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Tumor progression depends on the intricate interplay between biological processes
that span the molecular and macroscopic scales. A mathematical agent-based model is
presented to describe the 3-D (three-dimensional) progression of a brain tumor type
(i.e., glioblastoma multiforme) as the collective behavior of individual tumor cells
whose fate is determined by intracellular signaling pathways (i.e., MAPK pathway)
that are governed by the temporal-spatial distribution of key biochemical cues (i.e.,
growth factors, nutrients). The model is used to investigate how tumor growth and
invasiveness depend on the response of migrating tumor cells to chemoattractants.
Simulation results suggest that individual cell sensitivity to chemical gradients is nec-
essary to generate in silico tumors with the irregular shape and diffusive tumor-stroma
interface characteristic of glioblastomas. In addition, vascular network damage influ-
ences tumor growth and invasiveness. The results quantitatively recapitulate the cen-
tral role that nutrient availability and signaling proteins have on tumor invasive prop-
erties. VVC 2010 American Institute of Chemical Engineers AIChE J, 57: 778–792, 2011
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Introduction

The American Cancer Society estimated that during 2008,
21,810 adults would be diagnosed with malignant brain or
spinal cord tumors in the US, with 13,070 patients dying due
to their disease (cancer.org, accessed January 18, 2009). The
most common adult malignant brain tumor is glioblastoma
multiforme (grade IV in the World Health Organization clas-
sification). Glioblastomas are intracranial neoplasms charac-
terized by uncontrolled proliferation, and generally exhibit a
necrotic core, marked angiogenesis, asymmetrical infiltrating
invasiveness and are highly refractory to radio/chemother-

apy. Current glioblastoma treatments include supportive care
to alleviate symptoms of the disease (e.g., cerebral edema,
seizures, cognitive dysfunctions, etc.), and local and/or sys-
temic therapies to ablate the tumor. Antitumor therapies tra-
ditionally involve surgical resection followed by radiother-
apy and chemotherapy. Recent clinical trials have demon-
strated that advances in imaging, surgical and radiotherapy
techniques, coupled with sequential or concurrent combina-
tions of chemotherapies and/or targeted therapies have
resulted in improvements in response rate and progression
free survival.1–5 However, almost all glioblastoma patients
relapse after initial therapy and the median overall survival is
about 15 months, only modestly improving over the last 25
years.6 A major factor in treatment failure is the diffuse infil-
tration of highly invasive tumor cells into the surrounding tis-
sue from the early stages of tumor development, generally
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resulting in recurrence just a few months after surgery.6,7 Con-
siderable efforts have been directed to elucidate the underlying
mechanisms of the perivascular migration of cancer cells at
the cellular8–10 and tumor11 levels using in vitro experiments.
Observations of different cell lines of glioblastoma suggest
that the directionality of their migrating paths could be a deter-
minant factor in the invasiveness of the tumors.12

A quantitative understanding of invasiveness requires that tu-
mor cell migration be investigated in concert with cellular prolif-
eration, necrosis, apoptosis, host vessel co-option and angiogene-
sis. These processes span multiple time and spatial scales. At the
cellular level, tumor cell phenotype and migratory behavior is
determined by its local environment. Tumor cells require a mini-
mum level of nutrients to thrive, whereas the transduction of sig-
naling cues regulates their phenotype (i.e., migratory or prolifer-
ative). It has been observed that the growth factor-induced phos-
phorylation of a downstream component of the MAPK signaling
pathway (i.e., ERK) correlates with the migratory and prolifera-
tive behavior of tumor cells.13 The MAPK signaling pathway
can be triggered by several different growth factors, including
TGFa, that bind to the epidermal growth factor receptor
(EGFR),14 which is amplified (in 40% of cases) or over
expressed (in 50% of cases) in gliomas.15,16 At the tumor level,
the progression of the tumor is determined by the spatiotemporal
distribution of nutrients and signaling cues. Nutrients and blood-
born growth factors (i.e., TGFa) that trigger the activation of the
MAPK signaling pathway are supplied by the vasculature. In
addition, TGFa-stimulated tumor cells produce TGFa, closing
an autocrine circuit. Moreover, the migrating direction of tumor
cells is determined by the distribution of chemoattractants (e.g.,
nutrients). The tumor dynamically alters the distribution of
nutrients and signaling cues due to an increase in the metabolic
demand and the remodeling of the vasculature (i.e., vessel occlu-
sion). During the initial stage of tumor progression, tumor
growth is considered ‘‘avascular’’ and does not require the for-
mation of new blood vessels. Very aggressive glioblastomas
have been found to depend on host vessel co-option for tumor
growth and can be angiogenesis independent.17 In this work,
angiogenesis is not considered.

In this article, we introduce a mathematical model to inves-
tigate how the response of tumor cells to biochemical gra-
dients affects the paths of migrating cells, and, hence, the
invasiveness and morphology of glioblastomas. We model tu-
mor progression as the outcome of the evolution in space and
time of a collection of tumor cells that dynamically interact
with their environment. The model integrates the dynamics of
key biological processes occurring at the cellular and tumor
levels. The cellular level component for each individual tumor
cell is determined by a set of rules that govern the phenotype
and migration of tumor cells. These rules assume that the tu-
mor cell phenotype depends on the concentration of nutrients
and the activation of the MAPK signaling pathway. The tumor
level component of the model determines the spatiotemporal
distribution of key biochemical cues such as oxygen (as a rep-
resentative nutrient) and TGFa. A relatively high-resolution
determination of these distributions is important for a better
assessment of their effect on the tumor progression. For this
purpose, we construct a complex vascular network that resem-
bles the geometry and functionality of the vasculature of the
white matter of the brain. The proposed model produces 3-D
tumors with a relatively large number of cells (in the order of

106) nourishing from a realistic vasculature as compared with
other current agent-based models that produced tumors with
cell populations in the order of 104 and simplified nutrient
sources (e.g., point sources). Simulation results demonstrate
that different tumor cell responses to chemical gradients result
in markedly different tumor morphologies and invasion rates.
The next subsection provides an overview of previous results
on mathematical modeling in cancer research and particularly
of brain tumors. Subsequently, we present the details of the
mathematical model and its implementation accompanied by
the simulation results. Finally, we discuss the implications of
the obtained results and highlight future research directions.

