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Abstract

Microorganisms rarely live isolated in their natural environments but rather function in consolidated and socializing
communities. Despite the growing availability of high-throughput sequencing and metagenomic data, we still know very
little about the metabolic contributions of individual microbial players within an ecological niche and the extent and
directionality of interactions among them. This calls for development of efficient modeling frameworks to shed light on less
understood aspects of metabolism in microbial communities. Here, we introduce OptCom, a comprehensive flux balance
analysis framework for microbial communities, which relies on a multi-level and multi-objective optimization formulation to
properly describe trade-offs between individual vs. community level fitness criteria. In contrast to earlier approaches that
rely on a single objective function, here, we consider species-level fitness criteria for the inner problems while relying on
community-level objective maximization for the outer problem. OptCom is general enough to capture any type of
interactions (positive, negative or combinations thereof) and is capable of accommodating any number of microbial species
(or guilds) involved. We applied OptCom to quantify the syntrophic association in a well-characterized two-species
microbial system, assess the level of sub-optimal growth in phototrophic microbial mats, and elucidate the extent and
direction of inter-species metabolite and electron transfer in a model microbial community. We also used OptCom to
examine addition of a new member to an existing community. Our study demonstrates the importance of trade-offs
between species- and community-level fitness driving forces and lays the foundation for metabolic-driven analysis of
various types of interactions in multi-species microbial systems using genome-scale metabolic models.
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Introduction

Solitary species are rarely found in natural environments as

most microorganisms tend to function in concert in integrative and

interactive units, (i.e., communities). Natural microbial ecosystems

drive global biogeochemical cycling of energy and carbon [1] and

are involved in applications ranging from production of biofuels

[2,3], biodegradation and natural attenuation of pollutants [4,5,6],

bacterially mediated wastewater treatment [7,8] and many other

biotechnology-related processes [9,10]. The species within these

ecosystems communicate through unidirectional or bidirectional

exchange of biochemical cues. The interactions among the

participants in a microbial community can be such that one or

more population(s) benefit from the association (e.g., through

cooperation), some are negatively affected, (e.g., by competing for

limiting resources), or more often than not a combination of both.

These inter-species interactions and their temporal changes in

response to environmental stimuli are known to significantly affect

the structure and function of microbial communities and play a

pivotal role in species evolution [11,12,13,14,15,16].

Recent advances in the use of high-throughput sequencing and

whole-community analysis techniques such as meta-genomics and

meta-transcriptomics promise to revolutionize the availability of

genomic information [16,17,18]. Despite the growing availability

of this high-throughput data, we still know very little about the

metabolic contributions of individual microbial players within an

ecological niche and the extent and directionality of metabolic

interactions among them. This calls for development of efficient

modeling frameworks to elucidate less understood aspects of

metabolism in microbial communities. Spurred by recent advances

in reconstruction and analysis of metabolic networks of individual

microorganisms, a number of metabolic models of simple mic-

robial consortia have been developed. Efforts in this direction

started with the development of metabolic model for a mutualistic

two-species microbial community [19]. The metabolic network of

each microorganism was treated as a separate compartment

in analogy to eukaryotic metabolic models [20,21]. A third

compartment was also added through which the two organisms

can interact by exchanging metabolites. The same approach was

employed for the metabolic modeling of another syntrophic

association between Clostridium butyricum and Methanosarcina mazei

[22]. Lewis et al [23] have also described a workflow for large-scale

metabolic modeling of interactions between various cell lines in

the human brain using compartments to represent different

cells. Similarly, Bordbar et al [24] developed a multi-tissue type

metabolic model for analysis of whole-body systems physiology.
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Alternatively, others proceeded to identify and model synthetic

interactions among different mutants of the same species using

genome-scale metabolic models. For example, Tzamali et al [25]

computationally identified potential communities of non-lethal E.

coli mutants using a graph-theoretic approach and analyzed them

by extending dynamic flux balance analysis model of Varma and

Palsson [26]. The same researchers have recently extended their

study to describe the co-growth of different E. coli mutants on

various carbon sources in a batch culture [27]. Wintermute and

Silver [28] identified mutualistic relationships in pairs of

auxotroph E. coli mutants. Each pair was modeled using an

extended form of the minimization of metabolic adjustment

(MOMA) hypothesis [29]. More recently, the concept of inducing

synthetic microbial ecosystems not by genetic modifications but

rather with environmental perturbations such as changing the

growth medium was introduced [30].

All these studies aimed primarily at modeling communities

where one or both species benefit from the association while none

is negatively affected. The first study to characterize a negative

interaction between two microorganisms using genome-scale

metabolic models was published by Zhuang et al [31] where

similar to [25,27] an extension of the dynamic flux balance

analysis [32] was employed to model the competition between

Rhodoferax ferrireducens and Geobacter sulfurreducens in an anoxic

subsurface environment. The same procedure was also employed

in a study that characterized the metabolic interactions in a co-

culture of Clostridium acetobutylicum and Clostridium cellulolyticum [33].

A wide range of methods beyond flux balance analysis have been

used to model microbial communities [34,35,36,37,38,39,40,41,

42,43,44,45]. For example, Taffs et al [46] proposed three different

approaches based on elementary mode analysis to model a

microbial community containing three interacting guilds. Other

studies have drawn from evolutionary game theory, nonlinear

dynamics and the theory of stochastic processes to model

ecological systems [39,40,43].

Despite these efforts, all existing methods for the flux balance

analysis of microbial communities are based on optimization

problems with a single objective function (related to individual

species), which cannot always capture the multi-level nature of

decision-making in microbial communities. For example, the flux

balance analysis model described in [19] is applicable only to

syntrophic associations, where the growth of both species is

coupled through the transfer of a key metabolite. The dynamic

flux balance analysis models introduced by Zhuang et al [31] and

Tzamali et al [25,27] rely on solving separate FBA problems for

each individual species within each time interval. In all cases these

methods cannot trade off the optimization of fitness of individual

species versus the fitness function of the entire community.

