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a b s t r a c t

Genome-scale metabolic models are increasingly becoming available for a variety of microorganisms.

This has spurred the development of a wide array of computational tools, and in particular,

mathematical optimization approaches, to assist in fundamental metabolic network analyses and

redesign efforts. This review highlights a number of optimization-based frameworks developed

towards addressing challenges in the analysis and engineering of metabolic networks. In particular,

three major types of studies are covered here including exploring model predictions, correction and

improvement of models of metabolism, and redesign of metabolic networks for the targeted over-

production of a desired compound. Overall, the methods reviewed in this paper highlight the diversity

of queries, breadth of questions and complexity of redesigns that are amenable to mathematical

optimization strategies.

& 2012 Elsevier Inc. All rights reserved.
1. Introduction

Genome-scale metabolic models and other metabolic network
descriptions provide convenient ways of summarizing and codi-
fying information known about the metabolism of an organism.
The last decade has witnessed a rapid increase in the number of
reconstructed genome-scale metabolic models for a wide range of
microorganisms including eukaryotic, prokaryotic and archaeal
species (Aziz et al., 2008; Feist et al., 2009; Meyer et al., 2008;
Thiele and Palsson, 2010). These models enable the mathematical
representation of the bio-transformations and metabolic pro-
cesses occurring within the organism. Such models can thus be
analyzed and probed using a growing toolbox of mathematical
optimization based methods. These include a large number of
methodologies involved in phenotype predictions such as identi-
fying flux bounds, flux coupling, elucidation of objective func-
tions, predictions of gene/reaction essentiality and synthetic
lethality and metabolic flux analysis. Many of these analyses
require only the network as input, whereas others, such as
metabolic flux analysis (MFA), require experimental data for
metabolic flux elucidation.

Genome-scale metabolic models, even for well-characterized
microorganisms, are inherently incomplete due to incorrect or
poor annotations, missing reactions/pathways, incorrect or miss-
ing regulatory constraints and inaccurate formulation of the
biomass reaction. These imperfections of metabolic network
ll rights reserved.
models are manifested by the presence of gaps, incorrect growth
phenotype predictions, inaccurate flux predictions and thermo-
dynamically infeasible cycles (Nigam and Liang, 2007; Orth and
Palsson, 2010; Satish Kumar et al., 2007; Schellenberger et al.,
2011a; Yang et al., 2005). Network gaps prevent metabolic flow in
one or more reactions due to the lack of a connecting path with
the rest of metabolism (Satish Kumar et al., 2007). Annotation-
based draft reconstructions typically involve hundreds of reac-
tions that cannot carry any metabolic flux due to the presence of
network gaps. It is thus important to first identify and subse-
quently attempt to restore flow to these reactions to enable the
function of physiologically relevant pathways, debottleneck the
biomass equation, and provide production/down-conversion
(or import/export) routes for all metabolites in the system.

Gene mutant growth phenotype predictions serve as a key
quality metric for metabolic models. Metabolic capabilities of a
given microorganism may be over-estimated by its metabolic
model if the model predicts growth for a mutant strain whereas
experiments show no growth, or they can be under-estimated
when the model predicts that one or more biomass components
cannot be synthesized (i.e., no growth) even though experiments
demonstrate growth. In the former case, some of the biochemical
capabilities of the model must be eliminated or placed under a
regulatory control whereas in the latter additional functionalities
need to be added (as in gap filling process). Therefore, a related
metabolic model correction task involves restoration of consis-
tency with grow/no grow experiments (Kumar and Maranas,
2009). Mismatches between the predicted reaction fluxes using
approaches such as flux balance analysis (FBA) and in vivo flux
measurements (e.g., for growth rates, substrate uptake and
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byproduct secretion rates and intracellular flux data using 13C
labeling experiments) serve as another way of identifying meta-
bolic model limitations. The inaccurate flux predictions may arise
due to missing or falsely present (e.g., poorly annotated) reactions
or pathways in the model. Thus another relevant model refine-
ment task involves reconciliation of in silico flux predictions and
in vivo flux measurements by identifying the functionalities that
need to be added or removed to/from the model.

Many genome-scale metabolic reconstructions also contain, to
varying degrees, a number of thermodynamically infeasible reac-
tions/pathways. For example, a loop such as A-B-C-A is
thermodynamically infeasible as it can operate in perpetuity with
zero driving force thus violating the second law of thermody-
namics. Such loops manifest their presence in metabolic models
by carrying unbounded metabolic fluxes when using FBA even for
finite substrate inputs, and can be problematic particularly when
they allow for ATP production or electron exchange across
different electron carrier pools. Identification and removal of
these loops can lead to more physiologically relevant predictions
by metabolic models. Metabolic model pathologies described
above may cause significant errors in the estimation of maximum
theoretical yields, identification of alternate production pathways
or redox balancing. Because of the relative large number of these
pathologies (gaps, missing or incorrect functionalities and regu-
latory constraints and thermodynamically infeasible pathways in
draft metabolic models) and the diversity of ways these can be
remedied, computational approaches that attempt to refine and
correct metabolic models are becoming imperative. In particular,
optimization-based methods provide a straightforward way of
identifying alternative hypotheses for bridging the gaps, reconci-
liation of the growth and flux prediction inconsistencies, and
restoration of the thermodynamic feasibility by minimally per-
turbing the original network while preserving all correct model
predictions. It is important to note that optimization-based
predictions should be interpreted as mere suggestions for fixing
gaps rather than as an unsupervised tool for completing meta-
bolic models. In addition, the system-wide impact of additions to
the model must be carefully assessed as in many cases they may
cause other network pathologies (e.g., formation of thermodyna-
mically infeasible cycles).

On another front, a key objective in metabolic engineering is to
improve the production of metabolites with commercial value by
modifying the genetic setup of microorganisms i.e., knock outs/
ins/ups/downs. These manipulations can be achieved by using
recombinant DNA techniques that allows one to delete, alter or
add a new genetic function to the microbial host. Disrupting the
function of a gene by site-directed mutagenesis (Park et al., 2007)
or homologous recombination (Yu et al., 2000) enables the
shutting-down of undesirable metabolic pathways in a microbial
production host. In addition to gene knockouts, adding non-native
genes or pathways to microbial hosts can lead to new capabilities
and/or increased biochemical yields. For example, the heterolo-
gous expression of pyruvate carboxylase (pyc) from Rhizobium etli

and Lactococcus lactis was shown to increase succinate synthesis
by adding a new anaplerotic reaction that converts phosphoenol-
pyruvate to citric acid cycle intermediates such as succinate
(Thakker et al., 2011; Wang et al., 2006, 2009). Alternatively,
the addition of new pathways to a microorganism can expand
the range of native metabolism by enabling the production of a
new biochemical compound. Examples include production of
1-butanol (Dietrich et al., 2010; Liu and Khosla, 2010; Shen
et al., 2011) and 1,4-butanediol (Yim et al., 2011) in Escherichia

coli. In addition to genetic interventions that affect the coded
amino acids, efforts have targeted codon usage as a mechanism
for achieving a desired level of gene expression (Dong et al., 1995;
Makrides, 1996). Furthermore, with the advent of synthetic
biology tools such as the ribosome binding site calculator (Salis
et al., 2009), it is possible to fine tune enzyme levels in metabolic
pathways to maximize throughput.

Increasing demands for the sustainable and economically opti-
mized synthesis of bio-products, energy requirements and environ-
mental concerns necessitated the design of microbial strains that
can produce valuable bio-chemicals (e.g. biofuels) at near theore-
tical maximum yields. Motivated by this need, computational
approaches for identifying targets for genetic intervention have
started to emerge in response to recent advances in the reconstruc-
tion of metabolic models. In particular, optimization-based
approaches have been used extensively to guide all the aforemen-
tioned engineering strategies by efficiently identifying the best
candidates for knockouts/ins/ups/downs in a genome-scale meta-
bolic network leading to the overproduction of a desired chemical.
These computational methods have been employed for a wide
range of biotechnological and biomedical applications including
identification of promising biochemical routes for overproduction
of value-added chemicals from microbes (Alper et al., 2005; Atsumi
et al., 2008a; Atsumi and Liao, 2008a; Bond and Lovley, 2003;
Burgard et al., 2003; Misawa et al., 1991; Nakamura and Whited,
2003; Oliveira et al., 2005; Pharkya and Maranas, 2006; Sauer et al.,
2008; Scott et al., 2007), understanding disease metabolism (Bosma,
2003; Danpure, 2006; Zelezniak et al., 2010) and pinpointing drug
targets (Jamshidi and Palsson, 2007; Lee et al., 2005).