Mathematical modeling of tumor progression

Mathematical modeling of tumor progression has received
considerable attention over the last years. Here we only pro-
vide a brief recount of the major modeling frameworks used
as well as representative results; this is by no means a com-
prehensive list. The reader may refer to reviews focused on
modeling of tumor growth,18,19 tumor-induced angiogene-
sis20,21 and glioblastomas22–24 for more information. The
simplest models of tumor development and related biopro-
cesses assume that the system is homogeneous. This allows
encoding the dynamics of key system components (e.g., cell
populations and proteins levels) into a set of ordinary differ-
ential equations (ODEs). This framework has been exten-
sively used for describing intracellular processes (e.g., sig-
naling pathways and regulatory networks).25–28 It has also
been used to simulate the temporal evolution of tumor cell
populations and the effect of therapeutic agents.27,29–35 How-
ever, solid tumors develop in a highly heterogeneous envi-
ronment, and a more realistic description of their progression
requires a spatially distributed representation leading to par-
tial differential equations (PDEs). Not surprisingly, the new
spatial dimension of tumor development captured by the
PDEs comes at the expense of higher computational require-
ments and the need of efficient solution algorithms. There
are a number of proposed modeling frameworks relying on
PDE descriptions. In some efforts, populations of cells are
described as continuous fields and are generally determinis-
tic.11,36–50 Although this abstraction enables us to capture
the effects of spatial variability of select factors on tumor
progression, the incorporation of intracellular mechanisms
that determine cellular behavior remains problematic.

Multiscale cellular automaton or agent-based models
explicitly couple intracellular mechanisms with description
of tumor level processes. Generally in these models, the con-
centration of nutrients and growth factors are treated as con-
tinuous fields whereas cells are considered as discrete enti-
ties governed by a set of rules representing their intracellular
processes and intercellular interactions. Such rules com-
monly take the form of algebraic expressions, logical expres-
sions and/or random processes that depend on the variables
that define the state of the extracellular environment.51–55 In
more elaborate frameworks, the rules themselves are models
of the intracellular pathways that control cell fate, in the
form of ODEs.56,57 Similarly, hybrid continuous-discrete
models have been used to couple angiogenesis with tumor
growth.58–60 Other models that consider cells as discrete
entities are based on biomechanical principles. Examples of

AIChE Journal March 2011 Vol. 57, No. 3 Published on behalf of the AIChE DOI 10.1002/aic 779



these models include Potts models, in which cellular growth,
deformation and movement are described based on system-
energy reduction;61–63 macroscopic models of solid tumors
that consider cell adhesion;64 immersed boundary methods
with distributed sources use to describe growth and division
of single cells.65 The two main computational difficulties
associated with the solution of agent-based models arise
from the large number of tumor cells present within the sim-
ulation domain and the solution of PDEs in 3-D domains.
Methods to alleviate the computational burden related with
the number of cells have been proposed. In a multiresolution
approach, tumor cells are classified into spatial clusters
reducing the number of rule evaluations. However, its appli-
cation to 3-D simulations has not been published. An addi-
tional complication (associated with the large number of
cells) results when the model accounts for mechanical fac-
tors influencing tumor development.

In the context of brain tumors, the growth and invasion
of gliomas, both in vitro and in vivo experimental settings,
have been studied using distributed continuous mod-
els11,36,47,66 and the cellular automata framework.55,56 The
latter framework has also been applied to analyze the effect
of a dynamic vasculature on tumor growth.54,60,67 Distrib-
uted continuous models have also been used to determine
effective regimes of therapeutic treatments such as radio-
therapy and chemotherapy to inhibit tumor growth.42,43 The
dynamics of tumor evolution have also been integrated
with flow dynamics of interstitial fluid to investigate the
effect of pressure gradients on the transport of a chemo-
therapeutic agent released from an implanted polymer after
surgery.68

Proposed model

In this article, we develop a multiscale agent-based model
to describe tumor growth and invasion resulting from the
proliferation and migration of individual tumor cells under
biologically relevant conditions. The model consists of two
interdependent component describing processes at the cellu-
lar and tumor levels. At the cellular level, the state of indi-
vidual tumor cells is governed by a set of rules depending
on their local environment (i.e., concentrations of nutrients
and TGFa) and intracellular signaling pathways (i.e., MAPK
signaling pathway). The tumor level component determines
the spatiotemporal distribution of the key biochemical cues.
The two components are connected through the interchange
of information required to solve the whole model. Specifi-
cally, the local concentration of biochemical cues for every
tumor cell is obtained from the solution of the tumor level
component whereas the production and consumption terms
for the tumor level component are determined by cellular
level component. The details of the tumor and cellular level
components of the model are presented in the following sub-
sections.

Tumor Level. The tumor level model captures the spatio-
temporal distribution of oxygen, TGFa and tumor cells
within the simulation domain. The profiles of the chemical
species are described by a set of PDEs. Tumor cells are
treated as agents dwelling in a regular square grid and can
migrate or proliferate only into empty lattice sites. The
details of the simulation domain and the PDEs are given in

the next subsections, followed by the explanation of the rules
that govern the tumor cell agents.

Simulation Domain. Glioblastomas may arise in any part
of the central nervous system and are frequently found in the
white matter of the brain.69 The simulation domain (X) is a
cubic region of the white matter of dimension 12 � 12 � 12
mm3, and it consists of two subdomains. The tumor progres-
sion subdomain, defined as a cube of dimension 4 � 4 � 4
mm3, is at the center of X and it is surrounded by a buffer
region (the rest of the domain). The buffer region is included
to minimize the effect of the boundary conditions on chemi-
cal species concentrations. During the simulation, we record
the spatiotemporal distribution of oxygen and TGFa as well
as the state of every tumor cell. The state of tumor cells is
defined by their phenotype, location, cellular mass and the
activation level of their MAPK pathway (i.e., phosphoryla-
tion level of ERK (ERKact)).