Therefore, there is still a need to develop an efficient modeling

procedure to address this issue and to analyze and characterize

microbial communities of increasing size with any combination of

positive and/or negative interactions.

Here, we introduce OptCom, a comprehensive flux balance

analysis framework for microbial communities, which relies on

a multi-level optimization description. In contrast to earlier

approaches that rely on a single objective function, OptCom’s

multi-level/objective structure enables properly assessing trade-

offs between individual vs. community level fitness criteria. This

modeling framework is general enough to capture any type of

interactions (positive, negative or combination of both) for any

number of species (or guilds) involved. In addition, OptCom is

able to explain in vivo observations in terms of the levels of

optimality of growth for each participant of the community. We

first analyze a simple and well-determined microbial community

involving a syntrophic association between D. vulgaris and M.

maripaludis [19] to demonstrate the ability of OptCom in

recapitulating known interactions. Next, OptCom is employed to

model the more complex ecological system of the phototrophic

microbial mats of Octopus and Mushroom Springs of Yellowstone

National Park and compare our results with those obtained using

elementary mode analysis [46]. OptCom identifies the level of sub-

optimal growth of one of the guilds (SYN) in this community to

benefit other community members and/or the entire population.

Finally, we use OptCom to elucidate the extent and direction of

inter-species metabolite transfers for a model microbial commu-

nity [47], identifying the proportion of metabolic resources

apportioned to different community members and predicting the

relative contribution of hydrogen and ethanol as electron donors

in the community. Addition of a new member to this community is

also examined in this study.

Methods

OptCom postulates a separate biomass maximization problem

for each species as inner problems. The inner problems capture

species-level fitness driving forces exemplified through the

maximization of individual species’ biomass production. If

preferable, alternate objective function (e.g., MOMA [29]) could

be utilized in the inner stage to represent the cellular fitness

criteria. Inter-species interactions are modeled with appropriate

constraints in the outer problem representing the exchange of

metabolites among different species. The inner problems are

subsequently linked with the outer stage through inter-organism

flow constraints and optimality criteria so as a community-level

(e.g., overall community biomass) objective function is optimized.

Figure 1A schematically illustrates the proposed concept. OptCom

is solved using the solution methods previously developed for

bilevel programs [48,49,50,51] (see Text S1 for details of the

optimization formulation and solution). Note that since OptCom

Author Summary

Microorganisms rarely live isolated in their natural
environments but rather function in consolidated and
socializing communities. Despite the growing availability
of experimental data, we still know very little about the
metabolic contributions of individual species within an
ecological niche and the extent and directionality of
interactions among them. This calls for development of
efficient modeling frameworks to shed light on less
understood aspects of metabolism in microbial communi-
ties. Here, we introduce OptCom, a comprehensive
mathematical framework for metabolic modeling and
analysis of microbial communities, which relies on a
multi-level/objective optimization formulation to properly
describe trade-offs between individual vs. community level
fitness criteria. OptCom is general enough to capture any
type of interactions (positive, negative or combinations
thereof) and is capable of accommodating any number of
microbial species involved. We first demonstrate the
capability of OptCom to quantify known metabolic
interactions in a well-characterized microbial community.
We next apply it to more complex communities to assess
the optimality levels of growth for each microorganism,
elucidate the extent and direction of inter-species
metabolite transfers and examine addition of a new
member to an existing community. Our study lays the
foundation for metabolic-driven analysis of various types
of interactions in multi-species microbial systems.
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yields a (non-covex) bilinear optimization problem, all case studies

presented in this paper were solved using the BARON solver [52],

accessed through GAMS, to global optimality.

It is important to note that OptCom can be readily modified

to account for the case when one or more organisms show a form

of cooperative behavior that benefits the whole population, but

comes at the expense of growing at rates slower than the

maximum possible [15,53]. To quantify the deviation of

community members from their optimal behavior, we introduce

a metric called optimality level for each species k (i.e., ck). The

optimality level for each one of the microorganisms is quantified

using a variation of OptCom which we refer to as descriptive.

Descriptive OptCom incorporates all available experimental data

for the entire community (e.g., community biomass composition)

as constraints in the outer problem and all data related to

individual species as constraints in the respective inner problems

Figure 1. Schematic illustration of OptCom. (A) The multi-level optimization structure of the OptCom. A separate biomass maximization
problem is defined for each species as inner problems. These inner problems are then integrated in the outer stage through the inter-organism flow
constraint to optimize a community-level objective function. (B) Structure of the Descriptive OptCom to determine the optimality level of each
species (ck), given a set of experimental data. The available experimental data for the entire community and the individual species are described using
constraints in the outer and inner problems, respectively, whereas, sub- or super-optimal behavior of each microorganism is captured by using a
constraint for the respective inner problem.
doi:10.1371/journal.pcbi.1002363.g001
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while allowing the biomass flux of individual species to fall below

(or rise above) the maxima (voptk
biomass) of the inner problems (see

Figure 1B). We note that here the optimum biomass flux for each

species (voptk
biomass) is community-specific as it is computed in the

context of all microorganisms striving to grow at their maximum

rate (using the formulation given in Figure 1A). An optimality level

of less than one for a microorganism k implies that it grows sub-

optimally at a rate equal to 100ck % of the maximum (voptk
biomass)

to optimize a community-level fitness criterion while matching

experimental observations. Alternatively, an optimality level of one

implies that microorganism k grows exactly optimally at a rate

equal to voptk
biomass whereas a value greater than one indicates

that it achieves a higher biomass production level than the

community-specific maximum (i.e., super-optimality) by depleting

resources from one or more other community members. It is

worth noting that super-optimality is achievable for a species only

at the expense of sub-optimal behavior of at least one other

member in the community. The identified combination of sub-

and/or super-optimal behaviors of individual species is driven by

the maximization of a community-level criterion (e.g., maximize

the total community biomass).

