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Recent advances in computational protein design
Robert J Pantazes, Matthew J Grisewood and Costas D Maranas
Proteins are the molecules cells primarily rely on for catalysis,

recognition, signaling, defense, locomotion, and structural

integrity. Engineering proteins for improved function or new

applications is a fast-growing segment of biotechnology and

biomedicine. Experimental efforts based on the screening of

large mutant libraries have led to many successes but they do

not provide quantitative design principles and/or insight into

the structural features that underpin the desired function. The

computational de novo design of proteins promises to bridge

this gap; however, it requires reliable structure prediction,

provisions for protein stability, and accurate descriptions of

inter-molecule interactions. Studies that successfully meet all

these criteria are beginning to emerge including the design of

an O2-binding protein and a novel enzyme that catalyzes a

Diels–Alder reaction.
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Introduction
Computationally designing proteins is a crosscutting chal-

lenge that directly impacts many scientific and engineering

endeavors, ranging from improved catalytic activity,

genetic circuits, biosensors, chiral separations, creation of

gene switches, and signal transduction pathways. Although

purely experimental design efforts relying on combinator-

ial library construction and screening have been widely

successful, the lessons learned do not easily generalize to

inform the redesign of other systems. Proteins have been

previously computationally designed to bind new ligands

[1], proteins [2], and nucleic acids [3], to improve protein

stability [4,5], as well as to introduce novel enzymatic

activity [6,7], demonstrating that the fundamental rudi-

ments of molecular recognition and interactions can be

adequately captured via computational design. Despite

these successes, predictably changing or even improving

a protein’s function in response to a performance target
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remains a formidable challenge. Successful de novo com-

putational protein design requires accurate structure pre-

diction, protein stability at the desired operating conditions,

and correct modeling of the protein’s interactions with other

molecules (e.g. substrates, ligands, and cofactors). As illus-

trated in Figure 1, this review will discuss advances reached

over the past couple of years in addressing each of these

design challenges as well as examples where all three have

been brought to bear in de novo design efforts.

Modeling and predicting protein structure
Reliable protein structure prediction is paramount in

protein design, as protein geometry and flexibility along

with proper presentation of charges and molecular groups

on the surface determine function (or lack-thereof). The

central dogma behind protein structure prediction is that

the native structure reaches a conformation that achieves

(near) global minimum energy. The bi-annual Critical

Assessment for protein Structure Prediction (CASP)

benchmarks the current state of the art in protein struc-

ture prediction, with the most recent round, CASP9,

completed in the summer of 2010. Using a feature space

representation Kim et al. [8] sought to understand why

identification of the native state is so challenging and

discussed how the magnitude of the sampling problem

dictates whether the problem can be solved with extra

computational resources or if improved algorithms must

be developed beforehand.

The development of improved protein structure predic-

tion algorithms has been the focus of a number of recent

publications. McAllister and Floudas [9] developed

improved bounding methods for the structure search

problem. In contrast to trimming the search space, Hahn

et al. [10] sought to search more rapidly using a cluster

expansion technique, albeit at the cost of introducing a

controllable error. A popular concept that reduces the

conformational search space is the use of rotamers (short

for rotational isomers) of the statistically preferred con-

formations of amino acid side chains dependent upon the

protein backbone geometry. Berkholz et al. [11] dis-

cussed how the backbone geometry varies as a function

of the backbone dihedral angles. Havranek and Baker

[12] considered how to identify acceptable backbone

changes that would allow rotamers to assume optimized

orientations. Krivov et al. [13] developed SCWRL4 to

more accurately and quickly predict side-chain confor-

mations in proteins, while Shandler et al. [14�] used

foldamers to explore generation of better rotamer

libraries. Blum et al. [15] developed a new method for

de novo protein structure prediction that combines con-

formational space annealing and genetic algorithms that
design, Curr Opin Struct Biol (2011), doi:10.1016/j.sbi.2011.04.005
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Figure 1

(i) Structure Modeling and Prediction (ii) Protein Stabilization (iii) Molecular Interactions

(iv) De Novo Protein Design
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Requirements for successful computational protein engineering. De novo computational protein engineering requires successfully meeting three

design challenges: (I) proper modeling of protein structure, (II) ensuring the protein is stable at the desired operating conditions, and (III) obtaining the

proper interactions with other molecules. Simultaneously achieving each of these design targets is required for (IV) successful de novo computational

protein engineering. The C. boidini xylose reductase in III and anti-CD20 antibody in IV are highlights from our research and are intended as examples,

not all-inclusive portrayals, of these categories.
achieved significant improved over a standard Rosetta

implementation.

