

Application of the EMU framework to the large-scale isotope
mapping model of an amorphadiene producing strain of E. coli

(Suthers et al., 2007) resulted in a large reduction in the number of
variables, as shown in Table 1. Whereas the full isotopomer model
contains 17,346 isotopomers, there are only 1215 EMU species
(available as supplementary material). Such comparisons of the
two modeling frameworks have been reported for other systems
(Antoniewicz et al., 2007a; Young et al., 2007). However, the
number of actual mass isotopomers in the EMU network
(i.e., 3912) is a more relevant comparison, as these are the
variables fed to the solver. As seen in Table 1, there is still a
substantial reduction in this number, with the EMU network
containing only 22.6% of the total number of variables that the
original isotopomer model did. The savings are even more
substantial for the reduced EMU model, which takes advantage
of isotopic steady-state to eliminate redundant variables. Here, the
reduced EMU network is only 14.1% of the size of the IMM version.

The reduction in variables was only slightly better for the
reduced isotope mapping model, which removed pathways that
yielded identical labeling given the labeled substrate used in the
experiment. Here, there were 20.8% and 11.0% of the variables in
the complete and reduced EMU networks. As expected, solving the
EMU representation for flux elucidation with the experimental
measurements from Suthers et al. (2007) yielded comparable
results to and was also substantially faster than the isotopomer
representation. In all cases, the predicted mass isotopomer
labeling patterns are identical when using either isotopomers or
EMUs in the calculations given flux values, in agreement with
Antoniewicz et al. (2007a). Because flux elucidation is a large
nonlinear optimization problem, we performed multiple solutions
of the problem from different initial conditions as described
previously (Suthers et al., 2007). We note that there were relatively
fewer instances of solutions above the w2 cutoff determined in the
previous study. This result could arise from the fact that there are
fewer tri-linear and higher terms in the EMU representation and
thus the solver was more effective in finding better local optima.
The best solutions had the same objective values in both
representations.

The results from flux coupling analysis for the reduced isotope
mapping model are summarized in Fig. 1. Here we can see that 78
of the 270 fluxes in this isotope model were involved in 14 fully
coupled groups. Most of the groups are pairs of reactions,
e.g., MALS and ICL. The largest group is that connected to the
biomass equation, consistent with the results seen for other
metabolic networks (Burgard et al., 2004). Also notable is that the
amorphadiene production pathway forms a fully coupled module
of nine fluxes (top right). In Suthers et al. (2007) both the growth
rate and the amorphadiene production rate were fixed to

http://maranas.che.psu.edu
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Table 1
Comparison of isotopomer and EMU representations of the large-scale isotope mapping model of E. coli.

Isotopomer model EMU model EMU reduced model

# of carbons (size) Metabolites Isotopomers EMU speciesb Mass isotopomers EMU species Mass isotopomers

Full modela

0 53 0

1 11 22 495 990 305 610

2 11 44 313 939 203 609

3 22 176 209 836 135 540

4 23 368 101 505 66 330

5 25 800 67 402 37 222

6 31 1984 18 126 10 70

7 23 2944

8 1 256 6 54 3 27

9 11 5632 6 60 3 30

10 5 5120

Total 216 17346 1215 3912 762 2438

Reduced model

0 48 0

1 8 16 378 756 202 404

2 8 32 240 720 132 396

3 14 112 147 588 78 312

4 18 288 68 340 40 200

5 18 576 50 300 22 132

6 21 1344 16 112 8 56

7 21 2688

8 1 256 5 45 2 18

9 7 3584 5 50 2 20

10 5 5120

Total 169 14016 909 2911 486 1538

a Full and reduced models refer to the complete and the isotope model which has removed redunant labeling pathways, as described in Suthers et al. (2007).
b EMU species were also refered to as EMU variables in Antoniewicz et al. (2007a).
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experimentally observed values. The flux coupling analysis results
thus explain why as many as 100 fluxes were fixed due to
stoichiometry alone. Using the flux coupling results also
eliminates confidence interval calculations for 14% of the non-
fixed reactions, since they need to be performed just once per
group. These savings are afforded when using either the
isotopomer or EMU representations during the flux elucidation
calculations.