OptCom can capture various types of interactions among

members of a microbial community. Symbiotic interactions

between two (or more) populations can be such that one or more

species benefit from the association (i.e., positive interaction), are

negatively affected (i.e., negative interactions), or combination of

both. Mutualism, synergism and commensalism are examples of

positive interactions, whereas parasitism and competition are

examples of negative interactions. A pictorial representation of

how these interactions can be captured within OptCom by

appropriately restricting inter-organism metabolic flows is provid-

ed in Figure 2 (see Text S1 for implementation details).

Results

Modeling a mutualistic microbial community
We first explore the capability of OptCom to model and analyze

a relatively simple and well-characterized syntrophic association

between two microorganisms, namely Desulfovibrio vulgaris Hilden-

borough and Methanococcus maripaludis. Syntrophy is a mutualistic

relationship between two microorganisms, which together degrade

an otherwise indigestible organic substrate. A prominent example of

syntrophic interactions is interspecies hydrogen transfer, where the

hydrogen produced by one of the species has to be consumed by the

other to stimulate the growth of both microorganisms [54,55,56,57].

In these communities degradation of a substrate by fermenting

bacteria is energetically unfavorable as it carries out a reaction,

which is endergonic under standard conditions. However, if this

fermenting bacteria is coupled with a hydrogen scavenging partner

such as methanogenic bacteria, the organic compound degrading

reaction can proceed [58]. Methanogens use hydrogen and energy

gained from the first reaction and reduce CO2 to methane [56,58].

Here we focus on such a syntrophic association between

Desulfovibrio vulgaris Hildenborough and Methano- coccus maripaludis

S2, for which genomes-scale metabolic models as well as

experimental growth data for the co-culture are available [19].

With lactate as the sole carbon source and in the absence of a

suitable electron acceptor for the sulfate reducer, M. maripaludis

provides favorable thermodynamic conditions for the growth of D.

vulgaris by consuming hydrogen and maintaining its partial

pressure low. Stoylar et al [19] modeled this microbial community

as a multi-compartment metabolic network and employed FBA to

identify community-level fluxes by maximizing the weighted sum

of the biomass fluxes of two microorganisms.

Comparing the OptCom predictions with experimental

results. First, we examined whether our model is capable of

predicting the relative abundance of species (i.e., composition) in

the community by maximizing the community biomass as the

outer problem objective function. Each microorganism was

allowed to maximize its own biomass yield in the inner

problems. Consistent with Stoylar et al [19], the lactate uptake

rate was set to 48 mM/h and formate and hydrogen accumulation

were set to zero, so as all formate and hydrogen produced by D.

vulgaris is utilized by M. maripaludis. Lower and upper bounds on all

other reactions (except for the uptake and export fluxes of the

shared metabolites) were taken from [19]. The ratio of the biomass

yields for D. vulgaris and M. maripaludis was predicted to be 2.28

based on our simulations. This is consistent with in vivo observation

that D. vulgaris dominates in the co-culture by a ratio of at least 2:1

[19]. Throughout this and the following studies we assume that the

biomass flux for each species is proportional to its biomass

abundance in the community.

We next explore how well OptCom performs in predicting

various metabolic activities across different stages of syntrophic

growth. To this end, we applied OptCom for each time interval

and compared the model predictions for acetate, methane and

carbon dioxide evolution rates as well as total biomass production

rates with experimental measurements [19]. A separate run was

performed for each time interval where lactate uptake and

hydrogen evolution rates were fixed at their experimentally

determined values in that interval [19]. The results of this

comparison are illustrated in Figure 3. We can see that OptCom

predictions are generally in good agreement with experimental

data especially for the acetate and methane production rates. The

predicted CO2 evolution rate, however, is lower in all time

intervals (except for 62–76 hr) than the measured values. Between

62 hr and 76 hr the experimental data show that the CO2

evolution rate is close to zero, which may indicate that all CO2

produced by D. vulgaris is consumed by M. maripaludis [19]. In

addition, OptCom predicts an increase in the biomass production

of the whole community over time with increasing lactate uptake

rate as expected, although, all of predicted yields are higher than

experimental measurements. This inconsistency could be due to

missing regulatory information, incorrect modeling of ATP

utilization and maintenance energy requirements and/or the

presence of futile cycles in the metabolic models of one or both

species. It is worth noting that all predictions by Stolyar’s multi-

compartment approach are also very close to the results obtained

by OptCom. This is because in this syntrophic microbial

community the growth of both species is coupled and uniquely

dependent on the exchange of hydrogen and/or formate. This

allows for a single fitness function to describe the behavior of the

entire community.

The role of hydrogen and formate in interspecies electron

transfer. Hydrogen and formate are primary shuttle

compounds for interspecies electron transfer. There are two

enzymes in D. vulgaris that are involved in production of hydrogen

and formate namely pyruvate oxidoreductase and pyruvate-

fomrate lyase [19,59]. While both of these enzymes convert

pyruvate to acetyl-CoA, the former produces reduced ferredoxin,

which is then used for hydrogen production, whereas the latter

produces formate, which can be secreted to the medium. For an

uptake rate of 10 mmol/hr, OptCom predicts that a total of

18.6 mmol/hr of electron transfer in the form of hydrogen and/or

formate transfer are required to achieve the maximum growth for

both species and community. To investigate the relative

contribution of formate and hydrogen in interspecies electron

transfer, we examined what portion of the total required electron

OptCom: A FBA Framework for Microbial Communities
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transfer could be carried by hydrogen or formate while

maintaining the maximum biomass yield for both species. This

analysis showed that hydrogen could be used as the sole electron

carrier to support the maximum growth for both microorganisms

even if no formate is secreted by D. vulgaris. Formate, on the other

hand, could only account for up to 26% (4.9 mmol/hr) of the total

electron transfer to maintain the biomass productions at their

maximum. In addition, OptCom results show that formate

exchange rates of more than 5.5 mmol/hr (,30%) are not able

to support growth for any of the two species. Using OptCom we

find that D. vulgaris is unable to produce sufficient formate to meet

the minimum electron transfer required to maintain the redox

balance in the absence of hydrogen.