Vascular Network. We constructed a vascular network
with a structure and functionality similar to that of the white
matter. Nonaka et al.70 using soft X-ray and diaphanized
specimens of normal adult brains found that large arteries
run straight through the white matter toward the lateral ven-
tricle. The arteries have lateral branches with tree-like struc-
tures that connect to venules through capillary vessels. We
constructed the vascular network in an iterative process as
shown in Figure 1. Briefly, seeds for arteries and veins were
randomly placed on the upper face of the simulation domain
and were grown adding a vessel segment along the gradient
of oxygen concentration until the vessels reached the bottom
face. Subsequently, elements of three vessel segments in the
form of ‘‘Y’’ were added along the gradient of the oxygen
concentration at the tips of the current network. Capillary
vessels were added to connect arteries with veins when the
distance between nodes was less than 200 lm, each node
has less than three vessels, and the radius of those vessels
was less than 20 lm. The radius of the vessels was calcu-
lated using Murray’s rule rap ¼ ras1 þ ras2, a ¼ 2.7,71 where p,
s1 and s2 indicate the parent and the children vessels,
respectively. The oxygen concentration was computed by
solving a PDE similar to the one described in the next sub-
section. Initially, it was assumed that all current vessel seg-
ments supply oxygen. Once arteries and veins have con-
nected, it was assumed that only vessel segments that belong
to a path connecting an artery with a vein can supply oxy-
gen. The network was grown until the average concentration
reached the average oxygen concentration in brain tissue
(0.022 mM72). The resulting vascular network has approxi-
mately 310,000 vessel segments. Figure 1 shows the vascular
network in the tumor progression domain.

Although we recognize that brain tumors alter blood ves-
sel morphology,73 in vivo models have shown that aggressive
glioblastomas can co-opt the host vasculature and grow with-
out signs of angiogenesis.17 In this article, we assume that
the tumor remodels the vasculature by occluding the vessels
as it grows. In the absence of a detailed mechanical model,
we assume that vessels are occluded when tumor cells occu-
pied a fraction (ranging from vomin ¼ 0.1 for the smallest
vessels to vomax ¼ 0.5 for the largest vessels) of their origi-
nal vessel volume. Furthermore, we assume that only prolif-
erative cells can overtake a lattice site occupied by an active
vessel. In the absence of a detailed mechanistic description,
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we assume that the probability of a tumor cell to take a lat-
tice site of a vessel is one tenth of the probability of prolifer-
ating into a free-lattice site. When a vessel is occluded, it is
removed from the network together with all the vessels that
are no longer part of a path between an artery and a vein
due to the disruption.

Spatiotemporal Distribution of Oxygen and TGFa. Oxy-
gen and TGFa concentrations are considered to be continu-
ous fields described by a set of PDEs

@tO ¼ r � ðDOðt; zÞrOÞ þ KO
T ðt; zÞðOv � OÞ

� kOðt; zÞO; O 2 X;

@tT ¼ r � ðDTðt; zÞrTÞ þ KT
T ðt; zÞðTv � TÞ

� kTðt; zÞT þ Sðt; z;CintraÞ; T 2 X;

with boundary and initial conditions

n � ðDOðt; zÞrO ¼ 0; O 2 C; Oðt ¼ 0Þ ¼ OSS;

n � ðDTðt; zÞrT ¼ 0; T 2 C; Tðt ¼ 0Þ ¼ TSS;

where O is the extracellular oxygen concentration, qt denotes
the partial derivative with respect to time, Do is the oxygen
diffusion coefficient, KO

T is the supply rate of oxygen from the
blood vessels, and ko is the oxygen consumption rate constant.
T represents TGFa extracellular concentration, and the
parameters in the respective conservation equation are
analogous to the ones discussed for oxygen. X is defined as
the computational domain of the PDE and C is the boundary of
X, whereas n is the normal vector to C and OSS, TSS are the
steady-state concentrations of oxygen and TGFa, respectively.

S(�) refers to production term of TGFa by tumor cells.
Boundary conditions determining the concentration or the
fluxes of the extracellular species are required for properly
solving the PDEs. However, such boundary conditions are not
available. To circumvent this limitation, we extended the
simulation domain to include tissue far away from the tumor,
thus, creating a buffer region, and then assumed no-flux
boundary condition.

The parameters of the tumor level model were collected
from the open literature when available or estimated to ap-
proximate reported levels of the chemical species considered
in the brain (Table 1). Typical values for oxygen and TGFa
concentrations are 0.022 mM72 and 2.7 � 10�2 nM,56

respectively. The oxygen consumption rate and the TGFa
degradation rate were set to give a diffusion length of 150
lm and 400 lm,74 respectively. The supply rate of oxygen
and TGFa for the vessels is estimated such that the average
oxygen and TGFa concentrations match typical values on
the brain. Similarly, considering the hypercellularity glio-
blastomas75 and that migrating and proliferating tumor cells
consume about 2–5 times more resources than quiescent
cells,62,76 we assume that the oxygen consumption rates for
tumor cells are higher than the surrounding tissue by a factor
of two for quiescent cells, and by a factor of four for migrat-
ing and proliferating cells. Finally, we postulate that blood
flow is blocked when tumor cells compress the blood ves-
sels, thus, ceasing to be a source of nutrients as will be
described in the subsection entitled Migrating direction.

Cellular Level. The cellular level model consists of a set
of rules governing the behavior of tumor cells. In brief, tu-
mor cell phenotype depends on the activation level of the
MAPK pathway and the availability of nutrients, whereas

Figure 1. Vascular network used in the simulations.

(a) Algorithm to construct the vascular network. dc is the maximum distance between tips to add a capillary and dij is the distance between
tips i and j. (b) vascular network within the tumor progression subdomain. The black and white largest vessels are arteries and veins,
respectively. Vessels of small radius are not shown.
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the migration direction depends on the response of migrating
cells to nutrient gradients. These rules are described in the
following subsections.

