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Abstract

The scope and breadth of genome-scale metabolic reconstructions have continued to expand over the last decade. Herein,
we introduce a genome-scale model for a plant with direct applications to food and bioenergy production (i.e., maize).
Maize annotation is still underway, which introduces significant challenges in the association of metabolic functions to
genes. The developed model is designed to meet rigorous standards on gene-protein-reaction (GPR) associations,
elementally and charged balanced reactions and a biomass reaction abstracting the relative contribution of all biomass
constituents. The metabolic network contains 1,563 genes and 1,825 metabolites involved in 1,985 reactions from primary
and secondary maize metabolism. For approximately 42% of the reactions direct literature evidence for the participation of
the reaction in maize was found. As many as 445 reactions and 369 metabolites are unique to the maize model compared to
the AraGEM model for A. thaliana. 674 metabolites and 893 reactions are present in Zea mays iRS1563 that are not
accounted for in maize C4GEM. All reactions are elementally and charged balanced and localized into six different
compartments (i.e., cytoplasm, mitochondrion, plastid, peroxisome, vacuole and extracellular). GPR associations are also
established based on the functional annotation information and homology prediction accounting for monofunctional,
multifunctional and multimeric proteins, isozymes and protein complexes. We describe results from performing flux balance
analysis under different physiological conditions, (i.e., photosynthesis, photorespiration and respiration) of a C4 plant and
also explore model predictions against experimental observations for two naturally occurring mutants (i.e., bm1 and bm3).
The developed model corresponds to the largest and more complete to-date effort at cataloguing metabolism for a plant
species.
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Introduction

Zea mays, commonly known as maize or corn, is a plant

organism of paramount importance as a food crop, biofuel

production platform and a model for studying plant genetics [1].

Maize accounts for 31% of the world production of cereals

occupying almost one-fifth of the worldwide land dedicated for

cereal production [2]. Maize cultivation led to 12 billion bushels of

grain in the USA alone in 2008 worth $47 billion [3]. Maize is the

second largest crop, after soybean, used for biotech applications

[2]. In addition to its importance as a food crop, 3.4 billion gallons

of ethanol was produced from maize in 2004 [3]. Maize derived

ethanol accounts for 99% of all biofuels produced in the United

States [3]. However, currently nearly all of this bioethanol is

produced from corn seed [4]. Ongoing efforts are focused on

developing and commercializing technologies that will allow for

the efficient utilization of plant fiber or cellulosic materials (e.g.

maize stover and cereal straws) for biofuel production. Maize is the

most studied species among all grasses with respect to cell wall

lignification and digestibility, which are critical for the efficient

production of cellulosic biofuels [5]. A thorough evaluation of the

metabolic capabilities of maize would be an important resource to

address challenges associated with its dual role as a food (e.g.,

starch storage) and biofuel crop (e.g., cell wall deconstruction).

This decade we witnessed significant advancements towards

mapping plant genes to metabolic functions culminating with the

complete genome sequencing and partial annotation of a number

of plant species, namely, Arabidopsis thaliana [6], Oryza Sativa [7,8],

Sorghum bicolor [9], Zea mays [10] and Theobroma cacao [11].

Nevertheless, attempts to engineer plant metabolism for desired

overproductions have been met with only limited success [12].

Genetic modifications seldom bring about the expected/desired

effect in plant metabolism primarily due to the built-in metabolic

redundancy circumventing the imposed genetic changes [13,14].

This necessitates the development of genome-wide comprehensive

metabolic reconstructions capable of taking account of the

complete inventory of metabolic transformations of a given plant

organism.

Genome-scale metabolic reconstructions are available for an

increasing number of organisms [15,16]. At least 40 bacterial, 2

archaeal and 15 eukaryotic reconstructions are available to-date

[12,15,17,18] while many others are under development. Recently

Poolman et al (2009) and Dal’Molin et al (2010) independently

constructed the first two genome-scale metabolic reconstructions

for a plant organism (i.e., Arabidopsis thaliana). The model by

Dal’Molin et al identifies the set of essential reactions, accounts for

the classical photorespiratory cycle and highlights the significant

differences between photosynthetic and non-photosynthetic me-
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tabolism. The model by Poolman et al includes ATP demand