When hydrogen production by D. vulgaris is constrained to be at

most 13.7 mmol/hr (i.e., the rest of 4.9 mmol/hr electron transfer

is assumed to be carried out by formate if possible), OptCom

predictions show that in a co-culture consisting of D. vulgaris and a

mutant of M. maripaludis the growth rate of both D. vulgaris and M.

maripaludis is reduced by 26%. The simulation results also show

that no fomrate is produced by D. vulgaris in this case, which was

expected, as it cannot be consumed by the M. maripaludis mutant.

Despite no formate production by D. vulgaris, OptCom reveals that

the flux through pyruvate formate lyase is higher compared to the

community having the wild-type strains. Further investigation of

the in silico flux distributions shows that the entire amount of

formate produced by the pyruvate formate lyase reaction is

directed towards CO2 production. This in turn results in an

increased consumption of CO2 by the M. maripaludis mutant and

consequently a lower accumulation of CO2 in the extracellular

environment compared to the community with the wild-type

strains. The predictions by OptCom for the community with

mutant of M. maripaludis are in agreement with experimental

results by Stolyar et al [19] who established a syntrophic

association between D. vulgaris and the M. maripaludis mutant

MM709 lacking the two annotated formate dehydrogenase

enzymes. It was observed that this co-culture is able to grow,

confirming that hydrogen alone can support the syntrophic growth

of both species. Nevertheless, the growth rate, biomass yield and

lactate uptake rates were lower compared to the syntrophic growth

between the wild-type strains [19]. Notably, OptCom predictions

suggest that if the wild-type D. vulgaris in Stolyar’s experiment is

replaced with a mutant lacking pyruvate-formate lyase, so as all

electron equivalent is produced in the form of hydrogen, then the

co-culture should be able to restore growth to that of wild-type

species community as hydrogen alone can carry all required

electron equivalents.

Figure 3. Comparison of the predicted metabolic activities during the syntrophic growth with experimental data. Experimentally
determined (gray diamond) and predicted production fluxes by OptCom (black square) for (A) acetate, (B) carbon dioxide (C) methane and (D) total
community biomass in the syntrophic growth of D. vulgaris and M. maripaludis. All experimental data were obtained through personal
communications with authors of [19]. A separate simulation was performed for each time interval wherein lactate uptake and hydrogen evolution
rates were fixed at their experimentally determined values for that interval. Error bars for experimental values indicate the bounds of 95% confidence
intervals [19]. The error bars for OptCom predictions were calculated by performing the simulations on the upper and lower bounds of the 95%
confidence intervals for measured lactate and hydrogen flux rates.
doi:10.1371/journal.pcbi.1002363.g003

Figure 2. Pictorial illustration of the customized OptCom for various types of interactions. OptCom (top panel) can be readily customized
for each type of interaction through properly adjusting the inter-organism flow constraints as demonstrated for a typical microbial community
composed of two interacting members.
doi:10.1371/journal.pcbi.1002363.g002
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Assessing optimality levels in a phototrophic microbial
community

Here we examine the applicability of OptCom for modeling a

more complex microbial community containing three interacting

guilds, the phototrophic microbial mats of Octopus and Mush-

room Springs of Yellowstone National Park (Wyoming, USA) [60].

The inhabitants of this community include unicellular cyanobac-

teria related to Synechococcus spp (SYN), filamentous anoxygenic

phototrophs (FAP) related to Chloroflexus and Roseiflexus spp and

sulfate-reducing bacteria (SRB) as well as other prokaryotes

supported by the products of the photosynthetic bacteria [46,60].

Diel (day-night) variations in metabolic activities of members of

this community were observed before [61,62,63]. During the day

when the mat is oxygenated cyanobacteria appear to be the main

carbon fixer, consuming CO2 and producing storage products

such as polyglucose as well as O2 as a by-product of

photosynthesis. High levels of O2 relative to CO2 stimulate the

production of glycolate. Glycolate is then used as a carbon and

energy source by other community members such as photoheter-

otrophic FAP. At night, the mat becomes anoxic and cyanobac-

teria start to ferment the stored polyglucose into small organic

acids such as acetate, propionate and H2. FAP can incorporate

fermentation products photoheterotrophically while SRB oxidizes

the fermentation products under anaerobic condition and

produces sulfide [60,64,65,66]. A schematic diagram representing

the interactions in this community is given in [46].

This microbial community has been previously modeled and

analyzed by Taffs et al [46] using a representative microorganism

for each guild: Oxygenic photoautotrophs related to Synechococcus

spp were chosen to represent the mat’s primary carbon and

nitrogen fixers. FAP from the family Chloroflexaceae, were selected to

represent metabolically versatile photoheterotrophs that capture

light energy as phosphodiester bonds but require external reducing

equivalents and carbon sources other than CO2. A SRB guild

representative whose metabolic behavior was based on several

well-studied sulfate-reducing bacteria was also included in the

community model description [46]. The metabolic networks

representing central carbon and energy metabolism for each guild

were then constructed and three different modeling approaches

based on the elementary mode analysis were employed to

elucidate sustainable physiological properties of this community

[46]. Here, we focus only on daylight metabolism (for which more

experimental data is available) to assess the efficacy of OptCom in

describing carbon and energy flows and the biomass ratio between

guilds.