The incorporation of flux coupling constraints into the flux
elucidation problem offered a moderate improvement in compu-
tation speed for both the isotopomer (4%) and EMU (3%)
representations and is likely solver dependent. As before, the
dominant factor in the time of an individual calculation was the
use of the EMU representation, and flux coupling contributed
mostly to a reduction in the number of flux elucidation optimiza-
tions required. Using both EMU and flux coupling for these flux
range calculations yielded identical flux ranges as those in Suthers
et al. (2007) but at reduced computational burden.
3.2. Measurement sets

The structure of the incidence matrix for OptMeas when using
EMUs is shown in Fig. 2. The organization is similar to that of Fig. 2
in Chang et al. (2008), with the isotopic distributions replaced by
EMU mass distributions. The balances around the metabolites
have been partitioned into production and consumption terms. We
introduced aggregate effluxes to partition the balance equations in
order to minimize the possible linear dependency in the square
system resulting from the incidence structure analysis (see
Appendix A). As noted in Antoniewicz et al. (2007a), EMU
balances occur in two forms: linear equations when all atoms in
a product EMU come from a single reactant metabolite and
nonlinear convolutions when there is more than one reactant
contributing to the labeling of the product EMU. The equations for
these terms are likewise segregated in the incidence matrix. For
each EMU species, the sum of the mass isotopomers vector (MDV)
variables sum to one and thus the MDVs are linearly dependent.
Because of this fact, as with the IDV version of OptMeas, we
excluded one of the mass isotopomers from each EMU species
(i.e., the fully labeled one).

We applied OptMeas to the large-scale E. coli model (Suthers
et al., 2007) using relative measurement costs equivalent to those
in Chang et al. (2008) with the addition of metabolites from
central metabolism that have been used before as measurements
candidates in MFA such as pep, akg, cit, and succ. All abbreviations
are from Suthers et al. (2007). The EMU version of OptMeas
suggested flux measurements and mass distribution vector (MDV)
measurements as indicated in Table 2. Except for the addition of
citrate, these results are directly comparable to those obtained
previously. We verified that measuring the full length MDV of
citrate was indeed an effective addition to the measurement set
and resulted in a smaller (better) objective value during the
TestUniq procedure (Chang et al., 2008) that evaluates the
uniqueness of the solution given the measurement set. This
measurement was effective in the determination of fluxes because
some fluxes in the TCA were individually inherently unidentifiable
using stationary MFA (Chang et al., 2008). Measuring citrate thus
aided in the determination of metabolite labeling patterns and flux
ratios.

We note that there could be some bias in measurement
selection since the EMU network is itself constructed from the
list of all measurement options (and their intermediates). As noted
above, we sought to reduce this bias by increasing the available
measurements to compounds well beyond those in Suthers et al.
(2007). We also found that increasing the network to include all
full length mass isotopomer distributions did not impact the
suggested measurements. Ultimately, MFA hinges on experimental
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Fig. 1. Fully coupled fluxes in the large-scale isotope mapping model. Reactions names (ovals) are grouped into fully coupled groups connected by lines. The flux of each

reaction in a group can be determined by multiplying a constant scalar to that of another member. Reaction abbreviations follow those in the E. coli model iJR904 (Reed

et al., 2003).

Fig. 2. Incidence matrix of MFA for OptMeas with EMU representation. Here M’ is the same as M except that all linearly dependent mass isotopomers are excluded for each

EMU. The shaded submatrices correspond to structurally nonzero regions.
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Table 2
OptMeas suggested measurement sets.

Required fluxes Growth rate (BIOMASS_EC_ISO)

Amorphadiene production (AMDNt)

Acetate production (ACt6)

Glucose uptake rate (EX_glc-d)

Oxygen uptake rate (EX_o2)

Non-growth associated ATP maintenance

(ATPM)

Required mass distribution vector

(MDV) measurements

Amino acids: ala, arg, asp, glu, ile, leu, lys,

met, phe, pro, ser, thr, val; organic acid

citrate

Interchangeable mass

distribution vector (MDV)

measurements

1) akg plus two from {gly, tyr, ac}

or

2) {gly, tyr, ac co2}
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measurements and their availability. Thus a listing of available
measurements is likely to be known and the EMU network can be
constructed by using all of them during the generation process. If
all the provided measurements are insufficient, then unresolved
fluxes will be identified during the OptFlux procedure.