constraints for biomass production and maintenance and suggests

strategies for the construction of metabolic modules as a

consequence of variation in ATP requirement. Both models make

a significant step forward towards assessing the metabolic

capabilities of plants establishing production routes for key

biomass precursors and major pathways of Arabidopsis primary

metabolism. In addition, two recent efforts involved the recon-

struction of plant models with an emphasis on specific physiolog-

ical conditions or tissue types [19,20]. Model C4GEM [20]

focused on C4 plants such as maize, sugarcane and sorghum and

investigated flux distributions in mesophyll and bundle sheath cells

during C4 photosynthesis. Grafahrend-Belau et al developed a

metabolic network of only primary metabolism in barley seeds and

studied grain yield and metabolic fluxes under a variety of oxygen

availability scenarios and genetic manipulations [19]. Pilalis et al.

reconstructed a multi-compartmental model of the central

metabolism of Brassica napus (Rapeseed) and simulated seed growth

during the stage of oil accumulation and subsequently studied

network properties of seed metabolism via Flux Balance Analysis,

Principal Component Analysis and reaction deletion studies [21].

In this paper, we describe the construction of a genome-scale in

silico model of maize metabolism (i.e., Zea mays iRS1563). This is,

to the best of our knowledge, the first attempt of globally

characterizing the metabolic capabilities (both primary and

secondary metabolism) using a compartmentalized photosynthetic

model of an important crop and energy plant species. The

development of a genome-scale model for maize is a significant

challenge due to its genome size which is 14 times larger [10] than

that of Arabidopsis thaliana (157 million base pairs) [22]. The

constructed model contains 1,563 genes and 1,825 metabolites

participating in 1,985 reactions from both primary and secondary

metabolism of maize. For 42% of the reaction entries direct

literature evidence in addition to homology criteria for their

inclusion to the model was identified. We found that as many as

676 reactions and 441 metabolites are unique to Zea mays iRS1563

in comparison to the AraGEM model by Dal’Molin et al. We chose

the AraGEM model as a basis of comparisons as at the onset of

this study it was the most comprehensive genome-scale compart-

mentalized model of a plant species capable of recapitulating basic

plant physiological states. In order to deduce the genuine

differences between maize and Arabidopsis irrespective of

annotation chronology we also reconstructed an up-to-date model

of Arabidopsis, A. thaliana iRS1597. A. thaliana iRS1597 contains

1597 genes, 1798 reactions and 1820 metabolites. In comparison

to A. thaliana iRS1597, Zea mays iRS1563 has 445 new reactions

and 369 new metabolites. Notably, 893 reactions and 674

metabolites are included in Zea mays iRS1563 that are absent

from the maize C4GEM model. All reactions present in Zea mays

iRS1563 are elementally and charged balanced and localized into

six compartments including cytoplasm, mitochondrion, plastid,

peroxisome, vacuole and extracellular space. Provisions for

accounting that photosynthesis in maize (i.e., a C4 plant) occurs

in two separate cell types (i.e., mesophyll cell and bundle sheath

cell) are included in the model. GPR associations are delineated

from the available functional annotation information and

homology prediction accounting for monofunctional, multifunc-

tional and multimeric proteins, isozymes and protein complexes. A

biomass equation is established that quantifies the relative

abundance of different constituents of dry plant cell biomass.

Biomass production under three different physiological states (i.e.,

photosynthesis, photorespiration and respiration) is demonstrated

and the model is tested against experimental data for two naturally

occurring maize mutants (i.e., bm1 and bm3).

Results

The metabolic model reconstruction process follows three major

steps: (1) Reconstruction of draft model via automated homology

searches for the identification of native biotransformations; (2)

Generation of a computations-ready model after defining biomass

equation and system boundary and establishing GPR; (3) Model

refinement via GapFind and GapFill [23] to unblock biomass

precursors as well as reconnect unreachable metabolites. Upon

construction of the model, key features such as physiological

constraints, network connectivity, light reactions, carbon fixation

and secondary metabolism and uniqueness compared to AraGEM

and maize C4GEM are described. In addition, model predictions

are contrasted against experimental observations.