Analysis of the daylight metabolism. The relative abun-

dance of various species in a microbial community (i.e., com-

position) is of significant ecological importance. The ratio of

cyanobacterial (SYN) to FAP biovolumes in a Mushroom Spring

mat was determined experimentally to be 1.6:1 [67]. It was

assumed that biomass formation rates and biovolume of species in

the community are directly related [46]. In another study the

biomass ratio in the top 1 mm of Octopus and Mushroom Spring

mats was estimated to range from 1.5:1 to 3.5:1 based on the

relative abundances of metagenomic reads [46]. We used

OptCom to model this community postulating that each guild

strives to maximize its biomass and examined if the biomass ratio

of SYN/FAP can be correctly predicted. We chose as the outer

problem objective function to maximize the total community

biomass (i.e., SYN biomass+FAP biomass+SRB biomass). During

the day O2 competes with CO2 for the rubisco active site, leading

to production of glycolate (O2+ribulose252P+ATPRglycolate+
triose phophate+ADP) instead of additional reduced carbon

(CO2+ribulose252P+ATPR2 triose phophate+ADP) [46]. The

flux ratio of these two reactions (O2/CO2) was measured for the

Octopus and Mushroom Spring microbial mats and reported to

vary approximately between 0.03 and 0.07 [46,68]. We

incorporated this information into our modeling framework by

fixing the flux ratio of these reactions at different values between

0.03 and 0.07 (using a constraint in the inner problem of SYN).

Lower and upper bounds on all reactions (except for the uptake

and export fluxes of the shared metabolites) were taken from [46].

Under these conditions, the SYN/FAP biomass ratio was

predicted to range from 7.94 (for O2/CO2 flux ratio = 0.07) to

20.26 (O2/CO2 flux ratio = 0.03), which are significantly higher

than the experimentally determined values of 1.5 to 3.5. This

suggests that the reason for the discrepancy in prediction may be

that the SYN guild does not maximize its biomass. Therefore, we

decided to test this hypothesis by using the descriptive mode of the

OptCom procedure (see Figure 1B) and establish the optimality

level of SYN and other members of this community. To this end,

we added a constraint to the outer problem to fix the SYN/FAP

biomass ratio at different values in the experimentally observed

range (1.5 to 3.5). The objective function of the outer problem was

assumed to be maximization of the total community biomass. We

determined the optimality levels across different values of SYN/

FAP biomass and O2/CO2 flux ratios in their experimentally

determined ranges (see Figure 4). OptCom finds that the observed

SYN/FAP biomass ratios are consistent with SYN guild growing

sub-optimally at 61–82% of its community-specific maximum with

lower values corresponding to higher O2/CO2 flux ratios (see

Figure 4A). On the other hand, FAP guild appears to benefit from

this sub-optimal behavior of SYN by growing at rates, which are

approximately 4.5 to 8.5 times higher than its community-specific

maximum (see Figure 4B).

SYN grows sub-optimally in this community to benefit other

community members (e.g., FAP) and optimize a community-level

fitness criterion (e.g., maximize the total community biomass). We

investigated the effect of sub-optimal growth of the SYN guild on

the total community biomass production across different values of

SYN/FAP biomass and O2/CO2 flux ratios (see Figure 4C). As

illustrated in Figure 4C, at higher O2/CO2 flux ratios, the total

community biomass is higher compared to the case when SYN

grows optimally. The metabolic reason for this lower growth of

SYN is that fixing more carbon (manifested by 3–7 times more

predicted glycolate and acetate production) to supply other guilds

and increase the overall community biomass imposes extra energy

demands on the SYN guild. In contrast, for low O2/CO2 flux

ratios the maximum community biomass when SYN grows sub-

optimally is lower compared with when it grows optimally (i.e.,

both dashed lines lie below the solid line in Figure 4C). A possible

reason for this discrepancy is that the experimental measurements

for SYN/FAP biomass ratio were performed when the O2/CO2

flux ratio was high. This could also be a consequence of the

experimental underestimation of glycolate production due to

consumption of radio-labeled photosynthate during incubation as

stated in [46]. Alternatively, SYN may grow sub-optimally so that

it can divert some resources towards polysaccharide production to

fuel night-time maintenance energy and morning nitrogen

fixation. This is another type of a cooperative behavior by SYN.

Notably, two different cases were considered by Taffs et al [46]

using the elementary modes and compartmentalized approach: a

selfish criterion where each guild attempts to maximize its own

biomass and an altruistic criterion where the guilds strive to

maximize the total community biomass. It was concluded that

predictions using the first criterion are in better agreement with

experimental data. OptCom, on the other hand reveals that a

trade-off between these two criteria appears to be driving the

OptCom: A FBA Framework for Microbial Communities
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metabolism in this community. While some guilds strive to

maximize their own growth, others (e.g., SYN) grow sub-optimally

to maximize the biomass of entire community or benefit the

nighttime metabolism, or a combination of both, depending on

O2/CO2 flux ratio and environmental conditions.

Elucidating trophic and electron accepting interactions in
sub-surface anaerobic environments

In a recent study, Miller et al [47] established a model microbial

community to better understand the trophic interactions in sub-

surface anaerobic environments. This community was composed

of three species including Clostridium cellulolyticum, Desulfovibrio

vulgaris Hildenborough, and Geobacter sulfurreducens. Cellobiose was

provided as the sole carbon and energy source for C. cellulolyticum

whereas the growth of D. vulgaris and G. sulfurreducens were

dependent on the fermentation by-products produced by C.

cellulolyticum. D. vulgaris and G. sulfurreducens were supplemented

with sulfate and fumarate, respectively, as electron-acceptors to

avoid electron acceptor competition [47]. The experimental

measurements for the biomass composition of the community

showed that, as expected, C. cellulolyticum was the dominant

member in the co-culture and confirmed the presence of D. vulgaris

and G. sulfurreducens. It was, however, not possible to quantify

experimentally the flow of shared metabolites among the

community members as their concentrations were below the

detection limits. Therefore, the authors proposed an approximate

model of the carbon and electron flow based on some

measurements of the three species community at steady-state,

pure culture chemostat experiments and data from the literature

[47].