MAPK Signaling Pathway. The model of the MAPK sig-
naling pathway determines the TGFa-induced activation
level of ERK and the amount of autocrine TGFa produced.
Figure 2 illustrates the signaling cascade considered in the
model. The MAPK signaling pathway model includes 17
species participating in 22 transformations described by ei-
ther mass-action kinetics or Michaelis-Menten kinetics. The
MAPK signaling pathway model is represented by a set of
ordinary differential equations

dtCintra;i ¼ fiðCextra;CintraÞ; i ¼ 1;…;N;

Cintra;iðt ¼ 0Þ ¼ C0
intra;i i ¼ 1;…;N;

where dt is the derivative with respect to time, Cintra denotes
the concentration of the intracellular species, and fi is the
righthand side function of the ith ODE of the system that
describes the intracellular dynamics of the MAPK pathway.
C0
intra represents the initial concentration of the intracellular

species of a given cell. C0
intra is determined by the concentra-

tions for the same cell at the end of the previous iteration. The
detailed mathematical expressions and the kinetic parameters
can be found in Maly et al.77 and are not presented here for
brevity reasons. We assume that the production rate of TGFa
depends on the metabolic state (i.e., oxygen level) of the tumor
cells. Accordingly, we modified the source term for the

production of growth factors from the model of Maly et al.77 as
follows

s ¼ g1
ERKact

ERKtot þ ERKact

O=Omax

KO
M þ O=Omax

� �

where ERKact is the intracellular concentration of activated
ERK. The parameters of this expression are given in Table 1.

Cell phenotype

Depending on the local nutrient concentrations, the avail-
ability of space and the activation level of their MAPK path-
way, tumor cells can be necrotic or express the quiescent,
migrating or proliferating phenotypes. In our model, this is
determined by a stochastic decision process (Figure 3). We
first check if the tumor cells are viable given their local
nutrients concentrations. If this is not the case, the tumor
cells become necrotic. This step models tumor cell death by
necrosis due to the lack of oxygen. We assume that the
probability of tumor cell death is a function of the oxygen
concentration (Figure 4a). The probability of tumor cell
death is set at 0.5 if the oxygen concentration is reduced at
15% of its normal level.78 If the tumor cells become necrotic
then they neither consume nutrients nor produce TGFa; even
though the production of growth inhibitors by hypoxic cells
and waste by viable cells could be important, it currently is
not accounted for.

Table 1. Parameters for the Tumor Level Model

Parameter No. Parameter Value (Units) Description Reference

1 DO 8�10�5 (cm2 s�1) Diffusion coefficient of oxygen 1
2 KO

T 1.25�10�1 (cm s�1) Supply rate for oxygen
3 kO 1.75�10�4 (mM s�1) Consumption rate of oxygen
4 Ov 0.07 (mM) Oxygen concentration in the blood 2
5 DT 5.5�10�11 (cm2 s�1) Diffusion coefficient of TGFa 1
6 kT 6�10�5 (s�1) Degradation rate of TGFa
7 KT

T 6.5�10�5 (cm s�1) Supply rate for TGFa
8 Tv 2.7�10�1 (nM) TGFa concentration in the blood
9 g1 1.57�10�3 (nM s�1) Production rate of TGFa 3
10 KO

M 0.37 (mM) Kinetic parameter for TGFa production
11; 12; 13 aO,Q; M; P 2 (4, 4) Factor of oxygen consumption rate by quiescent/migrating/proliferating cells
14 lmax 2.2�10�5 (s�1) Maximum growth rate of tumor cell
15 Cave

mass 2 (arbitrary units) Average cellular mass
16 Cmax

mass 8 (arbitrary units) Maximum cellular mass
17 hn 0.0033 (nM) Threshold for a cell to become necrotic 4
18 sn 200 (dimensionless) Steepness of necrotic probability curve
19 PQM 0.2 Maximum probability of a quiescent cell to become migrating
20 hQM 90 (nM) Threshold for a quiescent cell to become migrating
21 sQM 0.14 (nM�1) Steepness of quiescent to migrating probability curve
22 PQP 0.1 Maximum probability of a quiescent cell to become proliferating
23 hQP 100 (nM) Threshold for a quiescent cell to become proliferating
24 sQP 0.14 (nM�1) Steepness of quiescent to proliferating probability curve
25 PMM 0.9 Maximum probability of a migrating cell to remain migrating
26 hMM 90 (nM) Threshold for a migrating cell to remain migrating
27 sMM 0.14 (nM�1) Steepness of migrating to migrating probability curve
28 PMP 0.05 Maximum probability of a migrating cell to become proliferating
29 hMP 100 (nM) Threshold for a migrating cell to become proliferating
30 sMP 0.14 (nM�1) Steepness of migrating to proliferating probability curve
31 vomin 0.1 Minimum fraction of vessel volume for occlusion to occur
32 vomax 0.5 Maximum fraction of vessel volume for occlusion to occur
33 ERKtot 3�102 (nM) Total concentration of ERK 3
34 rc 1�10�3 cm Nominal tumor cell radius
35 rv 5�10�3 cm Nominal blood vessel radius
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Subsequently, we check if viable tumor cells are inhibited
due to contact with other tumor cells.78 This is based on the
assumption that tumor cells proliferate until a maximum cel-
lular density is reached. Subsequently, proliferation occurs
only to compensate for cell death and/or cell migration. This
assumption has been frequently used in grid constrained
agent based models.52,78,79 Specifically, tumor cells can pro-
liferate or migrate only if there is a free-lattice site in their
neighborhood (i.e., not occupied by another cancer cell), oth-
erwise they become quiescent. If a free-lattice site is avail-
able, then we determine the phenotype of the tumor cells.
The adoption of different phenotypes by tumor cells is gov-
erned by a set of rules that are not fully elucidated. Conse-
quently, modelers have so far relied on empirical rules.
Here, we used experimental observations that correlate the
level of growth factors (and, therefore, of the activation of
the MAPK pathway) with the migration and proliferation
rates of astrocytomas cell lines in vitro.80 Based on these
observations, we model the decision mechanism as a random
process depending on the strength of the ERK activation.
Briefly, Giese et al.80 observed that as astrocytoma cells
were stimulated with increasing concentrations of grow fac-
tors, migration increases faster than proliferation, but at high
concentrations of grow factors proliferation had a consider-
able increment, whereas migration decreased. Assuming that
ERK activation correlates with the concentration of growth
factors, our decision process assigns a high probability for
tumor cells to become (or remain) quiescent under low lev-
els of ERKact, whereas it favors migration and proliferation
for medium and high levels of ERKact, respectively. Further-
more, the probability of quiescent cells becoming proliferat-
ing or migrating is also affected by level of nutrients. We
assume that tumor cells that acquire the migrating phenotype
will preferentially retain this phenotype since active migra-
tion suppresses cell proliferation,80 but they can nevertheless

assume other phenotypes. Proliferating cells, however, retain
this phenotype unless they become necrotic or quiescent
(when undergoing mitosis or by contact inhibition). Figure
4b provides the quantitative rules adopted for these transi-
tions. Finally, we check if proliferating cells undergo mito-
sis. We assume that mitosis occurs with a probability that
depends on the cellular mass (Figure 4c). The probability of
mitosis is set at 0.5 when the cellular mass is twice the nom-
inal cellular mass. The cellular mass is calculated assuming
cellular growth described by a logistic equation with a
growth rate depending on the oxygen concentration as
follows