Construction of Auto and Draft models
The B73 maize genome [10] has 32,540 genes and 53,764

transcripts in the Filtered Gene Set (FGS). Out of 32,540 genes,

30,599 (93%) are evidence-based [24], while the remaining 2,141

(7%) are predicted by the Fgenesh program [25]. 13,726 genes

(42% of total) do not have any functional annotation information

or are identified as proteins with no or hypothetical/putative

functions. Of the remainder, 1,361 (7%) genes encode proteins

that do not participate in specific metabolic transformations but

rather are involved in transcription, signal transduction, DNA

repair, DNA binding, DNA/RNA polymerization, protein folding

and adhesion. Because the B73 maize genome is not completely

annotated we first established Gene-Protein-Reaction (GPR)

mappings for the AraGEM genome-scale model of A. thaliana

[12] to be used as a proxy. Using these GPRs as a point of

comparison we next identified Arabidopsis gene orthologs in

maize and transferred the corresponding GPRs via the AUTO-

GRAPH method [26]. This step was followed by annotation of the

remainder maize genes by bidirectional protein BLAST (i.e.,

BLASTp) searches against the NCBI non-redundant (nr) database.

Out of a total of 1,567 metabolic or transport reactions of

AraGEM, GPRs were established for 1,254 reactions via 1,467

genes and 653 enzymes by making use of information from several

online databases such as AraCyc, KEGG, Uniprot and Brenda

(see File S1). Bidirectional BLASTp searches for each one of the

1,467 genes included in AraGEM model were carried out against

the B73 maize genome using a stringent cutoff value of 10230.

This fully automated process generated an initial model, termed as

‘Automodel’, containing 946 genes and 1,365 unique metabolites

participating in 1,186 reactions (see Table 1 and File S2)

exclusively derived from AraGEM. Out of 1,186 reactions, 32

are inter-organelle transport reactions for which homologs were

found in maize.

Genes not included in the automodel were scrutinized further

by comparing them against the NCBI non-redundant protein

database using the same BLASTp cut-off. This increased the

model size to 1,485 genes and 1,703 unique metabolites involved

in 1,667 reactions by pulling functionalities absent in AraGEM.

This is referred to as the ‘Draft model’ (see Table 1 and Files S2 and

S3). As described in Table 2, orthologous genes were found in

Oryza Sativa (Rice), Arabidopsis thaliana (Arabidopsis), Sorghum bicolor

(Sorghum) and less frequently in other plant species such as wheat,

tobacco, spinach, soya bean, etc. (See File S3). Notably, 802

orthologous genes from A. thaliana were added in the model Zea

mays iRS1563 that were absent from AraGEM primarily due to

recent annotation updates. Reactions associated with these genes

were subsequently extracted from on-line databases such as

KEGG and BRENDA. Table 2 shows the total number of

reactions as well as the number of new reactions included in the

Zea mays iRS1563, a Maize Metabolic Model
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draft model. Seven reactions having KEGG reaction IDs R00379,

R00381, R06023, R06049, R06082, R06138 and R06209 were

excluded since they involve generic groups and were not

elementally fully defined. Figure 1 shows the distribution of the

newly added reactions in the draft model based on their

orthologous gene of origin.

Generation of computations-ready model
A computations-ready model requires a fully characterized

biomass equation, assignment of metabolites to reactions,

establishment of GPR associations, localization of reactions in

compartment(s), and inclusion of intra- and extracellular transport

reactions [27].

(i) Establishing a fully characterized biomass

equation. A biomass equation that drains all necessary

precursors present in maize was derived (see File S4 and

Table 3). We used the biomass composition of young and

vegetative maize plants as measured by Penningd et al. and

expressed on a dry weight basis [28]. The amino acid and lignin

composition were derived based on the data from [29,30]. The

composition of hemicellulose was approximated using data for

Orchard Grass [31], another monocot grass species, as no

corresponding information was found for maize. Based on these

compositions we also defined aggregate reactions such as ‘Amino

acid synthesis’, ‘Protein synthesis’, ‘Carbohydrate synthesis’,

‘Hemicellulose synthesis’, ‘Lignin synthesis’, ‘Lipid synthesis’,

Table 1. Model size after each reconstruction step.