In this review we highlight in detail mathematical optimiza-
tion applications aimed at (i) querying model predictions,
(ii) correcting metabolic models and (iii) suggesting ways for
redesigning metabolic networks in response to overproduction
demands. All these optimization applications are relevant to
metabolic engineering by assessing and correcting models of
metabolism to support model-guided strain design.
2. Mathematical optimization terminology and taxonomy

Each optimization problem is composed of an objective func-
tion and a set of constraints. The objective (or fitness) function is
mathematical description of the desired property of the system
that should be maximized or minimized. Constraints are a set of
equations and/or inequalities describing the space of all eligible
possibilities for the problem of interest from which an optimal
solution (i.e., maximizing/minimizing the objective function) is
selected. An optimization problem may contain continuous vari-
ables, discrete (integer) variables or both. The former is used to
describe the continuous properties of the system (e.g., concentra-
tions, reaction fluxes, etc.) whereas the latter is employed to
capture discrete decisions (e.g., how many reactions should be
added to a metabolic model). Binary variables are specific types of
integer variables, which can only take a value of zero or one. This
type of variables has been extensively used in a wide array of
applications involving a ‘yes/no’ decision making process (e.g., to
knockout or not knockout a reaction in a metabolic model). If the
objective function and all constraints in an optimization problem
are linear, it is referred to as a linear program (LP), whereas if
there is at least one non-linear term (e.g., multiplication of two
variables, powers of variables, exponential of a variable, etc.) it is
termed a nonlinear program (NLP). In addition, if an optimization
problem contains both continuous and integer (or binary) vari-
ables it is called a mixed-integer (linear or nonlinear) program
(MILP or MINLP). For MILP or MINLP problems a rank-ordered list
of all alternate optimal (and sub-optimal) solutions can be
enumerated by accumulated constraints that exclude from con-
sideration the previously found solutions (i.e., integer cuts).
Another group of optimization problems, which has been used
extensively in the analysis of metabolic networks, is bilevel
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programs. These are nested optimization problems where one (or
more) of the constraints is another optimization problem. Bilevel
programs can involve both continuous and integer variables and
may contain linear or nonlinear constraints and objective
function.
3. Using optimization to explore model predictions

In this section, we highlight a number of optimization meth-
ods that are used to examine metabolic model predictions (see
also Table 1). These algorithms and methods are designed to be
tractable for genome-scale metabolic models spanning hundreds
to thousands of reactions and metabolites. They cover a wide
range of topics, including assessing the maximum theoretical
yields implied by the model, classifying the relations between
reactions, examining the impact of genetic modifications, and
quantifying fluxes given experimental data.

3.1. Flux balance analysis

A central optimization task in metabolic networks is flux
balance analysis (FBA) (Fell and Small, 1986; Savinell and
Palsson, 1992; Varma and Palsson, 1993)). The most attractive
feature of FBA is its ability to make quantitative predictions about
a metabolic network without any need for detailed kinetic
descriptions and given only the stoichiometry of reactions. The
only necessary inputs for FBA are the metabolic model (i.e., the
network stoichiometry), a biological objective and the growth and
environmental conditions (substrate availability). The fundamen-
tal assumption underlying FBA is that the system is at steady-
state. The steady-state mass balance equation for each metabolite
and environmental and growth conditions are mathematically
described in the form of constraints for the optimization problem.
Given that the system of equations describing the steady-state
mass balances is usually underdetermined (i.e., more reactions
than metabolite) one needs to select from among infinite feasible
flux distributions the ones satisfying a desired objective function.
A maximization principle is thus used as a surrogate for the true
Table 1
Optimization algorithms to explore model predictions.

Name Task A

Flux balance

analysis (FBA)

Explore metabolic capabilities of an organism V

(

rFBA Extend FBA to account for regulation N

SR-FBA Extend FBA to account for regulation N

GIMME Identify inactive reactions in a metabolic model under a

particular condition or in a specific cell type

G

PROM Integrate transcriptional regulatory networks and constraint-

based modeling

N

MOMA Calculate fluxes in response to genetic modifications N

ROOM Calculate fluxes in response to genetic modifications N

ObjFind Identify hypothesized objective functions consistent with

experimental flux measurements

N

BOSS Identify hypothesized objective functions consistent with

experimental flux measurements

N

FVA Determine minimum and maximum flux values for each reaction

in the network

N

fastFVA Determine minimum and maximum flux values for each reaction

in the network

N

FCF Identify flux couplings in a reaction network G

FFCA Identify flux couplings in a reaction network M

F2C2 Identify flux couplings in a reaction network M

SL Finder Identify synthetic lethals in a genome-scale model G

OptMeas Determine measurement sets that enable flux elucidation C

13C-FLUX MFA calculations N

COBRA toolbox FBA and MFA calculations, essentiality and synthetic lethality

analysis (and more)

M

(and always unknown) totality of interactions. Typically this
objective function is the maximization of the flux through the
biomass formation reaction (Varma and Palsson, 1994). This
results in a linear programming (LP) formulation that can be
readily solved using a variety of software packages such as GAMS
or MATLAB, or metabolic modeling frameworks such as the
constrained-based modeling and analysis (COBRA) toolbox
(Becker et al., 2007; Schellenberger et al., 2011b). The COBRA
toolbox is available at opencobra.sourceforge.net. A useful primer
for FBA was recently published (Orth et al., 2010).

FBA is somewhat limited in its predictive power unless
additional constraints are appended to the optimization problem.
For example, constraints can be added to disable specific reac-
tions that are inactive due to the regulatory constraints under a
given environmental or growth condition. This can be done by
setting the bounds on the affected fluxes to zero. Similarly,
substrate availability can be imposed by setting the bounds on
the uptake fluxes corresponding to substrates that are not avail-
able to zero. By extending this systematic approach to the entire
metabolic network, techniques such as regulatory FBA (rFBA)
(Covert et al., 2001), steady-state regulatory FBA (SR-FBA) (Shlomi
et al., 2007), gene inactivity moderated by metabolism and
expression (GIMME) (Becker and Palsson, 2008), and probabilistic
regulation of metabolism (PROM) (Chandrasekaran and Price,
2010) have been developed to integrate regulatory information
with the metabolic network. Alternatively, phenotype phase
planes (Edwards et al., 2001) have been used to map out the
optimal metabolic flux distributions as they vary with two fluxes
(such as oxygen uptake and carbon substrate uptake fluxes) and
highlight different patterns of pathway utilization. The scope of
FBA has been also recently extended to multi-species microbial
systems (Bizukojc et al., 2010; Bordbar et al., 2011; Lewis et al.,
2010; Stolyar et al., 2007; Zomorrodi and Maranas, 2012).
3.2. Objective function elucidation

As noted earlier, for FBA an objective function is needed and
typically the maximization of biomass is used as the objective
ccessibility Reference

arious, including MATLAB

via COBRA toolbox)

Fell and Small (1986), Savinell and Palsson

(1992), Varma and Palsson (1993)

/A Covert et al. (2001)

/A Shlomi et al. (2007)

AMS Becker and Palsson (2008)

/A Chandrasekaran and Price (2010)

/A Segre et al. (2002)

/A Shlomi et al. (2005)

/A Burgard and Maranas (2003)

/A Gianchandani et al. (2008)

/A Mahadevan and Schilling (2003)

/A Gudmundsson and Thiele (2010)

AMS Burgard et al. (2004)

ATLAB David et al. (2011)

ATLAB Larhlimi et al. (2012)

AMS Suthers et al. (2009b)

Chang et al. (2008)

/A Wiechert et al. (2001)

ATLAB Schellenberger et al. (2011b)
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http://maranas.che.psu.edu/software.htm
http://maranas.che.psu.edu/software.htm
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(Varma and Palsson, 1994). Other studies have examined the use
of alternative objective functions. For example, minimization of
metabolic adjustments (MOMA) (Segre et al., 2002) minimizes the
sum of the squared differences between the original wild-type
and altered flux distributions due to gene/reaction knockouts
leading to a convex quadratic optimization formulation with
linear constraints. Alternatively, regulatory on/off minimization
(ROOM) (Shlomi et al., 2005) minimizes the number of changes in
fluxes in response to the altered flux and thus requires the
definition of binary variables yielding a mixed integer linear
programming (MILP) formulation.

A number of different studies have evaluated and compared
various hypotheses for the cellular objective function (Feist and
Palsson, 2010; Knorr et al., 2007; Ow et al., 2009; Pramanik and
Keasling, 1997; Savinell and Palsson, 1992; Schuetz et al., 2007).
Alternatively, others have developed optimization-based algo-
rithms to systematically identify or predict a physiologically
relevant objective function using experimental flux data (Burgard
and Maranas, 2003; Gianchandani et al., 2008). Among these is
ObjFind, which is a bilevel optimization procedure used to identify
hypothesized objective functions that are most consistent with
experimental flux measurements (Burgard and Maranas, 2003).
More recently, the biological objective solution search (BOSS) was
introduced that allows for discovery of objectives with previously
unknown stoichiometry (Gianchandani et al., 2008). To this end, it
generates a putative stoichiometric objective reaction and adds
this reaction to the existing set of stoichiometric constraints of the
metabolic model. It then maximizes flux of this putative objective
reaction, while minimizing the difference between the computed
flux distribution and available experimental flux data. The stoi-
chiometric coefficients of the objective reaction are varied and the
results are clustered, and the most populous cluster is picked as the
objective function.