Cmass ¼ C0
masse

lt

C0
mass=C

max
mass

� �
elt � 1ð Þ þ 1

;

l ¼ lmax
O=Omax

KO
M þ O=Omax

;

where C0
mass and Cmax

mass are the initial and maximum cellular
mass, l is the growth rate, and t is the time. lmax, and Omax are
the maximum values of growth rate and oxygen (O)
concentration, respectively. The parameters were estimated
such that the cellular mass increases from 1 to 2 (arbitrary
units) in 24 h for O ¼ 0.022 nM, in agreement with
experimental observations for glioblastomas.81

Migrating Direction. In vivo, the migration direction of
tumor cells is determined by multiple interdependent proc-
esses, including, but not limited to chemotaxis, haptotaxis
and mechanical forces. Chemotaxis is the directed cell motil-
ity along gradients of chemical attractants (e.g., nutrients), or
repellents (e.g., metabolic waste). Haptotaxis is the directed
cell motility along a positive gradient of adhesion molecules
in the extracellular matrix. As an example, in vivo glioma
tumors preferentially migrate along white matter tracts and
blood vessels.82 The quantitative contribution of various
processes to the migration mechanism is unknown. For sim-
plicity, our model considers chemotaxis as the exclusive
mechanism governing tumor cells migration direction. Since

Figure 2. MAPK signaling pathway.

TGFa-induced ERK activation determines tumor cells phe-
notype (i.e., quiescent, migrating or proliferating) and TGFa
autrocrine circuit.

Figure 3. Phenotype transitions tumor cells.

Dice indicate stochastic processes.
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the list of chemoattractants (or repellents) affecting chemo-
taxis for glioblastoma cells is extensive (i.e., growth factors,
nutrients, waste products, etc.), further simplifications are
necessary. Our model includes only oxygen gradients as the
primary factors influencing chemotaxis. This assumption can
be considered reasonable as is largely accepted83 that nutri-
ent gradients are key chemoattractants for glioblastoma cells.

In the absence of a mechanistic description of chemoat-
traction, we model the selection of the migrating direction
by tumor cells as a stochastic process dependent on local
gradients. We assume that tumor cells can move only to a
free neighboring lattice site with a probability parameterized
by the oxygen level

Pi ¼ hiviðO0 þ wiðOi � O0ÞÞP
j vjðO0 þ wjðOj � O0ÞÞ ;

where Pi is the probability of a tumor cells to move to a
neighboring lattice site i. O0 is defined as O/Omax at the current
lattice site and it is similarly for Oi and Oj at sites i and j. The
index j in the summation represents only the free-lattice sites.
hi are weighting factors that take into account the length of the
displacement (see Figure 5a). The weights vi characterize the
sensitivity of the migrating tumor cells to the nutrient
gradients. We considered three different sets of vi to
investigate the effect of this mechanism on the tumor
morphology. These sets of vi approximate the complete range
of sensitivity in accordance with the observed migratory
behavior of human glioma cells.12 The migratory response
corresponding to each set of vi is designated as low, medium
and high chemotaxis (see Figure 5b). In the low chemotaxis
case (i.e., all vi ¼ 1), migrating tumor cells have low
sensitivity to chemoattractant gradients. These cells can move
in directions of decreasing nutrient level, resulting in
migratory behavior similar to the biased random walk.58 In
contrast, migrating tumor cells distinguish between negative
and positive nutrient gradients in the medium chemotaxis case
(i.e., vi ¼ 1 for free-lattice sites with higher nutrient
concentrations than the current position, and vi ¼ 0 otherwise).
Finally, the high chemotaxis case models extreme sensitivity
to chemoattractant gradients, resulting in certain migration
toward the direction of the highest nutrient concentration
increase (i.e., only the direction of highest nutrient concentra-
tion has nonzero weight v ¼ 1).

Simulation Algorithm. The simulation is initiated at
steady state with the tissue consisting of only normal cells.
At t ¼ 0, a small core of cancer cells (of 5 cells of radius)
is introduced at the center of the simulation domain and an
iterative integration scheme as shown in Figure 6 is initiated.
At every time step Dt, the tumor level (PDE) model is
solved (assuming pseudo steady state) to determine the oxy-
gen and TGFa concentration profiles. These concentrations
then become inputs to the cellular level model of every tu-
mor cell. The MAPK signaling pathway model is then inte-
grated for every tumor cell to determine the ERK activation
and the TGFa; production rate, which in turn become inputs
to the PDEs in the next iteration. The phenotype of every
cell is then determined depending on the level of oxygen
and ERK activation and the position of cells and spatial de-
pendent parameters are updated. The integration proceeds in
time until a tumor cell enters the buffer region of the simula-
tion domain or a prespecified time limit is reached.

The implementation of the simulation algorithm poses two
challenges that tax memory usage and computational time
tractability limits. The first challenge is the solution of the
PDEs. A popular method to solve PDEs is the multigrid
(MG) method.84 In brief, in the MG method the PDE is dis-
cretized with different mesh sizes to optimize the conver-
gence rate of relaxation techniques. The foundation of the
method is that a considerable fraction of the low-frequency
components of a fine mesh are mapped into high frequency
nodes on a coarser mesh. We solved the PDEs using a V-
cycle MG with 4 levels. The finest level had mesh size of
20 lm (the size of a tumor cells) resulting in linear system
with 8 � 106 unknowns for the tumor progression domain.

Figure 4. Probabilities of tumor cells for phenotype
transitions.