Auto model Draft model Functional model Final model

Included genes 946 1,485 1,552 1,563

Proteins 472 714 774 876

Single functional proteins 178 322 381 463

Multifunctional proteins 92 150 153 170

Protein complexes 0 4 4 4

Isozymes 21 36 36 36

Multimeric proteins 87 140 148 148

Othersa 94 62 62 55

Reactions 1,186 1,667 1,821 1,985

Metabolic reactions 1,154 1,635 1,739 1,900

Transport reactions 32 32 67 70

GPR associations

Gene associated (metabolic/transport) 1,100 1,581 1,635 1,668

Nonenzyme associated (metabolic/transport) 86 86 86 86

Spontaneousb 0 0 7 41

Nongene associated (metabolic/transport) 0 0 78 175

Exchange reactions 0 0 15 15

Metabolitesc 1,365 1,703 1,769 1,825

Cytoplasmic 1,309 1,643 1,689 1,744

Plastidic 91 102 114 115

Peroxisomic 67 69 92 93

Mitochondrial 60 82 86 86

Vaccuolic 5 5 5 5

Extracellular 0 0 15 15

aOthers include proteins involve in complex relationships, e.g. multiple proteins act as protein complex which is one of the isozymes for any specific reaction.
bSpontaneous reactions are those without any enzyme as well as gene association.
cUnique metabolites irrespective of their compartmental location.
doi:10.1371/journal.pone.0021784.t001

Table 2. Maize gene annotation via bidirectional BLASTp homology searches against NCBI non-redundant protein database.

Species Number of orthologs
Number of associated
reactions

Number of newly added
reactions in draft model

Oryza Sativa (Rice) 4,109 312 145

Other plant species 833 214 185

Arabidopsis Thaliana (Arabidopsis) 802 258 193

Sorghum Bicolor (sorghum) 47 20 11

doi:10.1371/journal.pone.0021784.t002

Zea mays iRS1563, a Maize Metabolic Model
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‘Material synthesis’, ‘Nitrogenous compound synthesis’, ‘Nucleic

acid synthesis’ and ‘Organic acid synthesis’ to produce necessary

biomass precursors (i.e., amino acids, protein, carbohydrates,

hemicellulose, lignin, lipids, materials, nitrogenous compounds,

nucleic acids and organic acids respectively). The biomass

equation also contains a non-growth associated ATP

maintenance as in the latest Arabidopsis model AraGEM [12].

(ii) Assignments of genes, reactions, metabolites and

compartments. All metabolic and inter-organelle transport

reactions in the draft model have full gene associations. During

this step all reactions were elementally balanced and metabolites

were assigned appropriate protonation states corresponding to a

physiological pH of 7.2. We included an additional 86 reactions to

the model without enzyme association information based on direct

literature evidence [12]. For example, reactions with KEGG IDs

R08053, R08054 and R08055 involved in chlorophyll metabolism

are included in the model. Reaction localization information for

maize can in some cases be found in database PPDB (a plant

proteome database of maize and Arabidopsis) [32]. Because only

limited reaction localization information exists for maize, we

adopted the compartment or organelle reaction location of the

corresponding orthologous gene/enzyme in Arabidopsis using the

Arabidopsis Subcellular Database, SUBA [33] and also PPDB

[32]. As in AraGEM, reactions for which no such information is

available we assumed that they are present only in the cytoplasm.

(iii) Identification of system boundary. The entire

reaction network (i.e., system boundary) was distributed across

five different intracellular organelles enveloped by the cytoplasmic

membrane. Exchange reactions were added in the model to ensure

that gaseous metabolites (i.e., carbon dioxide and oxygen),

inorganic nutrient metabolites (i.e., nitrate, ammonia, hydrogen

sulfide, sulfate, phosphate, potassium and chloride), sugar

metabolites (i.e., glucose, fructose, maltose and sucrose), water

and photons could enter and leave the system whenever necessary

depending on the physiological state. As shown in Table 4,

constraints on these exchange reactions as well as reactions

involved with enzyme RuBisCO (Ribulose-1, 5-bisphosphate

carboxylase oxygenase) were established to define three different

physiological states (i.e., photosynthesis, photorespiration and

respiration) by allowing the selective uptake/release of certain

metabolites. Even though photorespiration is limited in C4 plants

(i.e., maize, sorghum, etc.), literature evidence [34,35,36] alludes

that it is still present. Therefore, we made sure that the model is

capable of simulating this condition.

The stoichiometric matrix of the draft model (see Table 1) contains

1,901 rows (i.e., total metabolites after taking account of their

compartmental appearance) and 1,682 columns (i.e., metabolic

reactions, inter-organelle transport reactions and exchange reactions).