3.3. Flux variability analysis

Linear optimization can be used not only for identifying the
maximum biomass (or product) yield but also to identify meta-
bolic flux variability. Using flux variability analysis (FVA)
(Mahadevan and Schilling, 2003) the minimum and maximum
flux values for each reaction in the network can be determined.
This corresponds to the smallest hyper-rectangle that entirely
contains the feasible region. Additional constraint(s) can be
imposed in flux variability analysis as well (Mahadevan and
Schilling, 2003). For example, a constraint can be added to ensure
that the biomass flux is at its maximal or at some sub-optimal
value (e.g., 90% of maximum). These new optimization problems
remain linear and can simply be iterated over all fluxes in the
network. The computational time involved in this analysis can be
improved by taking advantage of the fact that the feasible region
for this set of problems does not change (the objective function is
the only change), as is done in fastFVA (Gudmundsson and Thiele,
2010). In addition to exploring alternate optima (Mahadevan and
Schilling, 2003), FVA has been also used to investigate network
redundancy and flexibility (Thiele et al., 2010).

3.4. Flux coupling analysis

Metabolite balance constraints imply that not all fluxes in a
metabolic network can vary independently. One of the first
methods for determining these relationships is flux coupling
analysis (Burgard et al., 2004). Reactions that cannot carry any
flux under steady-state conditions (i.e., its only feasible solution is
zero) are referred to as blocked. They can be identified in a
straightforward manner by simply maximizing the flux through
the reaction and denoting whether it can assume a non-zero
value. Non-blocked reactions in a network can engage with a
number of different relations with one another such as fully,
partially, or directionally coupled. Reactions are fully coupled if a
non-zero value for one fixes the other at exactly one non-zero
value (i.e., the ratio of the two fluxes is always constant).
Reactions are partially coupled if there is some variability in their
ratio spanning only non-zero values. Reactions are directionally
coupled if a non-zero flux for one implies that the other is also
non-zero (but not the reverse). Other reaction pairs are referred to
as uncoupled. The flux coupling finder (FCF) (Burgard et al., 2004)
solves a sequence of LP problems to determine the coupling of
reactions. During the analysis of the results, reactions that are
mutually fully or partially coupled can be arranged into coupled
reaction sets forming sub-networks (Marashi et al., 2012). It is
important to note that flux coupling is sensitive to missing
reactions (Marashi and Bockmayr, 2010). FCF splits reversible
reactions into forward and backward reactions. Larhlimi and
Bockmayr (2006) showed that reversibility-type pruning could
be performed to reduce the number of computations as reversible
reactions could be coupled together only in certain cases. The
concept of elementary flux patterns (EFP), found via a mixed-
integer linear program, can also be used to characterize flux
coupling relationships, however it is not able to distinguish
partial and full coupling. A number of recent methods such as
feasibility-based flux coupling analysis (FFCA) (David et al., 2011)
and the fast flux coupling calculator (F2C2) (Larhlimi et al., 2012)
seek to improve the computation time for performing flux
coupling. Tools for analyzing flux coupling relations can be
downloaded from http://maranas.che.psu.edu/software (FCF),
http://www.bioinformatics.org/ffca/ (FFCA), and https://source
forge.net/projects/f2c2/files/ (F2C2).

3.5. Essentiality and synthetic lethality analysis

The impact of deleting a reaction on the growth phenotype of
the network can be simulated by adding new constraints that set
the lower and upper bounds of each affected reaction to zero and
maximizing biomass production. Reaction deletions yielding a
maximum biomass production of less than a pre-specified viabi-
lity threshold are considered lethal knockouts and the associated
reaction is called essential (for biomass formation). Burgard et al.
(2001) developed an algorithm based on MILP, where the concept
of essential reactions was used to identify the minimal set of
reactions required to support growth under a given uptake
condition. Binary variables were used to determine if a reaction
should be active and objective function of the optimization
problem was to minimize sum of the binary variables.

In order to directly examine the impact of knocking out genes
(rather than reactions), gene–protein reaction (GPR) associations
are needed. These GPR associations represent which genes pro-
duce the required enzyme for a specific reaction and denote if the
coded protein is part of an enzyme complex or is an isozyme. The
effect of inactivation of a gene on the flux level can be imposed by
adding new linear constraints to the optimization problem
describing the GPR associations. This enables the assessment of
the impact of gene knockouts on biomass production (e.g.,
essential genes elucidation) and flux distribution in the network.
The concept of essentiality can be further extended to multiple
gene (or reaction) knockouts. In particular, synthetic lethals (SL)
refer to pairs of non-essential genes whose simultaneous deletion
is lethal (Guarente, 1993; Novick et al., 1989). Although SL
reaction/gene pairs can be identified by brute-force through
looping over all reactions/genes, for higher-order SLs (e.g., triples,
quadruples, etc.) the computational burden becomes prohibitive.
The challenge in exhaustively identifying higher-order SLs lies in
the combinatorial complexity of the underlying mathematical

http://maranas.che.psu.edu/software
http://www.bioinformatics.org/ffca/
https://sourceforge.net/projects/f2c2/files/
https://sourceforge.net/projects/f2c2/files/
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problem and the large size of genome-scale metabolic models.
Efforts towards addressing this challenge include an in silico

multiple knockout investigation (Deutscher et al., 2006) of the
iFF708 yeast metabolic network (Forster et al., 2003) and a
computational approach based on ideas from game theory
(Deutscher et al., 2008). Alternatively, Behre et al. (2008)
extended their study on single knockouts (Wilhelm et al., 2004)
by introducing a generalized framework for analyzing structural
robustness of metabolic networks with respect to multiple knock-
outs based on the concept of elementary flux modes. More
recently, the synthetic lethality finder (SL finder) makes use of a
bilevel optimization framework that utilizes FBA to completely
identify all multi-reaction/gene lethal knockouts using genome-
scale models (Suthers et al., 2009b). The inner problem adjusts
the fluxes to achieve maximum biomass production, subject to
network stoichiometry, reaction/gene deletions imposed by the
outer problem and other possible growth and environmental
constraints. The outer problem, on the other hand, aims at finding
synthetic gene/reaction eliminations (captured by using binary
variables) that lower the maximum biomass production below a
pre-specified cutoff. In practice, the problem is solved as a single
MILP by recasting the inner maximization as a set of additional
constraints. A GAMS implementation of the SL finder can be
downloaded from http://maranas.che.psu.edu/software.

3.6. Metabolic flux elucidation using labeling data

Optimization applications in metabolic networks described
so far are based on linear networks representations. Metabolic
flux analysis (MFA) (Vallino and Stephanopoulos, 1993) seeks
to determine the fluxes that can best describe the observed
distribution of label isotopes as measured using GC/MS and/or
MS/NMR. This results in a nonlinear model that links metabolic
fluxes with isotope enrichment ratios. Nonlinear optimization is
thus typically used to minimize the difference between the
experimental data and the predicted labeling patterns. Unlike
FBA-based methods, which only need metabolic network con-
nectivity information, MFA requires a description of the fate of
atoms going from reactants to products for each reaction in order
to make its predictions. MFA has been performed on large-scale
models (Suthers et al., 2007) and atom mappings have been
generated for genome-scale metabolic models (Ravikirthi et al.,
2011). MFA has also extensively been used to analyze mammalian
cells (Ahn and Antoniewicz, 2011) and plants (Schwender, 2008).
A number of different methods have arisen for representing the
atom mappings as well as solving the resulting nonlinear optimi-
zation problems.