(a) Probability of a tumor cell to remain alive (solid black),
become quiescent (solid gray), migrating (dash black) or
proliferating (dash gray) as a function of the local oxygen
concentration for ERKact ¼ 1, (b) probability of a quiescent
cell becoming migrating (solid gray) or proliferating (solid
light gray) and of a migrating cell becoming quiescent
(dashed black) or proliferating (dashed gray) as a function
of the activation level of ERK for O ¼ Omax, and (c) Prob-
ability of a proliferating cell to undergo mitosis as a func-
tion of its cellular mass.
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The coarsest level had a mesh size of 160 lm and was
solved using a conjugate gradient method. The second chal-
lenge is the integration of the MAPK signaling pathway
model for a large number of cells (in the order of 106). We
applied the in situ adaptive tabulation (ISAT) method85,86 to
remedy the difficulties associated with the large number of
ODEs evaluations. The basic idea of this method is to ap-
proximate the integration of the MAPK signaling pathway
model for a given initial condition using previously stored
evaluations of a relatively close initial condition. The simu-
lation algorithm was implemented using MATLAB (The
MathWorks, Inc., Natick, MA). CPU times for the 3-D simu-
lations were in the order of 10–15 h in a Pentium D CPU
3.00 GHz with 2 GB of RAM computer.

Simulation results

We performed 3-D simulations to investigate the effect of
different response scenarios of migrating cells to chemoat-
tractant gradients on tumor morphology and progression.
Subsequently, we carried out simulations to assess the com-
bined effect of the response level to chemotaxis and vascular
network degeneration on tumor growth dynamics. We also
simulated tumors with mixed populations to assess their

interactions. Finally, we performed a sensitivity analysis.
Three simulations were performed for each study.

Effect of chemotaxis response on tumor progression

We first compare tumors constructed by tumor cells
guided by different levels of chemotaxis under vascular net-
work degeneration conditions. The effect of the chemotaxis
level on tumor morphology can be observed in Figure 7.
The snapshots of the tumors show the compact core and the
invasive edge of the tumor at several times. The compact
core (invasive edge) is defined as the tumor regions where
more than 95% (\95%) of the lattice sites are occupied by
tumor cells. Tumor cells driven by a low level of chemotaxis
(LC cells) lead to a regular, compact, spherical shaped tumor
core surrounded by a relatively thin invasive edge, which is
only slightly affected by the distribution of the biochemical
cues (Figure 7a). In the case of tumor cells driven by me-
dium level of chemotaxis (MC cells), the compact core of
the tumor assumes an irregular shape resulting from the de-
velopment of separated regions of high-tumor cell density.
High-cellular density spots arose mainly nearby larger ves-
sels as the compact core growing along the large artery at
the center of the domain in Figure 7b, day 30. This depend-
ency on the location of the blood vessels is even more
marked for the tumor formed by tumor cells driven by high
chemotaxis (HC cells) as can be seen in Figure 7c. In this
case, offshoots of the invading edge grow along blood ves-
sels until these are occluded (Figure 8). Subsequently, the tu-
mor offshoots advance toward nearby active vessels. The dif-
fuse nature and irregularity of the tumor surface increases
with the level of chemotaxis. The tumor of LC cells has a
well-defined boundary. On the other hand, the tumor of MC
cells has a diffuse interface although it is relatively uniform

Figure 5. Migrating direction parameters.

(a) Weights w account for the distance to neighboring lat-
tice sites, and (b) sets of vi and possible movements of a
migrating cell for different levels of chemotaxis.

Figure 6. Algorithm to simulate tumor progression.
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along the compact core. In the high-chemotaxis case, the tu-
mor exhibits a more diffuse and irregular interface.

The level of chemotaxis also affects the tumor invasion
rate. At early stages, the growth dynamics of the three

tumors is similar. However, the tumor of MC cells is

slightly more proliferative, whereas the tumor of HC cells
expands faster than the other tumors. The difference on the

invasion rate is more evident at later times as can be seen

in Figure 9a. Clearly, HC cells leads to a higher invaded
volume compared to that of tumors of LC and MC cells.

High chemotaxis also results in tumors with lower average

tumor cell density across the compact core of the tumor
(Figure 9b). However, the local tumor cell density in the

tumors of MC and HC cells can be as high as for the

tumors of LC cells. The lower average cellular density in
these cases is due in part to the presence of noninvaded

regions (mostly necrotic) enclosed by the tumor. The faster

invasive rim of these tumors destroys the vessels in its
path, provoking a drop in the nutrients levels and giving

no time for the inner tumor cells to fill up all the space

before they become necrotic. Note that lower cellular den-
sity entails a lower local metabolic burden which is

reflected on a thicker rim of viable cells surrounding the

necrotic core (Figure 9b).

The effect of vasculature remodeling on tumor
progression depends on the chemotaxis level

Simulation results in the previous subsection indicate that
the effect of chemotaxis on the morphology and growth dy-
namics of the tumor is strongly connected with the way
tumors perturb their environment. We compare tumors simu-
lated using the same conditions as in the previous subsection
except that the tumors do not occlude the vascular network.
Figure 10 shows the invaded volume of the simulated tumors
at day 39. The tumor of LC cells that does not occlude ves-
sels has a larger volume than its counterpart, whereas the
effect is reversed for the tumor of HC cells. The reason for
these opposite results is related to the distribution of the
growth factor and the different response of the tumor cells to
the chemoattractants. Tumors that destroy the vasculature de-
velop large necrotic cores whereas most of the tumor cells
remain alive in their counterparts. Since only alive tumor
cells produce TGFa, the tumors that do not occlude vessels
have higher levels of ERK activation and, consequently,
larger fraction of migrating and proliferating cells. This con-
dition combined with the insignificant response to chemoat-
tractant gradients results a higher invasion rate of tumors of
LC cells in the case of no vascular network degeneration.
The advantage of higher ERK activation is overcome by

Figure 7. Simulation of tumor progression in the 3-D simulation domain.