While it is customary in protein design to assume a single,

well-defined backbone geometry, this does not always

hold true. Xue et al. [16] developed the meta-analysis tool

PONDR-FIT to develop predictions for disordered

regions of proteins. An alternative to using a single back-

bone structure is to model an ensemble of low-energy

protein structures. Allen et al. [17] developed a multi-state

design algorithm for modeling protein properties (e.g.

stability, activity, and solubility) that are dependent upon

backbone conformation variability. McAllister and Flou-

das [18] combined the aBB deterministic global optim-

ization approach with conformational space annealing to

predict lower energy protein structures (i.e., unique and
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ensembles thereof) and compared results with other

methods. Allen and Mayo [19] developed MSD-FAS-

TER and Subramani et al. [20] created ICON to generate

and screen ensembles of low energy protein structures.

There have been several publications in the last two years

where authors have customized and deployed compu-

tational protein structure prediction systems to specific

protein classes. Correia et al. [21] successfully designed

protein scaffolds to present target epitopes recognized by

antibodies. Luo et al. [22] used computations to model the

allosteric changes of eight single-point mutations of

aIIbb3 to the integrin headpiece and observed confor-

mational changes propagating from the headpiece to the

legs of the integrin. In more general applications, Rosetta

has been used to predict the structures of oligomers with
design, Curr Opin Struct Biol (2011), doi:10.1016/j.sbi.2011.04.005
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near atomic-level accuracy [23], which should be helpful

in conjunction with NMR data to resolve structures and to

model the allosteric changes of ligand-free proteins from

their bound states [24].

Designing stabilized proteins
After an appropriate structure for a protein has been

modeled, care must be taken to ensure that it will be

stable at the desired pH and temperature. Although

literature attention to this topic waned recently, it

remains a critical factor in protein engineering. Belien

et al. [25] used the pKD software to improve the low-pH

stability of the B. subtilis endo-b-1,4-xylanase by making

mutations that affected the local pKa of key residues.

Heinzelman et al. [26] used SCHEMA to recombine

several parent cellulases to design a library of thermo-

stabilized proteins. Tian et al. [27] used computations to

identify glycine to proline mutations to thermostabilize

proteins by exploiting the fact that glycine has the highest

conformational entropy of any amino acid whereas proline

has the lowest. Joo et al. [28] used a more general com-

putational approach to identify thermo-unstable residues

and correcting mutations. Finally, Gribenkon et al. [29]

and Gao et al. [30] used computations to identify thermo-

stabilizing mutations while imposing active site geometry

criteria to safeguard the activity of the redesigned

proteins.

Engineering proteins for molecular
interactions
Computational protein design for a given function relies

on optimizing a complex choreography of interactions

with other molecules. A significant number of recent

studies have focused on engineering these inter-molecule

contacts. An important class of protein interaction part-

ners is in fact other proteins. Tuncbag et al. [31] devel-

oped a computational method to identify ‘‘hot-spot’’

residues that are most important in mediating protein–
protein interactions. In a study aimed at redesigning the

interactions between a high-affinity pair of proteins, (i.e.,

acetylcholinesterase and fasciculin), Sharabi et al. [32]

found that changes in the interaction energy, rather than

total energy, correlated well with the experimental

changes in binding energy. Guntas et al. [33] used a joint

computational and experimental approach to redesign the

ubiquitin-ligase E6AP to act on the unnatural partner

Ubc12 in an effort to demonstrate efficiency advantages

computations can offer. Yosef et al. [34] used ORBIT to

switch the specificity of Calmodulin between its two

main-target interaction partners, demonstrating the

plasticity of interactions in signaling networks.

On the opposite side of the size-scale for protein inter-

action partners are metal ions. Their small size allows for

more computationally complex descriptions of molecular

interactions. Hayik et al. [35] used a mixed QM/MM

protocol to predict metal ion binding energies. Fazelinia
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et al. [36] developed the OptGraft method to identify the

location in a target protein that can best accommodate a

metal ion binding site along with beneficial mutations in

the surrounding residues. Wang et al. [37] used a similar

approach specific to zinc ions.