One of the first such contributions on representing atom
mappings is the introduction of atom mapping matrices (AMM)
(Zupke and Stephanopoulos, 1994) that track the transfer of
carbon atoms from reactants to products. This concept was
subsequently generalized in the form of isotopomer mapping
matrices (IMM) by (Schmidt et al., 1997). The use of IMMs enables
the formulation of all isotopomer mass balances of a metabolite
pool into a closed-form nonlinear set of algebraic equations. The
variables in these representations include the metabolic fluxes
and the isotopomer distribution vectors (IDV) that quantify the
fraction of each metabolite being present in a particular isotope
form. A potential problem with the use of IMMs is that even for a
given flux distribution the identification of the underlying IDVs
yields a set of equations, which remain nonlinear. The cumomer
concept (Wiechert et al., 1999) was introduced to first prove that
there exists a unique IDV assignment that satisfies any given
feasible flux distribution and subsequently devise an IDV identi-
fication procedure by solving a cascade of linear equations. The
use of cumomer balances (i.e., cumulated isotopomer fractions)
enables the description of an isotopomer network with a smaller
set of transformations without any loss of information. However,
the nonlinear coupling between metabolic fluxes and IDVs
remains. Also, Forbes et al. (2001), introduced the isotopomer
path tracing concept using AMMs to account for the transfer of
carbon atoms from reactants to products, which identifies all
isotopomer paths that produce an observable isotopomer. An
alternative method for reducing the dimensional space of the
isotopomer problem is the concept of the theoretical bondomer
(van Winden et al., 2002). Here, all C–C bonds that remain intact
in the labeled substrate after it enters metabolism are tracked as a
single species. By using individual bondomer species instead of
every carbon atom the number of variables is significantly
reduced. A limitation of this method is that it requires the use
of a single, uniformly labeled substrate. The elementary metabo-
lite unit (EMU) framework reduces the number of variables
necessary to calculate the mass isotopomer distribution of a
measured metabolite (Antoniewicz et al., 2006). It also provides
an efficient method for analyzing the labeling pattern from
multiple isotopic tracers. A system of linear equations is solved
in an iterative manner until the flux values are determined. More
recently, the concept of fluxomers was introduced that seeks to
reduce the computations even further (Srour et al., 2011).

The above modeling developments link isotopomer fractions
(codified through a variety of different variable sets) and meta-
bolic flux information into a set of algebraic equations that
allowed for the straightforward identification of labeling distribu-
tions given a feasible flux distribution. The next step is to solve for
the fluxes that best explain the observable data. Most approaches
rely on gradient-based minimization searches that minimize the
sum of the squares of the differences between measurements and
observations. These include the Levenberg–Marquardt algorithm
(Zhao and Shimizu, 2003), the generalized reduced gradient
method (Klapa et al., 2003) and trust region methods (Yang
et al., 2004). Efforts to decrease the computation time led to the
development of analytical derivation techniques for the Jacobian
matrix (Wittmann and Heinzle, 2002). Alternatively, heuristic
algorithms such as simulated annealing employed by (Schmidt
et al., 1999) to avoid being trapped in local minima. Global
optimization approaches relying on branch and bound coupled
with convex relaxation of the problem have been also used to
quantify the fluxes (Ghosh et al., 2005; Riascos et al., 2005).
Through the use of BARON (branch-and-reduce optimization
navigator) (Tawarmalani and Sahinidis, 2004) a deterministic
global optimization package, a small problem involving eleven
fluxes was solved using the theoretical abbreviated pathway
model of Forbes et al. (2001).

Assessing and quantifying the impact of measurement uncer-
tainty on all obtained solutions is critical. First, linearized statis-
tics were used to provide confidence intervals for the split ratio
into the pentose phosphate pathway (Dauner et al., 2001;
Emmerling et al., 2002; Wiechert and de Graaf, 1997). In addition,
Monte-Carlo stochastic simulation has been used to examine how
the elucidated fluxes change when uncertainty in the form of
normally distributed noise is added to the data (Forbes et al.,
2001; Wittmann and Heinzle, 2002; Zhao and Shimizu, 2003).
Optimization-based techniques were also introduced that allow
for non-uniform determination of the upper and lower bounds
(Antoniewicz et al., 2006). Because MFA requires experimental
data as inputs, it is not trivial to design experiments that will give
sufficient information to determine fluxes in the network.
Optimization-based techniques can be used on this front. The
OptMeas method was proposed to determine measurement sets
that enable flux elucidation using incidence structure analysis
(Chang et al., 2008). The original implementation relied on an IDV
description to track isotope labeling and was improved to use the

http://maranas.che.psu.edu/software
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EMU framework (Suthers et al., 2009a), which required signifi-
cantly less computation time. Recently, methods for tracer selec-
tion (Crown and Antoniewicz, 2012) and experimental design
(Crown et al., 2012) were introduced. Software relying on non-
linear optimization for MFA can be downloaded from www.che.
udel.edu/mranton/metran.html (METRAN) and at www.13cflux.
net (13C-FLUX) (Wiechert et al., 2001). The COBRA Toolbox
(Becker et al., 2007; Schellenberger et al., 2011b) is also capable
of performing MFA.

3.7. Identification of new metabolic routes to products

Graph-based techniques have been used extensively to iden-
tify all possible metabolic pathways between a source and end
node. For example, Hatzimanikatis et al. (2005) introduced a
novel procedure termed biochemical network integrated compu-
tational explorer (BNICE) that utilizes graph-based representa-
tions of biochemical and enzyme reaction rules to generate
synthesis pathways by successively applying reaction chemistry
operators. The distinguishing feature of BNICE is the ability to
propose novel enzymatic activities operating on sometimes
unseen before compounds. Identification of novel biochemical
pathways to 1,4-butanediol (Yim et al., 2011) and 1,2,4-trichlor-
obenzene (Finley et al., 2010) are some of the examples of
successful implementations of the BNICE framework. Other
graph-based techniques such as PathMiner (McShan et al.,
2003), PathComp (Kanehisa et al., 2006), Pathway Tools (Karp
et al., 2010), MetaRoute (Blum and Kohlbacher, 2008), PathFinder
(Goesmann et al., 2002) and UM-BBD pathway prediction system
(Ellis et al., 2006) have been also proposed for pathway mining.
Ranganathan and Maranas (2010) introduced an adaptation of
Yen’s k-shortest path algorithm to identify all possible pathways
from a given starting metabolite to a target molecule. The
algorithm starts by identifying the shortest pathway between
two selected compounds and subsequently explores the combi-
natorial space by identifying alternate shortest pathways
between them. The algorithm identified known pathways from
pyruvate to 1-butanol (Atsumi et al., 2008b; Atsumi and Liao,
2008b; Shen and Liao, 2008; Steen et al., 2008) in addition to new
ones. Optimization based methods for pathway design allow for
the incorporation of stoichiometry thereby excluding paths that
cannot operate under steady-state conditions. In addition, they
allow for the direct assessment of product yield, cofactor balan-
cing and branching pathways. In earlier efforts (Beasley and
Planes, 2007; Planes and Beasley, 2009) node connectivity was
modeled using an MILP approach to trace paths between a source
Table 2
Optimization algorithms to correct/improve models of metabolism.

Name Task

GapFind Identify dead-end metabolites

GapFill Bridge the gaps (i.e., dead-end metabolites)

SMILEY Reconcile growth prediction inconsistencies (single gene mutations

GrowMarch Reconcile growth prediction inconsistencies (single gene mutations

Modified

GrowMatch

Reconcile growth prediction inconsistencies (single gene mutations

Extended

GrowMatch

Reconcile growth prediction inconsistencies (double and higher ord

GeneForce Identify and correct transcriptional regulatory rules using growth pr

(single gene mutations: NGGs)

OMNI Reconcile flux prediction inconsistencies

TMFA Eliminate thermodynamically infeasible pathways and loops

ll-COBRA Eliminate thermodynamically infeasible loops
and a sink metabolite. More recently, the network stoichiometry
was directly incorporated into the MILP description and the
impact of not considering stoichiometry in pathway prospecting
was quantified (Pey et al., 2011).
4. Using optimization to correct/improve models of
metabolism

In the following we review selected optimization procedures
used to curate genome-scale metabolic models by (i) pinpointing
and filling network gaps, (ii) identifying and fixing growth and
(iii) flux prediction inconsistencies and (iv) restoring thermody-
namic feasibility. Table 2 and Fig. 1 summarize the methods
described in this section.

4.1. Identifying and bridging gaps in metabolic models

4.1.1. GapFind and GapFill

GapFind is an optimization-based procedure, which identifies
dead-end metabolites in a metabolic reconstruction (Satish
Kumar et al., 2007). These metabolites are categorized as root no

production or root no consumption if they cannot be produced or
consumed by any reaction (including uptake/export reactions) in
the model, respectively. The lack of flow to/from root problem
metabolites is propagated in the network thus preventing addi-
tional metabolites from being produced (or consumed). These
metabolites are termed downstream no-production (or upstream
no-consumption) metabolites (see Fig. 1A). Even though it is
straightforward to locate root problem metabolites in the model
by inspection of the network topology (i.e., stoichiometric
matrix), identifying downstream or upstream problem metabo-
lites is not always an easy task (Orth and Palsson, 2010). GapFind
is a mixed-integer linear program that identifies such network
pathologies. For the case of no-production metabolites, a binary
variable is assigned to each metabolite with a value of one
signifying that there exists at least one production route and a
value zero a lack thereof. GapFind maximizes the sum of these
binary variables over all metabolites (subject to stoichiometry
and uptake/export constraints) thereby identifying all metabo-
lites that can (or cannot) be produced in the network. The above
procedure is adjusted in a straightforward manner to identify the
set of all no-consumption metabolites in the network.