Snapshots of the tumors at different times for (a) low, (b) medium, and (c) high chemotaxis. The gray isosurfaces represent the invasive
edge of the tumor. The black isosurfaces enclose the compact core of the tumor.
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effect of the changes on oxygen distribution for the tumors
of HC cells. Most of the HC cells cluster tightly along the
nonoccluded vessels with fewer tumor cells on regions away
from the vessels. Oxygen gradients toward the standing ves-
sels also increase the local cellular density, and, conse-
quently, diminishing the spaces for proliferative cells. In the
case of tumors of MC cells, these factors cancel out each
other resulting in similar invaded volume, although the mor-
phology of the tumors differs. Tumors that occlude vessels
have a necrotic core and a more diffuse and uniform inva-
sive edge, whereas their counterparts have offshoots along
the vessels. This invasion pattern resembles vascular co-
option, a mechanism important in brain tumor growth where
tumor cells can infiltrate the vascular bed, leading to a lower
density of blood vessels compared to normal tissue.17,87

HC cells dominate in tumors of mixed populations by
inducing higher rate of death for the other cells

A common feature of tumors is the heterogeneous geno-
type and phenotype of their populations. We carried out sim-
ulations starting with a tumor seed composed of equal popu-
lations of LC, MC and HC cells to study the growth dynam-
ics of the tumor. The time evolution of the number of cells
of each type for tumors composed of single and mixed popu-
lations is presented in Figure 11a. The populations of MC
and HC cells have reached a larger size in the mixed popula-
tion tumors than in the single-population tumors at the end
of the simulations. This result is a consequence of the lower
rate of cell death in the mixed-population tumors (only up to
day 26 for MC cells) than in the single population tumors
(Figure 11c), whereas the proliferation rate is very similar in
both cases (Figure 11b). On the contrary, at early stages the
population of LC cells had significant higher proliferation
rate in the mixed population tumor than in the single-popula-

tion case (Figure 11b). However, the LC cells also had a
considerable higher rate of death in the mixed-population tu-
mor that leads to the death of most of these cells at latter
stages (Figure 11c). The early increased proliferation of LC
cells in the mixed-population tumors is consequence of their
higher level of ERK activation (because they are located on
the compact core where the TGFa concentration is higher),
and the increased availability of space to proliferate created
by the dispersion of MC and HC cells. However, the LC
cells cannot move fast enough to escape from the necrotic
region front induced by the occlusion of vessels by the MC
and HC cells. In fact, the rate of death of MC cells also
became higher for the mixed than for the single-population
tumor after day 26 (Figure 11c). Clearly, HC cells domi-
nated the mixed-population tumor at the end of the simula-
tion. However, the main causes of this outcome are the
occlusion of the vessels and the difference in the invasion
rates rather than the competition of the different type of cells
for space.

Sensitivity analysis

We performed local sensitivity analysis to assess the effect
of small changes of the parameter values on the results pre-
sented in the previous subsections. The parameters 1 to 32
listed in Table 1 were changed (one at the time), by either
increasing or decreasing each by 10% of its nominal value

Figure 8. Vessel co-option in simulation of a tumor of
HC cells.

Figure 9. Temporal profiles of tumor progression when
tumors occlude vessels.

(a) Volume invaded by the tumors, and (b) Average tumor
cell density of the tumors as a function of the distance from
the center of mass of the tumor. Solid lines indicate the
density of live tumor cells. Dashed lines indicate the total
tumor cell density including necrotic cells.
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and simulated the model to determine the invaded volume
(the parameters of the signaling pathway and the vasculature
were not considered). The deviation of the invaded volume
from the nominal case gives a measure of the effect of the
change in a parameter. Figure 12a shows the deviation of
the invaded volume for the MC tumors at day 33 (the final
simulation time of the shortest simulation). The largest devi-
ation was caused by changes in the threshold of ERKact

(hQP, 23), required for a quiescent cell to acquire the prolif-
erating phenotype. Increasing this parameter by 10% resulted
in an invaded volume of only 4% of the nominal case due to
a low activation of the TGFa autocrine circuit. For the same
reason, the second most influential parameter is the produc-
tion rate of TGFa by tumor cells (g1, 9). Changes in the con-
sumption rate of oxygen by normal cells (ko, 3) caused the
third largest deviation on the invaded volume. Note that the
consumption rates for tumor cells were considered to be fac-
tors (aO,Q, aO,M, aO,P, 11, 12, 13) of the normal oxygen con-
sumption rate (ko, 3). When these factors were changed indi-
vidually, the invaded volume changed up to a less extent.
Interestingly, both decreasing and increasing the threshold of
ERKact for quiescent cells to become migrating (hQM, 20)
resulted in lower invaded volume. For lower hQM, the tumor
has a larger fraction of dispersed migrating cells at the
expense of the proliferative population at early stages, slow-
ing down the activation of the TGFa autocrine circuit. On
the other hand, higher hQM resulted in smaller tumor due to
higher contact inhibition. It should be emphasized that these
results correspond to a single-time point, whereas the de-
pendence of the invaded volume in the parameters is
dynamic. The effect of changes on the five most dominant
parameters on the relative invaded volume for the different
levels of chemotaxis is shown in Figure 12b. Even though
the changes in these parameters caused large deviations on
the invaded volume, the ratio of the invaded volume of the
MC and HC cases to the LC case remains very similar to
the nominal case with the exceptions of the decrement on
hQP, and the increment of hQM. This indicates a complex
relation (at least for the choice of parameter values) between
the phenotype decision process of quiescent cells and their
sensitivity to chemoattractants to determine tumor invasion
rate and suggest further studies for better understanding this
process.

Summary and Discussion

We analyzed the effect of the response of migrating tumor
cells to chemoattractant gradients on the morphology, growth
dynamics and invasive rate of brain tumors. For this pur-
pose, we developed a hybrid multiscale model to simulate
tumor progression in a complex vascular network with struc-
ture and functionality mimicking that observed in the white
matter that enables the determination of more realistic con-
centration profiles using experimentally derived parameter
values. We found that either medium- or high-level chemo-
taxis is needed to simulate tumors with irregularly shaped
necrotic core surrounded by a rim of viable tumor cells and
diffuse infiltrations characteristic of glioblastoma macro-
scopic morphology.7,15 This suggests that glioblastoma
tumors possess a robust mechanism for preferential growth
toward sources of nutrients.