A class of protein interaction partners with increasing

attention in the literature is nucleic acids. Ashworth

and Baker [38] used computations to assess the degree

of optimization in known protein–DNA interactions and

identified the contribution of individual residues. Several

groups used nucleic acid binding proteins as targets for

specificity alterations: Liu et al. [39] increased the speci-

ficity of a nucleoside kinase for 30-deoxythymidine, Lopes

et al. [40] modified asparaginyl-tRNA synthetase to favor

the binding of aspartyl-adenylate, and Murphy et al. [41]

used loop remodeling to alter the specificity of a human

guaninine deamylase for ammelide over guanine.

Many other studies aimed to engineer proteins for opti-

mizing their interactions with a variety of target mol-

ecules. Yang et al. [42] used free-energy perturbation

calculations on the free and transition-state butyrylcho-

linesterase to identify high-activity mutants for the

hydrolysis of cocaine. Berrondo et al. [43] analyzed the

structural and regulatory consequences of mutations in

the N-terminus arm of AraC, which is a gene expression

regulatory protein that promotes expression when bound

to arabinose and suppresses it otherwise. Chaudhury and

Gray [44] used computational docking techniques to

identify residues in an HIV protease that were important

for activity and found they were residues that tended to

confer drug-resistance. Grigoryan et al. [45�] were suc-

cessful in designing orthogonal interaction partners for

specific members of the B-ZIP family of proteins in spite

of their high sequence and structural homology. Finally,

Khoury et al. [46] used IPRO to change the cofactor

specificity of C. boidini xylose reductase from NADPH

to NADH, while Chica et al. [47] destabilized the fluor-

ophore ground state and stabilized the excited state to

design improved red-fluorescent proteins.

Two recent papers build upon the pioneering de novo
computational design of an enzyme that catalyzes the

Kemp elimination reaction [7]. Khersonsky et al. [48]

computationally generated and experimentally screened

proposed beneficial mutations for this enzyme while Kiss

et al. [49��] used computations to rank-order and evaluate

active and inactive in silico designed enzymes for the

Kemp elimination reaction, finding that molecular

dynamics was most useful in explaining the experimental

findings.

Designing new proteins
By bringing to bear structure elucidation, stability safe-

guards, and molecular interaction descriptions, a number

of efforts achieved de novo design of novel proteins. One
design, Curr Opin Struct Biol (2011), doi:10.1016/j.sbi.2011.04.005
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particularly intriguing target is antibodies, because there

are well-established rules governing their structures and

their functions are limited to binding, not catalysis.

RosettaAntibody [50] was recently developed for the

homology modeling of antibody variable domains and

SnugDock [51] can be used in conjunction to predict

antibody–antigen complexes. Our group recently devel-

oped the Optimal Complementarity Determining

Regions (OptCDR) method [52�] for the de novo design

of the binding portions of antibodies against any specified

antigen epitope.

Other efforts include the work of Masica et al. [53] who

used computations to de novo design peptides that can

influence calcite binding. Fry et al. [54] designed a

heterotetrameric protein that can selectively bind a chro-

mophore whereas Koder et al. [55] designed an O2 binding

protein with properties similar to natural globin proteins

with the key improvement of being able to bind O2 better

than CO. Finally, Siegel et al. [56��] computationally de
novo designed an enzyme to catalyze the Diels–Alder

reaction, for which no naturally occurring enzyme was

known beforehand.

Conclusions
Successful computational protein design depends on

accurate structure modeling, ensuring protein stability,

and optimizing inter-molecule interactions. Each of these

major hurdles has received significant attention in the

past two years and many de novo protein designs have

been put forth as a result. However, the dream of effi-

ciently, predictably and reliably computationally design-

ing improved proteins remains beyond reach. Baker [57�]
eloquently reviewed in detail many of the unresolved

challenges facing computational enzyme design. Bio-

logical systems are significantly more complicated than

the idealized abstractions imposed by the assumptions

used in computational protein engineering. It is increas-

ingly realized that proteins rarely have unique functions,

instead they participate in multiple interactions and

processes in ways that may confound our ability to com-

putationally assess their fitness. In addition, because of

cost and time constraints experimentally resolved struc-

tures are only rarely obtained for successful designs. This

limits our ability to learn from our successes and fairly

assess which modeling predictions panned out. More

importantly, failed designs are almost never reported or

analyzed further. This implies that no quantitative guide-

lines are obtained to improve the modeling component of

the computational system. The lack of communication of

failures likely slows the overall rate of progress of this

field. This explains why most of the recent successes have

been system-specific and incremental in nature. Bold new

steps are needed in integrating computational design

methods, experimental screening protocols and structure

identification techniques to achieve new milestones in

protein design.
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