Once all problem metabolites in the network are identified,
another mixed-integer linear program (i.e., GapFill) bridges gaps
one at a time (Satish Kumar et al., 2007). Three different gap
Accessibility Reference

GAMS and MATLAB (via

COBRA toolbox)

Satish Kumar et al.

(2007)

GAMS and MATLAB (via

COBRA toolbox)

Satish Kumar et al.

(2007)

: NGGs) MATLAB (via COBRA toolbox) Reed et al. (2006)

: NGGs and GNGs) GAMS Satish Kumar et al.

(2007)

: NGGs and GNGs) N/A Henry et al. (2009)

er gene mutations) N/A Zomorrodi and

Maranas (2010)

ediction inconsistencies N/A Barua et al. (2010)

N/A Herrgard et al. (2006)

N/A Henry et al. (2007)

MATLAB (via COBRA toolbox) Schellenberger et al.

(2011a)
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Fig. 1. Different types of metabolic model pathologies, strategies to fix them and the relevant optimization algorithms. (A) Dead-end metabolites. (B) Growth prediction

inconsistencies due to single gene mutations. (C) Growth prediction inconsistencies due to multiple gene mutations. (D) Flux prediction inconsistencies.

(E) Thermodynamic infeasible loops or pathways.
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filling model modifications are considered: (i) relaxing the irre-
versibility constraint on existing reactions in the network, (ii)
adding import (or export) pathway and/or inter-compartment
transport reactions to the model, (iii) adding new reactions from
an external database such as MetaCyc (Caspi et al., 2006) or KEGG
(Kanehisa et al., 2008). Binary variables are used here to model if
a specific modification should be made to the model (Satish
Kumar et al., 2007) and integer-cuts are employed to identify
alternative solutions. This optimization problem aims to identify
the minimal number of modifications needed to fill each gap by
minimizing the sum of the binary variables as the objective
function. The resolution hypotheses generated by GapFill must
be verified using Gibbs free energy estimates of the reactions,
BLAST analysis, literature searches, etc. (Satish Kumar et al.,
2007). GapFind and GapFill algorithms have been applied to both
single-compartment models such as iJR904 model of E. coli (Reed
et al., 2003), iCM925 model of Clostridium beijerinckii (Milne et al.,
2011) and multi-compartment models such as iND750 model of
Saccharomyces cerevisiae (Duarte et al., 2004) and iRS1563 of zea
mays (Saha et al., 2011). Prototype implementations in GAMS and
MATLAB of GapFind and GapFill can be accessed at http://
maranas.che.psu.edu/software.htm and COBRA toolbox (Becker
et al., 2007; Schellenberger et al., 2011b), respectively.

4.2. Reconciliation of growth prediction inconsistencies

4.2.1. SMILEY

As noted earlier, flux balance analysis (FBA) can be used to
predict the growth (or lack thereof) for a microorganism under a
given environmental condition. These predictions can be com-
pared with available experimental growth data to test the
accuracy of the metabolic model and identify any false
predictions by the model. SMILEY is the first algorithm (Reed
et al., 2006) proposed to reconcile in silico predictions and in vivo

observations for the case when experimental data show that a
strain can grow on a specific substrate and medium, while FBA
predicts that it cannot. These mismatches usually hint at reac-
tions or functionalities that are missing in the model. Similar to
GapFill (Satish Kumar et al., 2007), SMILEY is based on a MILP to
identify the minimal number of reactions that need to be added
to the model from a universal database such as KEGG (Kanehisa
et al., 2008) to restore growth in the network. This algorithm was
applied to the iJR904 model of E. coli (Reed et al., 2003), where the
FBA predictions on a wide range of growth media with various
carbon and nitrogen sources were compared against the available
experimental growth data from Biolog (http://www.biolog.com/).
The experimental verification of the generated hypotheses led to
the functional assignment of eight ORFs with two new enzymatic
activities and four transport functions (Reed et al., 2006).
A MATLAB implementation of SMILEY can be accessed through the
COBRA toolbox (Becker et al., 2007; Schellenberger et al., 2011b).
4.2.2. GrowMatch

A typical test of the accuracy of genome-scale metabolic models
is to contrast the in silico growth phenotype of single mutant
strains with available experimental gene essentiality data (Thiele
and Palsson, 2010). This comparison can lead to two types of
inconsistencies between model and experiment: NGG, where the
model predicts that the gene deletion is lethal (No Growth), while
experiments show a viable mutant strain (Growth), and GNG
where the model predicts growth (G) while experimental observa-
tions show a lethal effect (No Growth) (see Fig. 1B). The SMILEY
algorithm described earlier aims to fix NGG inconsistencies.

http://maranas.che.psu.edu/software.htm
http://maranas.che.psu.edu/software.htm
http://www.biolog.com/
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GrowMatch is another optimization-based algorithm for suggest-
ing ways to resolve both NGG and GNG mismatches of a metabolic
model (Kumar and Maranas, 2009). It reconciles NGG and GNG
mismatches using two separate MILPs. NGG inconsistencies allude
to the reactions and capabilities that are missing in the model.
Therefore, GrowMatch employs the same three mechanisms used
in GapFill (Satish Kumar et al., 2007) (i.e., relax the irreversibility
constraints on existing reactions in the network, add import/export
pathways and/or inter-compartment transport reactions, add
external reactions from a universal database) to restore in silico

growth for the mutant network and convert each NGG to GG (i.e.,
Growth–Growth) matches one at a time.

GNG inconsistencies on the other hand arise due to biochemical
capabilities that are falsely present or are not appropriately
constrained in the metabolic model (e.g., due to the lack of
regulatory constraints). The one-by-one resolution of GNGs relies
on a bilevel optimization formulation to identify the minimal
number of reaction suppressions in the model (under the exam-
ined condition) that lowers the maximum biomass yield in the
network below a pre-specified threshold. Binary variables are used
to identify the reactions that need to be suppressed. These binary
variables act as parameters for the inner problem, where the
maximum biomass yield is identified. The objective function of
the outer-problem is the minimization of the maximum biomass
yield. Similarly to GapFill (Satish Kumar et al., 2007) and SMILEY
(Reed et al., 2006) integer cuts are used to find all alternative
solutions. The identified reaction suppressions by GrowMatch may
suggest that these reactions should not be present in the network
(e.g., due to poorly annotated genes) or they should be constrained
under the examined environmental and/or growth conditions (e.g.,
due to regulatory constraints) in order to fix the inconsistency.

The resolution hypotheses generated by GrowMatch for NGGs
and GNGs can be conditional or global (Kumar and Maranas,
2009). Global modifications are those that do not invalidate any
correct model predictions, whereas conditional modifications
resolve an inconsistency at the cost of creating additional mis-
matches. For example, resolution of a NGG may convert some
NGNGs (i.e., both model and experiment imply No Growth) to
new GNGs, or resolution of a GNG may convert some GGs (i.e.,
both model and experiment imply Growth) to new NGGs. There-
fore, GrowMatch typically rejects all conditional modifications
and keeps only global ones. It is worth mentioning that even the
global modifications are needed to be first verified manually using
the literature resources or experimental data before incorporating
into the model. We note that even though SMILEY and Grow-
Match do not deal directly with dead-ends in the network, the
generated hypotheses by these algorithms may lead to filling
some of these gaps automatically. Caution must be exercised not
to add any thermodynamically infeasible cycles to the models. A
GAMS implementation of GrowMatch can be downloaded from
http://maranas.che.psu.edu/software.htm.
4.2.3. Modified GrowMatch

A modified form of GrowMatch was proposed by Henry et al.
(Henry et al., 2009) to identify more biologically relevant mod-
ifications to reconcile in silico/in vivo growth inconsistencies. To
this end, the objective function of GrowMatch for NGGs was
changed to a weighted sum of the binary variables (instead of
simply their sum). The weights quantify a penalty associated with
adding the corresponding reaction to the model. Addition of
reactions that are not in the KEGG database, involve metabolites
with unknown structures as well as reactions for which DrG

0

cannot be estimated, or those operating in thermodynamically
unfavorable directions are more heavily penalized using these
weights. Similarly, GrowMatch for resolution of GNGs is modified
such that removal of an irreversible reaction from the network is
penalized if it is associated with at least one gene in the model
(Henry et al., 2009). Instead of relying on the concept of condi-
tional and global modifications used in the original GrowMatch
procedure, Henry et al. (2009) suggested two new optimization-
based procedures called gap filling and gap generation reconcilia-
tions to improve the performance of the entire model after
incorporating all suggested modifications. The gap filling reconci-
liation step aims to maximize the correction of NGGs, while
minimizing the number of modifications to the model as well as
minimizing the number of newly emerged GNGs. Alternatively,
the gap generation reconciliation step maximizes the correction
of GNGs with the minimum number of modifications to the
model, while minimizing the addition of new NGGs. These
procedures were applied to the reconstruction of the genome-
scale metabolic model of Bacillus subtilis (iBsu1103) based on the
SEED annotations (Overbeek et al., 2004).