A number of significant advantages to using the EMU-based
implementation of OptMeas are observed as opposed to the IMM-
based one. Specifically, here we did not pre-select any of the
measurements in the set, instead allowing OptMeas to choose all
of them in a single step. Moreover, the calculation time was only
about 2% that of the IDV implementation for which all of the
amino acid measurements used in Suthers et al. (2007) were
chosen a priori. The decrease in computation time is not only due
to a significantly reduced matrix size (which is dominated by the
number of IDV or EMU mass isotopomers), but also because the
number of rows with three or more variables is decreased. These
substantial improvements suggest that the EMU-based imple-
mentation is a more scalable choice for genome-scale model sizes.
Additionally, this rapid computation time would enable the
exploration of an increased number of alternative measurement
costs, as well as the identification and elimination of suboptimal
solutions.

We also incorporated flux coupling results to the TestUniq
formulation during testing of the measurement sets proposed by
OptMeas. It is used to allow only one representative for each
coupled set into the objective, which reduces counting fluxes that
do not have unique solutions multiple times. For the same
measurement set, TestUniq gave the same results for both the
isotopomer and EMU representations, however the EMU calcula-
tions were faster. When flux coupling was omitted from TestUniq
and all fluxes appeared in the objective, the problem took a longer
duration to solve, but again the objective value for both the
isotopomer and EMU representations were the same.
4. Summary

We have described how the EMU framework and flux coupling
can significantly decrease the computational burden that arises as
the scope of isotope mapping models increase. These occur in both
the speed (using EMU) and number (using flux coupling) of
solutions necessary for flux elucidation and the calculation of
confidence intervals. By being readily scalable, the EMU represen-
tation enables larger models to be constructed and computation-
ally evaluated. Alternatively, the computational savings can be
used to generate more searches for the best local optimum.

The computation efficiency afforded by the use of EMUs carried
over into the OptMeas approach when determining minimal
measurement sets for the large-scale isotope mapping model.
Not only were we able to calculate these in approximately 2% of
the time of that for the IDV version, but we could begin with no
measurements given a priori, as OptMeas could do for smaller
models as described in Chang et al. (2008).
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Appendix A

Mathematical model of MFA using EMU variables

We define the following sets and variables to model the EMU
networks:
Sets

I={i}:
 metabolite pools

INC I:
 intermediary metabolites

J={j}:
 fluxes

E={e}:
 elementary metabolite units (EMUs)

EcCE:
 combined EMUs

EiCE\EC:
 EMUs from metabolite iAI
EN ¼
S

iA IN

Ei :
 EMUs corresponding to intermediary
metabolites
EeCE:
 EMUs that produce combined EMU eAEC
Me={m}={0, 1,y, ne}:
 mass isotopomers of EMU eAE that has
ne carbons
Variables:

vjZ0 jAJ:
 flux values

femA[0,1] mAMe, eAE:
 mass isotopomer fractions
We define EMU mapping matrix EMMj
e0-e that accounts for the

stoichiometry of flux j from EMU e0 to e. EMMj
e0-e40 if e0 produces

e through j (mostly integral but could be fractional when e is an
EMU of a symmetric molecule). Then we can write steady-state
balance equations as
X

j

Sijvj ¼ 0 iA IN ð10Þ

X
mAMe

fem ¼ 1 eAE ð2Þ

X
e0AE

X

jjEMMj

e0-e
40

EMMj
e0-evj

0
B@

1
CAfe0m

0
B@

1
CA

þ
X

jjSij o0

Sijvj

0
@

1
Afem ¼ 0 mAMe; eAEi; iA IN ð30Þ

Combined EMU e is produced by concatenating EMUs in
Ee ¼ fe1; e2; . . . ; ejEe jg. Let Wem ¼ fwg ¼ fðm1;m2; . . . ;mjEe jÞj½mn