Here, we model this microbial community by making use of the

corresponding bacterial metabolic models and employ OptCom to

elucidate the inter-species interactions. The metabolic models of C.

cellulolyticum (i.e., iFS431) and G. sulfurreducens were reconstructed

by Salimi et al [33] and Mahadevan et al [69], respectively. A basic

metabolic model of D. vulgaris containing 86 reactions was

introduced by Stolyar et al [19], however, this model had only a

compact representation of the central metabolism. For example,

the model was not able to support growth in the presence of

acetate or ethanol as the sole carbon source. Therefore, we

expanded this model by adding new reactions from a first draft

reconstructed model in the Model Seed [70] and the KEGG

database [71] using the GrowMatch procedure [50] (see Text S1

for details). The updated model of D. vulgaris consists of 145

reactions and is capable of supporting growth on acetate as well as

ethanol. This model is available in the supplementary material

(Table S1).

Fumarate consumption by G. sulfurreducens. FBA

simulations showed that the metabolic model for G. sulfurreducens

[69] is not able to capture the experimental observation that the

amount of fumarate consumed is higher than the amount of

succinate produced. In addition, the model predicts that no

malate is produced under the examined conditions. An inspection

of the metabolic model of G. sulfurreducens revealed that the only

included uptake pathway for fumarate is through mutual

dicarboxylic acid transporter (fumarate[e]+succinate[c]«
fumarate[c]+succinate[e]) implying that the amount of succinate

produced must be equal to the amount of fumarate consumed.

Interestingly, in support of the observations by Miller et al [47], a

recent study [72] has confirmed that the fumarate consumption

rate by G. sulfurreducens is higher than the succinate production

rate and demonstrated using 13C-based metabolic flux analysis

that fumarate can be used as an additional carbon source through

the TCA cycle where it is converted to malate by fumarase, and

oxaloacetate via malate dehydrogenase. These findings suggest

that the dcu gene family (responsible for the uptake of

dicarboxylates such as fumarate) in G. sulfurreducens may have a

dual function, i.e., they can act both mutually (with exchange of

another compound such as succinate) or independently (i.e.,

protonated), similarly to those in E. coli [73]. This was verified by

Figure 4. Optimality levels for the SYN and FAP guilds and
their effect on the total community biomass. Optimality levels for
(A) SYN and (B) FAP as a function of the SYN/FAP biomass ratio across
different values of the O2/CO2 flux ratio (C) Comparison of the predicted
total community biomass (1/h) for the case when SYN grows sub-
optimally and when it grows optimally. Note that, to compute the total
community biomass when SYN grows optimally only O2/CO2 flux ratio
was fixed at values in the experimentally determined range (i.e., 0.03 to
0.07), whereas for all other cases, in addition to O2/CO2 flux ratio, SYN/
FAP biomass ratio was also fixed at values measured experimentally
(i.e., 1.5 to 3.5). Lower and upper dashed lines in (C) represent the
maximum and minimum predicted community biomass (when SYN
grows sub-optimally) across various SYN/FAP biomass ratios.
doi:10.1371/journal.pcbi.1002363.g004
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performing a bi-directional BLAST analysis that revealed high

sequence similarity between the dcu gene families in G.

sulfurreducens and E. coli. It is worth noting that addition of an

alternative succinate transporter to the model could also have

been another way of explaining the experimental data, however

this hypothesis was not supported by the BLAST analysis.

Therefore, in the absence of any other experimental data, we

decided to add a protonated transport reaction for fumarate to

the model. In our simulations we restricted the flux of this

reaction to 15.5% of the fumarate transfer by dicaboxylic acid

transporter based on the metabolic flux data under electron

acceptor limited conditions [72].

Uncovering the inter-species metabolite transfers in the

community. While the relative molar abundance of each

species was measured experimentally by Miller et al [47],

the metabolite flows across community members were

untraceable. We thus chose to use OptCom to gain insight

into inter-species metabolite trafficking. To this end, we

employed the descriptive mode of OptCom (see Figure 1B)

first to establish the optimality levels of species participating in

this community, by fixing the biomass composition of the

community at the values obtained experimentally by adding

constraints to the outer problem. The objective function of the

outer problem was maximization of the total community

biomass. Descriptive OptCom revealed that the experimentally

determined biomass composition in this community was

consistent with optimal growth for all microorganisms (i.e.,

optimality level of one for all species involved). Upon verifying

that biomass maximization was driving metabolism in this

community, we used OptCom to make predictions about inter-

organism flow rates with a basis of 1 mole/gDW.hr of cellobiose

uptake by C. cellulolyticum so that we can directly compare our

results with the estimates in Miller et al [47]. The lower bound

and upper bounds on all reactions (except for the uptake and

export fluxes of the shared metabolites) were taken from the

publications of the respective metabolic models [19,33,69].

Because D. vulgaris has a much more efficient enzymatic process

for hydrogen consumption than G. sulfurreducens, we initially

allowed G. sulfurredcens to take up only a small portion (between 1

to 10%) of the total hydrogen produced by C. cellulolyticum.