4.2.4. Extended GrowMatch

The original GrowMatch procedure relies on gene essentiality
data to identify and reconcile the model/experiment mismatches.
GrowMatch was recently extended to make use of the available
data for higher order gene deletion experiments, (i.e., synthetic
lethality data) (Zomorrodi and Maranas, 2010) as they have been
suggested to provide additional layers for curation and validation of
metabolic models (Harrison et al., 2007; Suthers et al., 2009b).
Comparison of the predicted synthetic lethal predictions with the
available double gene deletion data reveals a number of additional
ways the model and experiment can disagree (see Fig. 1C). Notably,
the ‘no growth’ phenotype in this case can be due to either
essentiality (ES) or synthetic lethality (SL) of single or double gene
deletions, respectively. For example, a GSL inconsistency refers to a
mismatch where the model predicts that the simultaneous deletion
of both genes is not lethal (i.e., Growth), while the experimental
observations show that they form a synthetic lethal pair (SL).
Similarly, SLES inconsistency refers to a case where, the two genes
form a synthetic lethal (SL) in silico; however, one (or both) of the
genes was reported to be essential (ES) in vivo (Zomorrodi and
Maranas, 2010). Extended GrowMatch also targets another type of
inconsistency called auxotrophy mismatches, where, the essenti-
ality or synthetic lethality of single or double gene perturbations are
in agreement with experimental data, but in silico predictions for
supplementation rescue (i.e., auxotrophy) are inconsistent with
in vivo observations. The optimization formulations for the resolu-
tion of GNGs and NGGs were extended to reconcile these new
inconsistencies for double gene deletions. In addition, the extended
GrowMatch can directly identify gene (rather than reaction)
removals (suppressions) to resolve these inconsistencies.

Extended GrowMatch was applied to the multi-compartment
iMM904 metabolic model of yeast (Mo et al., 2009) under
minimal and YP media. Notably, 90 of the model correction
hypotheses and 30 of the regulatory constraints that were
identified by the extended GrowMatch in this study were verified
and vetted using literature and other sources. Incorporation of
these modifications into the iMM904 model (i.e., iAZ900) led to
significant improvements in the prediction of single and double
gene deletion growth phenotypes.

4.2.5. GeneForce

The extended GrowMatch procedure for the resolution of GNGs
and GSLs may lead to the identification of some missing regulatory
constraints by directly pinpointing gene suppressions in the network.
GeneForce is another algorithm designed to identify and correct
transcriptional regulatory rules incorporated into a metabolic net-
work based on growth prediction inconsistencies (Barua et al., 2010).

http://maranas.che.psu.edu/software.htm
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In contrast to (modified/extended) GrowMatch, this procedure
focuses on a specific type of NGG inconsistency, where the integrated
regulatory and metabolic model predicts no growth (NG) for a
specific growth medium (or in the presence of a specific gene
knockout), but the metabolic model predictions without any regula-
tory constraints as well as experimental data show growth (G). The
main idea for GeneForce is to minimally perturb the transcriptional
regulatory rules to restore growth in the network. Various sets of
binary variables are defined to indicate whether the conditions for
expression of a gene or activity of a transcription factor are satisfied, a
transcription factor is active, a gene is expressed, an enzyme is
present, and a reaction is active. The regulatory rule violations are
invoked by introducing a new set of binary variables called ‘surrogate
gene expression indicator’ that can differ in value from the gene
expression indicator (determined by regulatory rules) thereby allow-
ing the utilization of a non-expressed gene in the model to readjust
the flux distribution and restore growth (Barua et al., 2010). Gene-
Force was used to refine the transcriptional regulatory model of E. coli

(iMC1010v1 (Covert et al., 2004)) by analyzing a large collection of E.

coli knockout growth phenotypes. In addition, the procedure was
used to identify the genes that, if over-expressed or constitutively
expressed, can reconcile the growth inconsistencies under a certain
growth condition for the wild-type or a mutant strain. Some of the
suggested modifications were also verified experimentally. GeneForce
was also applied to examine the conservation of transcriptional
regulatory interactions between E. coli and Salmonella typhimurium

(Barua et al., 2010).

4.3. Reconciliation of flux prediction inconsistencies

4.3.1. OMNI

Another type of experimental data that can be used to test the
accuracy of metabolic models includes experimental flux measure-
ments. Herrgard et al (2006) proposed a bilevel optimization frame-
work called optimal metabolic network identification (OMNI) to
make use of the available in vivo flux measurements (e.g., for growth
rates, substrate uptake and byproduct secretion rates and intracel-
lular flux data using 13C labeling experiments) for model refinement
(see Fig. 1D). OMNI attempts to minimize the discrepancies between
the predicted fluxes using flux balance analysis (FBA) and in vivo

observed fluxes through addition of external reactions to the model
from a universal database or removal of existing reactions from the
model, similarly to SMILEY (Reed et al., 2006), GapFiIl (Satish Kumar
et al., 2007) and GrowMatch (Kumar and Maranas, 2009). However,
in contrast to GrowMatch where reaction additions and removals are
identified using two separate procedures, OMNI performs both these
modifications in a single framework. To this end, the set of reactions
is divided into two categories: fixed reactions (F) that cannot be
removed from the model and reactions that can be removed from
the model (D). Set F could be the set of reactions that were included
in the model with high confidence, while set D contains existing
reactions in the model that could be potentially removed due to
inclusion with a lower confidence (e.g., only due to sequence
similarity) as well as external reactions that can be added to the
model from a universal database such as KEGG (Kanehisa et al.,
2008) or MetaCyc (Caspi et al., 2006). OMNI was applied to evolved E.

coli mutant strains with predicted growth rates lower than in vivo

measurements in order to identify reactions that act as flux bottle-
necks in these strains.

4.4. Identification and correction of thermodynamically infeasible

pathways

4.4.1. TMFA

Pathway thermodynamics has been proven quite useful in
studying the feasibility of metabolic pathways and eliminating
infeasible internal flux cycles suggested by FBA solutions (see
Fig. 1E) (Beard et al., 2002, 2004; Qian et al., 2003). Henry et al
(2007) proposed an optimization-based procedure called
thermodynamic-based metabolic flux analysis (TMFA) to integrate
the thermodynamic data and constraint-based modeling of
genome-scale metabolic networks. To formulate TMFA, the stan-
dard Gibbs free energy of reactions should be known (i.e., mea-
sured experimentally, or estimated). All reversible reactions are
decomposed into forward and backward reactions that can only
carry a non-negative flux. TMFA is a MILP, which relies on the
definition of binary variables to determine if the flux of each
reaction is non-zero. If a reaction carries a non-zero flux, its
thermodynamic feasibility is assured by the addition of new
constraints to the standard FBA problem requiring that the Gibbs
free energy of that reaction must be negative. These constraints can
be also adjusted to take into account the uncertainty associated
with thermodynamic data. By incorporation of these constraints
into the flux balance analysis, TMFA generates flux distributions
that do not contain any thermodynamically infeasible reactions or
pathways in the model. Furthermore TMFA can provide insights on
metabolite concentrations in the network. This procedure was
applied to the entire iJR904 model of E. coli (Reed et al., 2003) to
determine thermodynamically feasible ranges for all fluxes as well
as the ranges of the Gibbs free energy change of the reactions and
activity of the metabolites (Henry et al., 2007).