970 reactions have one-to-one GPR associations whereas 712 map to

more than one gene. 532 reactions map to both isozymes and protein

complexes while 4 of them map to only protein complexes, 36 to only

isozymes, and 140 to only multimeric proteins.

Table 3. Biomass component list in iRS1563.

Major components Protein Carbohydrates Lipids Ions

Nitrogenous compounds L-alanine ribose glyceroltripalmitate potassium

Carbohydrates L-arginine glucose gleceroltristearate chloride

Lipids L-aspartic acid fructose glyceroltrioleate

Lignin L-cystine mannose glyceroltrilinolate RNA

Organic acids L-glutamic acid galactose glyceroltrilinoleate ATP

Ions L-glycine sucrose GTP

L-histidine cellulose Lignin CTP

L-isoleucine hemicellulose 4-coumaryl alcohol UTP

Nitrogenous compounds L-leucine pectin coniferyl alcohol

amino acids L-lysine sinapyl alcohol DNA

protein L-methionine dATP

nucleic acids L-phenylalanine Hemicellulose Organic acids dGTP

L-proline arabinose oxalic acid dCTP

L-serine xylose glyoxalic acid dUTP

L-threonine mannose Oxalo-acetic acid

L-tryptophan galactose Malic acid

L-tyrosine glucose Citric acid

L-valine uronic acids aconitic acid

doi:10.1371/journal.pone.0021784.t003

Figure 1. Species origin of newly added reactions in the Draft
model.
doi:10.1371/journal.pone.0021784.g001

Zea mays iRS1563, a Maize Metabolic Model
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Network connectivity analysis and restoration
The draft metabolic model inherently contained gaps, unreach-

able metabolites, omitted transport mechanisms and missing

biomass components. We used the procedures termed GapFind

and GapFill [37] to correct for these pathologies. We first

concentrated on resolving problems with the participation of

components in the biomass equation followed by network

connectivity.

We found that 723 out of the 1,683 reactions in the draft model

could not carry any flux (i.e., blocked reactions) under any of the

relevant three physiological states (e.g. photosynthesis (PS),

photorespiration (PR) and respiration (R)). As a result, these

blocked reactions prevented the formation of some of biomass

precursors. GapFind [37] revealed that only 21 out of 64 biomass

components could be synthesized using the draft model. GapFill

[37] was applied for bridging the gaps through the addition of

metabolic and inter-organelle transport reactions and the relaxing

of irreversible of existing reactions in the model. GapFill suggested

the addition of 94 metabolic and 35 inter-organelle transport

reactions in the model to unblock the production of all 64 biomass

components. These putative additions to the model were tested by

performing an additional round of BLASTp searches for the

corresponding genes against the maize genome. We found that 54

(out of 93) metabolic reactions could be assigned to maize gene(s) if

the expectation value cut-off for BLASTp was lowered to 1025. In

light of the critical need of restoring biomass formation the less

stringent cut-off for inclusion was accepted for these genes.

Addition of these reactions ensured the production of biomass

under all relevant physiological states validating the use of the term

‘Functional’ for the updated model (see Table 1).

Upon ensuring biomass formation GapFind was also applied to

assess network connectivity and 715 blocked metabolites were

found in the functional model. By applying GapFill connectivity of

322 (45%) blocked metabolites was restored through the addition

of 159 metabolic and 3 inter-organelle transport reactions. Table 5

shows the distribution of blocked metabolites into four intracellular

organelles before and after applying GapFill. BLASTp searches

allowed us to assign 31 (20% of GapFill suggestions) metabolic

reactions with specific maize genes (File S2). Biological evidence of

the occurrence of such additional reactions in maize or other plant

species was sought whenever possible. For example, as shown in

Figure 2 phenylacetaldehyde appears to be a ‘‘no-consumption’’

[37] metabolite in the functional model as no reaction can

consume it. Using GapFill we found a homolog in maize (i.e.,

BLASTp score of 10224) and also literature evidence [38] that

Arabidopsis thaliana has a aldehyde dehydrogenase activity that

catalyzes the conversion of phenylacetaldehyde to phenylacetic

acid. Hence, by adding this chemical transformation to Zea mays

iRS1563 a consumption pathway for phenylacetaldehyde is

established. After adding these reactions to the functional model

and following charge and elemental balancing and GPR

association checking the ‘Final’ Zea mays iRS1563 model (see

Table 1) is derived.