However, the total predicted acetate and CO2 accumulation in

the extracellular environment deviated significantly from the

experimental observations by Miller et al [47]. Therefore, we

decided to perform the remaining simulations assuming that D.

vulgaris consumes all hydrogen produced by C. cellulolyticum (even

though this may not be the only way of reconciling model

predictions and the experimental data). OptCom found that

under these conditions 1 mol/gDW.hr of cellobiose leads to 2.48

moles/gDW.hr of acetate and 3.22 moles/gDW.hr of CO2 in the

extracellular environment which agree well with 2.7 and 3.3

moles/gDW.hr of acetate and CO2, respectively, observed in the

supernatant of the bioreactor (per mole of cellobiose) by Miller

et al [47]. We note, however, that the predicted level of acetate

production by C. cellulolyticum metabolic model (1.65 mol/

gDW.hr) is lower than what was estimated in Miller’s model

(2.9 mol/gDW.hr). In general, however, the predicted allocation

of metabolic resources to different members of the community by

OptCom is in good agreements with estimations in Miller [47]

(see Figure 5). For example, OptCom suggests that about 13% of

the acetate produced by C. cellulolyticum is directed towards G.

sulfurreducens, which is very close to the 15.5% value estimated in

[47].

OptCom results also show that hydrogen and ethanol produced

by C. cellulolyticum can be completely utilized by D. vulgaris to

reduce sulfate to hydrogen sulfide. A rough estimate for the ratio

of hydrogen to ethanol, which serve as electron donors for D.

vulgaris, is given in by Miller et al [47] (H2/Ethanol = 20) based on

the pure culture data under similar conditions. The simulations

with OptCom using genome-scale metabolic models of the

community members, however, indicate a much higher contribu-

tion of ethanol in inter-species electron transfer (H2/Etha-

nol = 2.34). We performed a flux variability analysis to see if this

ratio can change under the examined condition, while maintaining

the maximum community biomass, but no changes in this ratio

were possible. This suggests that under the observed experimental

condition, a H2/Ethanol ratio of 2.34 is needed to support the

maximum growth for each species as well as for the community as

a whole. While acetate serves as the only carbon substrate for both

G. sulfurreducens and D. vulgaris, it was not possible to determine

experimentally if D. vulgaris directly uses the available acetate in the

medium released by C. cellulolyticum or it derives acetate from

ethanol. OptCom results support the latter scenario (see Figure 5).

This is more likely to happen because acetate is already available

internally to D. vulgaris from the cytosolic oxidation of ethanol.

OptCom also identifies that 77.6% of the converted ethanol to

acetate is secreted to the medium by D. vulgaris, while the rest is

incorporated into biomass (see Figure 5). This is in good

agreement with the estimate by Miller et al [47] suggesting that

D. vulgaris does not consume any acetate produced by C.

cellulolyticum and that it exports 62.5% of the assimilated ethanol

to the medium as acetate. Elucidation of the metabolic interactions

among the members of this community was achieved by OptCom

after verifying that all species appear to grow optimally based on

the in vivo observations for the community biomass composition.

Addition of a new member to the microbial community.

As mentioned earlier, 2.48 moles/gDW.hr of acetate was

predicted to be available in the extracellular environment (per

mole of cellobiose consumed) which could be utilized by other

trophic anaerobic bacteria [47]. Therefore, an acetate utilizing

methanogen such as Methanosarcina species, which are known to be

avid consumers of acetate, can be envisioned as an additional

member of this community. We chose Methanosarcina barkeri for this

analysis as its metabolic model has been reconstructed by Feist et al

[74]. Another inner problem was added to the OptCom to

account for addition of M. barkeri to this community. Consistent

with other community members the objective function for this

inner problem was to maximize the biomass flux of M. barkeri,

whereas the objective function of the outer problem was to

maximize the total community biomass. The acetate uptake rates

by G. sulfurreducens and D. vulgaris were fixed at the values obtained

by OptCom for the tri-culture. D. vulgaris and M. barkeri were

suggested to compete in anoxic environments for hydrogen [75],

however, we assumed that all H2 produced by C. cellulolyticum is

consumed by D. vulgaris, as it has been reported to have much

more favorable kinetic parameters for H2 metabolism than

methanogens [76,77,78]. In addition, it was demonstrated that

Methanosarcina species can not only consume but also produce

hydrogen when growing on organic substrates such as acetate

[79,80]. Therefore, we allowed D. vulgaris to consume the

hydrogen produced by M. barkeri (if any) in addition to that

produced by C. cellulolyticum.

The biomass flux of M. barkeri is strongly dependent on the value

of growth-associated maintenance (GAM), which was found to be

a function of the proton translocation efficiency of the Ech

hydrogenase reaction [74]. The range of GAM values for 0.2–2

protons translocated/2e2 that result in a growth yield consistent

with in vivo observations was computed by Feist et al [74]. Here, we

examined the variability in growth yields and relative abundance
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of M. barkeri in the tetra-culture community across different GAM

values associated with 0.2–2 protons translocated/2e2. This

analysis showed that M. barkeri is capable of consuming the entire

2.48 moles of acetate produced by C. cellulolyticum and D. vulgari.

Depending on the GAM value and the proton translocation

efficiency, M. barkeri was predicted to constitute 2.5 to 10.4% of the

total community biomass (assuming that the biomass fluxes are

proportional directly with the abundance levels of species in the

community) with the other three members growing at rates similar

to the ones obtained for the tri-culture. C. cellulolyticum still

dominates the co-culture as before with biomass fractions ranging

from 69.6 to 75.7% (depending on M. barkeri’s biomass flux). The

methane evolution rate by M. barkeri was predicted by OptCom to

range from 2.36 to 2.45 moles/gDM.hr. It is important to note

that previous studies have reported that the internal carbon and

electron flow of M. barkeri could be altered by D. vulgaris in a co-

culture grown on an organic substrate such as acetate, [81]: It was

suggested that D. vulgaris strives to keep the partial pressure of

hydrogen low enough to shift the catabolic redox system of

methanogen so that more H2 is produced by M. barkeri (compared

to pure cultures) and more acetate is oxidized to CO2 instead of

methane [81]. Even though we allowed D. vulgaris to take up all

hydrogen produced by M. barkeri (in addition to that produced by

C. cellulolyticum), no such shift in methanogenesis was observed for

the tetra-culture according to the OptCom predictions. A possible

reason might be that enough hydrogen (as well as ethanol) is

already available to D. vulgaris from C. cellulolyticum, obviating the

need to alter methanogenesis in order to gain the reducing

equivalents. This hypothesis is supported by the experimental

observation that if excess H2 is added to the co-culture of M. barkeri

and D. vulgaris, it is completely consumed by D. vulgaris and the

acetate catabolism by M. barkeri is no longer affected [81].