4.4.2. ll-COBRA

One factor that can limit the applicability of approaches such
as TMFA is that they rely on input data for metabolite concentra-
tions and standard Gibbs free energy change of reactions (DGr

0),
which might not be available in many cases or could be inaccu-
rately estimated using methods such group contribution theory
(Mavrovouniotis, 1991). Schellenberger et al (2011a) recently
proposed an alternative approach called loopless constrained
based reconstruction and analysis (ll-COBRA) to exclude all
thermodynamic infeasible solutions in flux balance analysis
(FBA), flux variability analysis (FVA) and other similar approaches
without a need for any input data on metabolite concentrations
and Gibbs free energy change of reactions. To this end, ll-COBRA
relies on a vector of continuous variables (Gr) indicating the
driving forces for each reaction, which is analogous to DGr

of reaction in that sign(Gr)¼sign(DGr). Feasible thermodynamic
(i.e., loopless) conditions are then imposed on FBA, FVA or similar
approaches through the addition of a set of linear constraints on
Gr of each internal reaction in the model. The applicability of this
approach was shown for a number of genome-scale metabolic
networks using FBA, FVA and Monte-Carlo sampling and in some
cases the imposition of loopless condition improved the agree-
ment between model predictions and experimental observations.
ll-COBRA is accessible as part of the COBRA toolbox (Becker et al.,
2007; Schellenberger et al., 2011b).
5. Using optimization to redesign metabolic networks

The current available approaches for the redesign of metabolic
networks and metabolic engineering applications can be divided
into three major categories: computational procedures that iden-
tify (i) gene knockouts, (ii) non-native additional pathways and
(iii) a combination of knockouts, down-regulations and over-
expressions leading to overproduction of a desired chemical.
These methods span a wide array of optimization formulations
including linear (Choi et al., 2010; Mendes and Kell, 1998),
nonlinear (Kim et al., 2011; Maria et al., 2011; Patil et al., 2005),
bilevel (Burgard et al., 2003; Kim and Reed, 2010; Kim et al.,
2011; Pharkya et al., 2004; Pharkya and Maranas, 2006;
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Ranganathan and Maranas, 2010; Ranganathan et al., 2010; Yang
et al., 2011), multi-criteria (Maria et al., 2011) and evolutionary
algorithms (Patil et al., 2005) as well as cybernetic-based
approaches (Varner and Ramkrishna, 1999a, 1999b). In the
following we briefly describe the most widely used optimization
frameworks in each category as summarized in Table 3.

5.1. Identification of gene knockouts for overproduction

5.1.1. OptKnock

The challenge for overproduction is that microorganisms are
primed through natural selection to counteract any externally
imposed genetic or environmental perturbations by redirecting
metabolic flux to restore cellular growth (Ibarra et al., 2002).
Therefore, any genetic interventions must be designed in a way
that is consistent with any anticipated host response towards
biomass formation maximization. One of the first efforts to
address this challenge was the OptKnock framework introduced
by Burgard et al. (2003). OptKnock was designed to suggest gene
deletion strategies that reshape the connectivity of the metabolic
network in such a manner that the production of a desired
chemical becomes an obligatory byproduct of cellular growth.
To this end, OptKnock employs a nested (i.e., bilevel) optimization
framework that involves two competing objective functions. The
inner problem is designed to adjust the fluxes maximizing the
biological objective (i.e., growth or minimization of metabolic
adjustments). The outer problem maximizes the bioengineering
objective (i.e., chemical overproduction) by selecting reaction
candidates for deletions. Importantly, the gene deletions sug-
gested by OptKnock not only reduce the drain of carbon towards
competing byproducts but also ensure the availability of key
biomass precursors, thus coupling the bioengineering and biolo-
gical objectives with important strain stability implications. In

silico gene deletions predicted by OptKnock for overproducing
succinate, lactate, 1,3-propanediol and amino acids (Pharkya
et al., 2003) have been carried out and verified by multiple
research groups (Fong et al., 2005; Yim et al., 2011). A GAMS
implementation of OptKnock can be downloaded from http://
maranas.che.psu.edu/software.htm and a MATLAB implementa-
tion is accessible as part of the COBRA toolbox (Becker et al.,
2007; Schellenberger et al., 2011b).

5.1.2. RobustKnock

A potential limitation associated with the OptKnock procedure
arises when the identified mutant involves a range of possible
Table 3
Optimization algorithms to redesign metabolic networks.

Name Type of optimization

problem

Type of intervention

OptKnock Bilevel, MILP Knockouts

RobustKnock Multi-level, MILP Knockouts

OptGene Evolutionary Knockouts

Objective

tilting

Bilevel, MILP Knockouts

OptStrain Bilevel, MILP Addition of non-native reactions/pathwa

SimOptStrain Bilevel, MILP Knockouts and addition of non-native re

BiMOMA Bilevel, MINLP Knockouts

OptReg Bilevel, MILP Knockouts, upregulations and downregu

GDLS Heuristic Knockouts, upregulations and downregu

FSEOF LP Upregulations and downregulations

OptORF Bilevel, MILP Knockouts and overexpressions (of both

genes)

OptForce Bilevel, MILP Knockouts, upregulations and downregu

EMILiO Bilevel, MILP Knockouts, upregulations and downregu
product formation yields while the biomass formation is max-
imized. Because the inner linear optimization problem is solved
implicitly by accumulating primal and dual constraints and
setting the two objective functions equal to one another, Opt-
Knock selects the most optimistic (i.e., highest) value for the
product formation. This leads to a mutant design with the product
formation possibly uncoupled from growth, which may be unde-
sirable. To address this challenge, Tepper and Shlomi (2009)
introduced a modified version of OptKnock, termed as Robust-
Knock, which optimizes the worst-case of the product formation
while biomass production is maximized. This leads to a three-
level optimization problem. The outer max–min problems aim to
identify gene knockouts that maximize the minimum (i.e., guar-
anteed) production rate of the desired biochemical, whereas the
inner problem is similar to OptKnock and maximizes the cellular
objective given a set of reaction knockouts. RobustKnock was
applied to the iJR904 metabolic model of E. coli (Reed et al., 2003)
to suggest optimal knockout strategies for overproduction of 52
different chemicals, where the predicted double and triple knock-
outs for hydrogen, acetate, formate and fumarate were different
from those suggested by OptKnock. A MATLAB implementation
of RobustKnock is accessible at http://www.cs.technion.ac.il/
~tomersh/methods.html.

5.1.3. OptGene

OptGene provides an alternative to mathematical optimization
by implementing a genetic algorithm inspired procedure for
exploring mutation combinations (Patil et al., 2005). Reliance on
an evolutionary based procedure allows the identification of near
optimal solutions of nonlinear optimization problems in generally
shorter times. OptGene can also use minimization of metabolic
adjustment (MOMA) (Segre et al., 2002) or regulatory on/off
minimization (ROOM) (Shlomi et al., 2005) to compute the fitness
of each design and is able to generate a family of alternative
solutions. The applicability of OptGene was demonstrated for the
overproduction of glycerol, succinate and vanillin in S. cerevisiae.
The algorithm can be accessed as part of the open source OptFlux
platform (http://www.optflux.org/) (Rocha et al., 2010).

5.1.4. Tilting of the objective function

Feist et al., (2010) introduced an alternative to RobustKnock
using the concept of ‘‘tilting the objective function’’ to simulate
the worst-case scenario for product formation in OptKnock and
OptGene. This is achieved by adding in the inner objective of
maximizing biomass the negative of the desired product yield
Accessibility Reference

GAMS Burgard et al. (2003)

MATLAB Tepper and Shlomi

(2009)

Online (as part of OptFlux) Patil et al. (2005)

MATLAB (via COBRA

toolbox)

Feist et al. (2010)

ys N/A Pharkya et al. (2004)

actions/pathways N/A Kim et al. (2011)

N/A Kim et al. (2011)

lations N/A Pharkya and Maranas

(2006)

lations N/A Lun et al. (2009)

N/A Choi et al. (2010)

metabolic and regulatory N/A Kim and Reed (2010)

lations GAMS Ranganathan et al. (2010)

lations N/A Yang et al. (2011)

http://maranas.che.psu.edu/software.htm
http://maranas.che.psu.edu/software.htm
http://www.cs.technion.ac.il/~tomersh/methods.html
http://www.cs.technion.ac.il/~tomersh/methods.html
http://www.optflux.org/
http://maranas.che.psu.edu/software.htm
http://www.cs.technion.ac.il/~tomersh/methods.html
http://www.optflux.org/
http://opencobra.sourceforge.net
http://opencobra.sourceforge.net
http://maranas.che.psu.edu/software.htm
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multiplied by a very small weight. This indirectly ensures that the
inner problem selects the worst-case scenario for product yield as
the solution. This method is easier to implement and more
computationally tractable compared to RobustKnock (Tepper
and Shlomi, 2009).
5.2. Enhancing microbial hosts with non-native functionalities

5.2.1. OptStrain

Databases such as KEGG (Kanehisa, 2002), MetaCyc (Caspi et al.,
2006) and BRENDA (Scheer et al., 2011) offer a myriad of choices for
pathways that can be added to the metabolic network of a selected
microbial host; however, the central question is how to identify the
best candidates to test experimentally for gene/reaction additions.
One of the first procedures that addressed this challenge was the
OptStrain framework (Pharkya et al., 2004) that systematically
curated a universal bioreaction database (comprising of �4000
reactions). Subsequently a bilevel optimization formulation is
employed to identify the minimal number of non-native pathways
that maximize the product yield. The OptStrain procedure identi-
fied gene knockouts in addition to knock-ins that further boosted
the yields. The algorithm was demonstrated for the overproduction
of hydrogen and vanillin from E. coli and clostridia species. An
important pre-processing step for OptStrain is the curation of the
universal database of biochemical pathways. In order to consider as
many as possible reactions from the ever-growing compilations of
biotransformations within a single standardized resource the
MetRxn database has been assembled (Kumar et al., 2012). This
database is freely accessible as a web resource at http://maranas.
che.psu.edu/metrxn/metrxn.php.
5.2.2. SimOptStrain and BiMOMA