Zea mays iRS1563 model
The Zea mays iRS1563 metabolic reconstruction contains 1,825

unique metabolites and 1,985 reactions associated with 1,563

genes and 876 proteins. Of these reactions 1,898 are metabolic

reactions, 70 are inter-organelle transport reactions and 15 are

exchange reactions between intra- and extracellular environments.

GPR associations are established for all entries (see Table 1).

Notably, we identified that the fraction of multifunctional proteins

(19% of the total number of proteins) in Zea mays iRS1563 is

similar to the ratio found in E. coli [39]. Zea mays iRS1563 accounts

for the metabolic functions for all three physiological states.

Photosynthetic as well as photorespiration metabolism was

modelled by including light mediated ATP and NADPH

production via separate charged balanced reactions in the electron

transfer system of the thylakoid membrane [40]. Furthermore, the

ratio of fluxes for the carboxylation and oxidation reactions

associated with enzyme RuBisCO was kept at 1:0 thus ensuring

complete carbon fixation during photosynthesis. This ratio was

shifted to 3:1 during photorespiration to model simultaneous

carbon fixation and oxidation [41]. Because sucrose is the main

growth substrate during respiration for higher plants [42], the

aforementioned reactions were inactivated and the exchange

reaction for sucrose uptake was activated. Under all these three

conditions, inorganic nutrients required for plant growth, e.g.

sulfate, nitrate, ammonia, hydrogen sulfide, phosphate, potassium

Table 4. Definition of three different physiological states.

Constraints
Photosynthesis
(PS)

Photorespiration
(PR)

Respiration
(R)

CO2 transport Uptake Uptake Release

Sucrose transport Disabled Disabled Uptake

Photon transport Uptake Uptake Disabled

H2O transport Uptake Uptake Uptake

Inorganic nutrient transport Uptake Uptake Uptake

O2 transport Release Unconstrained Uptake

RUBISCO: EC 4.1.1.39 Carboxylation Carboxylation:Oxygenation = 3:1 Both disabled

doi:10.1371/journal.pone.0021784.t004

Table 5. Restoration of network connectivity using GapFill
[36].

Number of
metabolites

Number of blocked
metabolites: before
applying
GapFill

Number of blocked
metabolites: after
applying
GapFill

Cytosolic (1744) 680 382

Plastidic (115) 28 11

Peroxisomic (93) 5 0

Mitochondrial (86) 2 0

doi:10.1371/journal.pone.0021784.t005

Zea mays iRS1563, a Maize Metabolic Model
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and chloride, were allowed to be freely taken up from the

environment via extracellular exchange reactions.

The participation of Zea mays iRS1563 metabolites across

different compartments is shown in Figure 3. The five intracellular

organelles differ notably in terms of mutual connectivity,

metabolite uniqueness and number of metabolites. As shown in

Figure 3a, approximately 90% of these metabolites are unique to

cytoplasm. In addition, cytoplasm contains all metabolites shared

between any two organelles because any metabolite needs to be

transported through cytoplasm in order to be exchanged between

organelles. Among the remaining metabolites, cytoplasm shares

the highest number with the plastid (i.e., 63) where photosynthesis

and photorespiration occur. It also shares a significant number of

metabolites with mitochondrion (i.e., 27) and peroxisome (i.e., 22)

that are involved in energy production and fatty acid biosynthesis,

respectively. Figure 3b shows the distribution of other non-

cytoplasmic Zea mays iRS1563 metabolites in terms of how many

organelles they participate.

Light reactions, carbon fixation and secondary
metabolism

In plants photosynthesis reactions include light dependent and

light independent or carbon fixation reactions [43]. Zea mays

iRS1563 includes charged balanced light reactions culled from a

number of literature sources [40,44,45,46]. The overall photosyn-

thesis reaction cascade produces two NADPH, three ATP and one

O2 whenever nine photons are absorbed and fourteen H+ are

transferred via the electron-transport system. This defines the

following overall balance equations:

12 Hz½c�z2 H2O½c�z2 NADP½c�z9 hvi½c�

?14 Hz½p�z2 NADPH½c�zO2½c�z9 hvo½c�

3 ADP½c�z14 Hz½p�z3 Pi½c�?3 ATP½c�z14 Hz½c�

Here, [c] and [p] represent cytoplasm and plastid and hvi and hvo

signify input and output photons respectively. Carbon fixation in

maize (C4 plant) is more complex compared to Arabidopsis or

other C3 plants [43]. Zea mays iRS1563 captures these differences

by accounting for (i) direct carboxylation of phosphoenol pyruvate

and CO2 fixation to form C4 acids such as oxaloacetic acid [ATP:

oxaloacetate carboxy-lyase (ocl)] and malic acid [Oxaloacetate:

NADPH hydrogenase (oha)] in mesophyll cells, (ii) transport of

malic acid from mesophyll cell to bundle-sheath cells, (iii)

decarboxylation of malic acid [Malate:NADP+ oxidoreductase

(mor)] in bundle-sheath cells to produce pyruvic acid and CO2,

which enters the Calvin cycle, (iv) transport of pyruvic acid from

bundle-sheath cells to mesophyll cells, and (v) production of

phosphoenol pyruvic (i.e., C3) acid [ATP:pyruvate,phosphate

phosphotransferase (ppt)] from pyruvic acid [43]. Figure 4,

pictorially shows the localization of reactions and organelles

between mesophyll and bundle sheath cells. In addition, to

differences in carbon fixation reactions, the peroxisome activity is

primarily present in bundle-sheath cells and largely absent from

mesophyll cells [47]. Based on this localization information a

standalone metabolic model can be developed for the photosyn-

thetic tissue of maize. Because RuBisCO that operates in the

Calvin cycle cannot come in direct contact with atmospheric

oxygen during day time (see Figure 4), photorespiration is

restricted providing an advantage for survival in hot and arid

environments for maize and other C4 plants. This comes at the

expense of higher (ATP) requirements as C4 carbon fixation

involves additional steps [43].

In addition to photosynthesis, secondary metabolism plays a key

role in the physiology of maize. For example, phenylpropanoid

metabolism produces monolignols (i.e., p-coumaroyl alcohol,

coniferyl alcohol and sinapyl alcohol) that are used in the

generation of three major lignin subunits H-lignin, G-lignin and

S-lignin, respectively [48]. Many of these enzymes such as

hydroxycinnamoyl transferase (HCT), ferulate 5-hydroxylase

(F5H) and caffeic acid 3-O-methyltranferase (COMT) along with

their associated reactions are unique to C4 plants and are not

present in the lignin biosynthesis pathways of A. thaliana [48]. HCT

is involved in the early stages of lignin biosynthesis by controlling

the flux from p-coumaroyl-CoA towards caffeoyl-CoA while F5H

and COMT regulate fluxes from coniferaldehyde and coniferyl

alcohol to sinapaldehyde and sinapyl alcohol, respectively [48]. Zea

mays iRS1563 contains all these enzymes and associated reactions

thus providing a comprehensive lignin biosynthesis pathway for a

C4 plant.

In addition to phenylpropanoid metabolism, Zea mays iRS1563

provides a detailed description of flavonoid biosynthesis pathways.

Flavonoids are pigments occurring in plant as secondary

metabolites and mostly function in the recruitment of pollinators

and/or seed dispersers [49]. For example, maize is known to

produce 3-deoxyanthocyanins, which are a specialized class of

flavonoids [50,51]. Zea mays iRS1563 contains the dihydroflavonol

4-reductase (DFR) enzyme that catalyzes the reaction for flavan-4-

ols biosynthesis that channels flux towards 3-deoxyanthocyanins

production [51]. The model also accounts for isoflavone 7-O-

glucosyltransferase (IF7GT) and associated reactions that are

involved in the production of necessary intermediates for

pterocarpin phytoalexin conjugates such as medicarpin 3-O-

glucoside-69-O-malonate (MeGM) and maackain 3-O-glucoside-

69-O-malonate (MaGM) involved in plant defense against fungal

elicitation [52].

Comparing Zea mays iRS1563 with Arabidopsis thaliana
and maize C4GEM models

Figure 5a compares the total number of genes, reactions and

metabolites between Zea mays iRS1563 and the A. thaliana

AraGEM genome-scale-models [12]. Approximately, only 61%

of genes in Zea mays iRS1563 are present in AraGEM. This yields

a surprisingly low degree of matching between these two models of

64% and 76%, respectively in terms of reactions and metabolites.