Even though 3.22 moles/gDW.hr of CO2 produced by C.

cellulolyticum and G. sulfurreducens is available in the medium,

OptCom predicts that it remains completely unused in the tetra-

culture. This was expected as growth of M. barkeri on CO2 relies on

presence of hydrogen, which we assumed that it was consumed

completely by D. valgaris. In order to examine if M. barkeri is indeed

capable of utilizing the available CO2 as a carbon source (in

addition to acetate), we temporarily allowed M. barkeri to take up

the hydrogen produced by C. cellulolyticum. For this case, OptCom

revealed that if the entire hydrogen produced by C. cellulolyticum is

available to M. barkeri, it can support growth on CO2 only for

proton translocation efficiencies of less than one/2e2. Notably, for

proton translocation efficiencies of more than one, even though no

CO2 is assimilated by M. barkeri, OptCom shows that the

availability of hydrogen will lead to an increase in the methane

production by about 26–28%.

Discussion

Here, we introduced OptCom, a comprehensive computational

framework for the flux balance analysis of microbial communities

using genome-scale metabolic models. We demonstrated that

OptCom can be used for assessing the optimality level of growth

for different members in a microbial community (i.e., Descriptive

Figure 5. Comparison of the predicted fluxes by OptCom with estimates in the proposed model of [47]. The total predicted acetate and
CO2 production rates by OptCom are in good agreement with experimental measurements by Miller et al [47]. Note that it was not possible to
determine experimentally how much of the total acetate or CO2 available in the supernatant of the bioreactor is produced by which microorganism
(the values provided by Miller et al [47] for the acetate and CO2 production by each species as well as all inter-organism flow rates are estimates and
not experimental measurements). The values associated with the biomass of each microorganism represent fluxes (1/h) for OptCom predictions and
concentrations (M) for experimental measurements [47].
doi:10.1371/journal.pcbi.1002363.g005
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mode) and subsequently making predictions regarding metabolic

trafficking (i.e., Predictive mode) given the identified optimality

levels. Unlike earlier FBA-based modeling approaches that rely on

a single objective function to describe the entire community

[19,30] or separate FBA problems for each microorganism

[25,27,31,33], OptCom integrates both species- and community-

level fitness criteria into a multi-level/objective framework. This

multi-level description allows for properly quantifying the trade-

offs between selfish and altruistic driving forces in a microbial

ecosystem. Species and community level fitness functions are

quantified by maximizing the biomass formation for the respective

entity. We note, however, that the physiology of microbial

communities is highly context and environment dependent and

a universal community-specific fitness criterion does not exist.

Studies similar to those conducted for mono-cultures that examine

and compare various presumed hypotheses on cellular objective

function [82,83,84,85,86,87] or algorithms that identify/test a

relevant objective function using experimental flux data [88,89]

are needed in the context of multi-species systems.

An important goal of studying natural and synthetic microbial

communities is their targeted manipulation towards important

biotechnological goals (e.g., cellulose degradation, ethanol pro-

duction, etc.). This has motivated researchers to construct simple

synthetic microbial ecosystems, which are amenable to genetic and

engineering interventions, for biotechnology- and bioenergy-

related applications. As an example, Bizukojc et al [22], have

proposed a co-culture composed of Clostridium butyricum and

Methanosarcina mazei to relieve the inhibition of fermentation

products and increase production of 1,3-propanediol (PDO) by

Clostridium butyricum. Mixed cultures have been also established for

overproduction of polyhydroxyalkanoates (PHA) [90,91] and

ethanol [92,93,94,95,96]. For example, Clostridium thermocellum,

which is used for ethanol production, has been found to be capable

of utilizing hexoses, but not pentose sugars generated from

breakdown of cellulose and hemicellulose [96]. Therefore,

cultivation of C. thermocellum with other thermophilic anaerobic

bacteria capable of utilizing hexoses as well as pentose to produce

ethanol (e.g., Clostridium thermosaccharolyticum and Thermoanaerobacter

ethanolicus) has been previously examined in vivo [92,93,94,95,96].

The multi-objective and multi-level structure of the OptCom

procedure, introduced here, can help assess the metabolic

capabilities of such synthetic ecosystems. Taking a step further,

OptCom can be readily modified to identify the minimal number

of direct interventions (i.e., knock-up/down/outs) to the commu-

nity leading to the elevated production of a desired compound

(e.g., by considering the overproduction of desired compound as

the outer problem objective function), thus extending the

applicability of strain design tools such as OptKnock [48],

OptStrain [49], OptReg [97] and OptForce [98]. It is worth

noting that a key bottleneck to the modeling and analysis of

microbial communities is the paucity of genome-scale models for

all participants in a complex microbial community. Overcoming

this barrier would require the development of high-throughput

metabolic reconstruction tools such as the Model Seed [70]

resource. Given that microbial communities change with time

(e.g., day/night cycle) and also location (e.g., nutrient gradients),

approaches that would be able to capture temporal and spatial

varying inter-species metabolic interactions are needed. For

example, the separate FBA problems for each individual species

in the dynamic flux balance analysis methods of Zhuang et al [31]

and Tzamali et al [25,27] can be integrated with OptCom to

account for inter-species interactions and community-level fitness

driving forces within each time interval.
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