In a more recent effort, Kim et al. (2011) proposed two bilevel
computational strain design approaches based on mixed-integer
linear programming called SimOptStrain and BiMOMA. The for-
mer aims to identify simultaneous gene deletions and non-native
reaction additions, whereas the latter uses minimization of
metabolic adjustment as the cellular objective (instead of max-
imization of biomass) in the inner problem to identify gene
knockouts leading to overproduction of a desired biochemical.
These procedures were used to identify new metabolic engineer-
ing strategies for overproduction of succinate, glycerol, malate,
serine, pyruvate and glutamate, which could not be captured
previously by using sequential search and genetic algorithm
techniques (Kim et al., 2011).
5.3. Identification of multiple types of genetic interventions

5.3.1. OptReg

OptReg was one of the first frameworks introduced to identify
the reactions elimination, up-regulation and down-regulations
that need to be imposed in order to overproduce a biochemical of
interest (Pharkya and Maranas, 2006). Conceptually, flux modula-
tions were modeled as upward or downward departures from
steady-state flux values that result in an increase in the yield for
the desired product. Similarly to OptKnock and OptStrain, OptReg
relies on the solution of a bilevel optimization problem where the
outer objective function is to maximize the synthesis of the
desired chemical, however, the objective function of the inner
problem maximizes the cellular objective (e.g., biomass forma-
tion) while also minimizing the network trafficking (by adding
the sum of all fluxes in the objective function multiplied by the
negative of a small scalar e). Three sets of binary variables are
defined for each reaction indicating if that reaction should be
knocked out, up-regulated or down-regulated. OptReg was
demonstrated by overproduction of ethanol in E. coli.

5.3.2. GDLS

The genetic design through local search (GDLS) framework
(Lun et al., 2009) was introduced to provide a way of evaluating
flux modulations from the perspective of fitness of recombinant
strains. GDLS relies on local searches with multiple search paths
to search for combinations of genetic interventions.

5.3.3. FSEOF

Flux scanning based on enforced objective flux (FSEOF) is
another optimization-based procedure to identify the candidate
flux up/down-regulations to achieve a desired product yield (Choi
et al., 2010). A constraint representing the product formation is
added to the regular biomass maximization problem. The flux
through the reaction producing the desired product is then
increased (enforced) gradually from its initial value (in the wild-
type) to a value close (e.g., 90%) to maximum theoretical yield.
The calculated values of internal fluxes are ‘‘scanned’’ under the
enforced production formation constraints to pinpoint fluxes that
increase or decrease upon enforcing the product formation. These
fluxes are primary targets for up- and down-regulations, respec-
tively. This procedure was applied to overproduction of lycopene
in E. coli.

5.3.4. OptORF

OptORF is a bilevel optimization program that identifies
optimal gene deletions and overexpressions to maximize the
production of a desired compound (Kim and Reed, 2010). The
objective functions of the inner and outer problem are similar to
OptKnock; however, in contrast to the previous approaches that
identify reaction deletions, OptORF has been designed to directly
pinpoint optimal metabolic and regulatory gene deletions as well
as metabolic gene overexpressions that couple the biomass
production and product formation. Similarly to GeneForce, differ-
ent sets of binary variables, namely gene knockout and over-
expression indicators as well as surrogate gene expression
indictor, are defined to impose to effect of each type of modifica-
tion. The applicability of OptORF was demonstrated for the
overproduction of ethanol and higher alcohols in E. coli.

5.3.5. OptForce

The OptForce procedure (Ranganathan et al., 2010) first char-
acterizes the wild-type strain (or an initial strain) based on the
experimentally obtained fluxes either in the form of ranges or
exact values. For a pre-specified yield of a desired product,
OptForce identifies a set of changes that must happen in the
network by contrasting the flux ranges observed in the wild-type
with those in the overproducing phenotype. Subsequently, from
among these changes, OptForce identifies the minimum set of
engineering interventions (knockouts/ups/downs) that must be
directly imparted to achieve the desired yield. Similar to Robust-
Knock, the OptForce procedure simulates a worst-case scenario by
solving a min–max optimization problem to identify manipula-
tions that guarantee a minimum production yield for the com-
pound of interest. The use of experimental data to characterize
the original strain along with the solution of a worst-case scenario
optimization problem distinguishes OptForce from earlier meth-
ods (such as OptReg). Experimental implementation of the meta-
bolic interventions identified by OptForce led to the highest
naringenin producing strain of E. coli in a laboratory scale
(Xu et al., 2011) as well as increased production of fatty acids in
E. coli (Ranganathan et al., in press).

http://maranas.che.psu.edu/metrxn/metrxn.php
http://maranas.che.psu.edu/metrxn/metrxn.php
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5.3.6. EMILiO

Enhancing metabolism with iterative linear optimization
(EMILiO) is a strain design algorithm based on a bilevel optimiza-
tion formulation, which aims to identify optimal metabolic
engineering strategies coupling growth and biochemical produc-
tion (Yang et al., 2011). The inner and outer problem objectives
are similar to those in OptKnock with the only difference being
that the objective function of the inner problem also contains a
small weighted minimization of the product formation rate (i.e.,
maximize vbiomass � evproduct, where e is a small number) to avoid
‘‘optimistic’’ solutions. EMILiO is composed of three main stages
to speed up solving the bilevel optimization problem: first, an
iterative linear program is formulated to identify the set of all
active constraints (i.e., variable flux bounds). Second, a pruning
method based on a recursive linear programming is used to
identify a subset of active constraints contributing to a pre-
specified fraction of the maximum theoretical yield. Finally, a
mixed-integer linear program (MILP) is solved to further prune
the resulting subset and arrive at a minimal set of reaction
modifications (knockouts/ups/downs) satisfying a target yield
for the product of interest (Yang et al., 2011). EMILiO was used
to suggest numerous strain design strategies for overproduction
of succinate, glutamate and L-serine in E. coli.
6. Conclusions

In this review, we highlighted a wide range of mathematical
optimization tools to address the multifaceted nature of meta-
bolic engineering tasks. The majority of these approaches are
based upon mixed-integer linear programming (MILP) that
employ integer variables to capture the discrete nature of deci-
sion making required to analyze, curate and redesign metabolic
networks. In addition, bilevel optimization algorithms, which
were originally introduced into the field of metabolic network
analysis and engineering by Burgard et al. (2003), have offered a
great promise to address a wide range of challenges involving
conflicting or competing objective functions. More recently, the
scope of this nested optimization structure was extended to
multi-species microbial systems by proposing a multi-level and
multi-objective optimization framework, called OptCom, for the
flux balance analysis of microbial communities and the computa-
tional assessment of the trade-offs between species- and
community-level fitness driving forces (Zomorrodi and Maranas,
2012). In addition to linear programming, nonlinear optimization
has been also proven useful in a number of metabolic engineering
applications such as metabolic flux analysis (MFA) and kinetic
modeling of metabolic networks (Mahadevan et al., 2002;
Nikolaev, 2010; Pozo et al., 2011a, b; Vital-Lopez et al., 2006). A
growing number of successful experimental studies guided by
predictions of these optimization-based tools have started to
emerge (Barua et al., 2010; Fong et al., 2005; Ranganathan et al.,
in press; Reed et al., 2006; Xu et al., 2011; Yim et al., 2011)
thereby reinforcing the promise of mathematical optimization as
a design guiding tool in metabolic engineering.

In the future, optimization challenges are expected to increase
as researchers are generating metabolic (and biochemical) models
of increased size and complexity to capture spatial and temporal
changes or to create whole cell models (Karr et al., 2012). The
pace of generation of metabolic models is facilitated by resources
such as the Model Seed (Henry et al., 2010), PathwayTools (Karp
et al., 2010), MetRxn (Kumar et al., 2012) and MicrobesFlux (Feng
et al., 2012). At the same time, engineering intervention strategies
are expanding beyond coding regions of the genome to include
the rational redesign of transcription and ribosome binding sites,
elimination of allosteric regulation, codon optimization, co-option
of metabolite channeling, etc. (Dong et al., 1995; Makrides, 1996;
Salis et al., 2009; Santos-Aberturas et al., 2011; Tao et al., 2006;
Wang et al., 2012). All these new investigations provide rich
modeling descriptions to optimize using an ever expanding range
of optimization algorithms and (re)formulation techniques.
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