Directional migration (i.e., medium and high chemotaxis)
increases tumor growth and invasion rates. Clearly, the faster
invasive edge is a direct consequence of migrating tumor
cells moving more consistently toward fresh sources of
nutrients than in the low-chemotaxis case. Higher response
to chemoattractants also contributes to the faster growth of

Figure 10. Invaded volume by the tumor with and with-
out vessel occlusion at day 39.

Figure 11. Growth dynamics of tumors of mixed popu-
lations.

Time evolution of (a) population size, (b) proliferation
rate, and (c) rate of death for each cell type in tumors of
mixed and single populations.
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the compact core of the tumor as migrating cells that have
spread faster switch to the proliferating phenotype and popu-
late the invaded tissue. Our results are in agreement with the
results of Zhang et al.79 where they determined that the
expansion of a tumor is increased by the appearance of
clones that are more sensitive to chemoattractant gradients.
In a similar work, the effect of the search precision on the
expansion rate of a tumor was also studied in88. They found
that a high-search precision favors the expansion rate of the
tumor although a maximal search precision results in a sub-
optimal invasion rate. Our results are also consistent with
other results from a very different modeling approach. Using
a continuum model, Wise et al.50 characterized the capacity
of tumor cells to spread by an adhesion strength parameter,
and found that low-adhesion strength (analogous to our high-
chemotaxis case) results in larger, more irregular tumors
with the formation of buds driven by the redistribution of
nutrients.

The environment also plays an important role on tumor
morphology, growth dynamics and invasion rate. Our model
predicts that the destruction of blood vessels (and, hence, the
decrease of nutrient concentration) contributes to irregular
morphologies for the medium- and high-chemotaxis cases.
Similarly, using an agent-based model of a solid tumor, Ger-
lee and Anderson78 found that high concentrations of
nutrients favor the formation of regular shaped tumors,
whereas lower concentrations of nutrients lead to irregular

morphologies. However, their simulations show that lower
concentrations of nutrients correlate with lower growth rates
(i.e., in terms of the number of cells), and have only a slight
effect on the invasion rate (i.e., in terms of the invaded area)
of the tumors. In contrast, our results suggest that vessel
occlusion can induce higher invasion rates for tumor of HC
cells even though it is accompanied by a drop on the
nutrients level. The main reason for this difference is the
presence of migrating cells in our model as opposed to their
model which does not take these cells into account.

Winkler et al.89 developed an in vivo model to evaluate
the effect of antiangiogenic therapy on the progression of
angiogenesis dependent human glioma tumors. Antiangio-
genic therapy induced a ‘‘normalization window’’ where
aberrant tumor vasculature significantly recovered the struc-
tural and functional properties of the normal vasculature.
During this window, tumor oxygenation increased, and tu-
mor growth was briefly delayed. This coincides with our
simulation results that predict slower tumor growth for
tumors of HC cells when blood vessels are not destroyed
(Figure 10). Although the growth delay observed in these ex-
perimental models may be due to several factors including
changes in the expression of growth factors produced by tu-
mor and tissue cells, it would be insightful to assess the con-
tribution of chemotaxis on the tumor dynamics in such ex-
perimental settings.

We anticipate that a number of model simplifications can
be ameliorated in future enhancements. At the tumor level,
incorporation of other biological processes characteristic of
glioblastomas such as tumor-induced angiogenesis, hypoxia,
and production of metabolic waste will provide a more com-
plete picture of tumor progression. The assumption of cellu-
lar migration driven exclusively by chemotaxis can be
relaxed by considering adhesion molecules in the cells and
the extracellular matrix, as well as the repulsing effect of
metabolic waste. Similarly, the assumption of vessel occlu-
sion as the only mechanism of vasculature remodeling will
be relaxed by the incorporation of angiogenesis and other
mechanisms such as increased leakiness that can be consid-
ered. At the cellular level, we assumed that the phenotype
decision process is determined by the MAPK pathway.
Although there is experimental evidence that correlates the
activity of the MAPK pathway with migration and prolifera-
tion in gliomas,13 there is no quantitative information that
links the activation levels of the MAPK pathway and output
of the decision process. Therefore, we have used a phenome-
nological model that resembles in general terms the response
of the rates of proliferation and migration of glioma cells to
different concentrations of growth factors.80 Moreover, the
EGFR activated intracellular signaling cascade would be bet-
ter represented by considering the coactivation of more path-
ways, such as the MAPK, PI3K/Akt, and PLCc pathways.
This network will provide a more complete picture of the
proliferating vs. migrating decision process. We expect that
these model enhancements will have a relevant effect on tu-
mor progression. However, given the interdependence among
these processes (and the ones already included in the model),
the overall effect on the simulation results is difficult to
assess a priori, but once the implementation of the incorpo-
rations is made the conclusions based on the current model
can be revised. Contact inhibition is a major assumption

Figure 12. Results of the sensitivity analysis.

(a) Deviations of invaded volume for changes in the indi-
vidual parameters for the MC tumors at day 33. V0 and Vi

are the invaded volume for the nominal case and the per-
turbed parameter i, respectively. (b) Relative invaded vol-
ume for the five most influential parameters for the differ-
ent levels of chemotaxis. Vi,Low is the invaded volume for
the perturbed parameter i for the LC tumor.

AIChE Journal March 2011 Vol. 57, No. 3 Published on behalf of the AIChE DOI 10.1002/aic 789



tailored to the simulations using the regular grid. This
assumption affects the distribution of migrating and prolifer-
ating cells by restricting cells in regions that have reached
the maximum cellular density to be quiescent. This assump-
tion can be relaxed by grid-free approach (e.g., cell location
is determined by solving a minimum energy configuration
problem), although at a higher computational expense. How-
ever, the effect on the invasion rate of the tumor is minor
since the main contribution comes from migrating and prolif-
erative activity at the outer rim of the tumor as evidenced by
experimental observation. Another difficulty associated with
grid-constraint models is the limitation to treat cell-cell me-
chanical interactions. This limitation could be alleviated by
incorporating detailed tissue mechanics; however, efficient
algorithms to overcome the associated computational burden
need to be developed. We believe that the model and the
simulation scheme proposed in this work can be the base of
an ambitious modeling effort that include additional compo-
nents to those mentioned, such as the influence of waste
from necrotic cells and homotype chemoattraction.
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