AMen ; 8n¼ 1; � � � jEej� \ ½
PjEe j

n ¼ 1

mn ¼m�g be the set of every possible

mass isotopomer multiplets of Ee that produce the mass
isotopomer m of e. Then, fem can be computed as

fem ¼
X

wAWem

YjEe j

n ¼ 1

fenmn mAMe; eAEC ð4Þ

Note that for Eq. (30) or (4) the heaviest mass isotopomer of each
EMU is dropped due to the inherent dependency with Eq. (2).
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OptMeas formulation for EMU representation

First, notice that effluxes of a metabolite always show up in the
same form, the total efflux. Therefore, we introduce the new
variable for the total efflux of each intermediate metabolite such
that

Vi ¼ �
X

jjSij o0

Sijvj iA IN ð5Þ

Then we can rewrite (10) and (30) as
X

jjSij 40

Sijvj � Vi ¼ 0 iA IN ð1Þ

X
e0AE

X

jjEMMj

e0-e
40

EMMj
e0-evj

0
B@

1
CAfe0m

0
B@

1
CA

�Vifem ¼ 0 mAMe; eAEi; iA IN ð3Þ

We construct the incidence matrix using Eqs. (1)–(5) as in
Fig. 2. Each row corresponds to an equation and each column to
one of the variables that appears in the equations. We note that
EMU variables are not guaranteed to be linearly independent with
each other, unlike isotopomer variables. Further enhancement of
the incidence matrix considering this linear dependency is
discussed in Appendix B.

We next formulate the OptMeas formulation (Chang et al.,
2008). We utilize the binary variable yrc which is equal to one if the
variable with index c is an output of the equation in row r.
Correspondingly, the binary variable xr and zc model if row r and
column c participate in any output assignments, respectively.
These binary variables combine to form the incident matrix used
by OptMeas. Note that we represent columns as zc=(zj, zi, zem) that
correspond to vj, Vi, fem, respectively. We introduce binary variable
ue for each EMU that encodes whether EMU e is measured. Here,
ue=1 implies that EMU e is not measured and thus the associated
EMU variables remain ones that can only be fathomed as the
output of an equation. When an EMU is analyzed using MS, then
all of its mass isotopomer fractions are measured and so we
impose

zemZue mAMe; eAE

Since Vi and fem for eAEC are not directly measurable, we
enforce

zi ¼ 1 iA IN

ue ¼ 1 eAEC

Using this incidence matrix and these constraints, OptMeas
then minimizes the sum of a weighted combination of all chosen
measurements as previously described. Note that in the objective
function (Eq. (7) in Chang et al. (2008)) the sum over all
metabolites i is replaced by one over all EMU variables e.
Accordingly, ui and qi are replaced by ue and qe, respectively,
where qe is the relative weight of EMU e.
Appendix B

Identification of linearly dependent EMU variables

Some EMU variables of a metabolite could be linearly
dependent on the other EMU variables of the same metabolite.
For example, there are three EMUs A1, A2, and A12 for a two-
carbon metabolite A, but we can deduce the IDV of A from MDVs
of A1 and A12 only. Therefore, MDV of A2 is dependent on those of
A1 and A12 such that A2:m+ 0=2A12:m+ 0+A12:m +1�A1:m +0. A
linearly dependent set of all such equations can be found as
follows:
(1)
 For each metabolite i, collect fem 0rmone, eAEi into MDVi and
find the mapping MMi (0–1 matrix) from its IDV such that
MDVi=MMiIDVi.
(2)
 Find the null space of (MMi)
t, and denote it as NSi (NSi is the

left-hand null space of MMi).

(3)
 Find a (reduced) row-echelon form REFi of (NSi)

t by partial
pivoting (only swapping rows).
(NSi)
t has full row rank that corresponds to the linear

dependency in the EMU variables, and satisfies

ðNSiÞ
tMDVi ¼ ðNSiÞ

tMMiIDVi ¼ 0 ð6Þ

These linear homogeneous equations can replace the nonlinear
balance Eqs. (3) and (4) for the EMU variables that correspond to
the first nonzero column in each row of REFi. Since the row-
echelon form is not unique, this set of EMU variables is not unique.
Appendix C. Supplementary materials

Supplementary data associated with this article can be found in
the online version at doi:10.1016/j.ymben.2009.10.002.
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