In the interest of elucidating the true differences between maize

and Arabidopsis irrespective of annotation chronology we

constructed a more up-to-date genome-scale model for Arabi-

dopsis by appending onto AraGEM newly annotated genes as well

as full GPR annotations. We refer to this updated model

containing 1,597 genes, 1,798 reactions and 1,820 metabolites as

A. thaliana iRS1597 (see File S1). The newly added 228 reactions

Figure 2. Example of connectivity restoration for phenylace-
taldehyde.
doi:10.1371/journal.pone.0021784.g002
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(absent from AraGEM) are involved in various pathways in

primary (i.e., glycolysis, TCA, fatty acid and amino acid

biosynthesis, starch and sucrose metabolism) and secondary (i.e.,

biosynthesis of steroid, ubiquionone, streptomycin, thiamin,

riboflavin, terpenoid, brassinosteroid, phenylpropanoid, etc.)

metabolism of Arabidopsis.

A direct comparison of Zea mays iRS1563 with A. thaliana

iRS1597 reveals, as expected, an increased degree of matching of

72%, 76% and 80% in terms of genes, reactions and metabolites,

respectively (see Figure 5b). We find that 445 reactions are unique

to maize with no counterpart in A. thaliana. Secondary plant

metabolism including flavonoid, mono- and diterpenoid, brassi-

nosteroid, phenylpropanoid, anthocyanin, zeatin biosynthesis,

riboflavin and caffeine metabolism account for 185 of the maize-

specific reactions. In addition, a variety of primary metabolism

reactions dispersed throughout central metabolism, photosynthe-

sis, amino acid and fatty acid biosynthesis account for the

remaining 260 reactions. This comparison implies that about one

third of the differences between Zea mays iRS1563 and AraGEM

are caused by the incompleteness of AraGEM model especially in

terms of secondary metabolism while the remaining two third

reflect genuine differences between C3 (i.e., Arabidopsis) and C4

(i.e., maize) plant metabolism.

Figure 5c shows a similar comparison between Zea mays

iRS1563 and maize C4GEM genome-scale-models. Degrees of

matching between these two models are 39%, 53% and 63% in

terms of genes, reactions and metabolites, respectively. This

surprisingly low degree of matching is caused primarily due to the

fact that maize C4GEM includes only metabolites and reactions in

leaves during photosynthesis. Therefore, there are 893 reactions in

Zea mays iRS1563 absent from maize C4GEM. 343 of these

reactions describe secondary plant metabolism such as brassinos-

teroid, phenylpropanoid, carotenoid, flavonoid, mono- and

diterpenoid, and glucosinolate metabolism. The remaining 550

Figure 3. Distribution of metabolites based on their number of appearance in different organelles. (a) cytoplasmic Zea mays iRS1563
metabolites in cytoplasm and other organelles, and, (b) non-cytoplasmic Zea mays iRS1563 metabolite-organelle participation.
doi:10.1371/journal.pone.0021784.g003
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reactions are found in a wide range of primary metabolism

pathways such as central metabolism, photosynthesis, benjoate

degradtion, starch and sucrose metabolism, lipid metabolism,

nitrogen metabolism amino acid and fatty acid biosynthesis.

Conversely, 116 (out of 149) new reactions in maize C4GEM have

untraceable EC numbers and gene loci.

Zea mays iRS 1563 model testing
Zea mays iRS1563 allows for the production of biomass under all

three different physiological states (see Files S5 and S6 for detailed

information of the model). Due to limited photorespiration C4

plants usually have higher photosynthetic efficiency [43]. Under

higher light intensity and photosynthetic condition, Zea mays

iRS1563 produces 0.0008 mole biomass/mole CO2 whereas A.

thaliana iRS1597 yields 0.0006 mole biomass/mole CO2. Thus,

the model predictions match with findings reported in literature

[43]. We also investigated the model’s ability to predict the effect

of suppressing genes in the lignin biosynthesis pathway observed in

naturally occurring brown midrib (bm) maize mutants (i.e., bm1, bm2,

bm3 and bm4) [48,53,54,55]. These maize mutants are Mendelian

recessives that are characterized by brown vascular tissue in leaves

and stems due to a changed lignin content and/or composition

[56]. The specific genetic background for two of these mutants

(bm1 and bm3) was elucidated based on the analysis of cell wall

composition [55]. Mutants bm1 and bm3 were found to have

disrupted enzymatic activity for cinnamyl alcohol dehydrogenase

(CAD) and caffeic acid 3-O-methyltranferase (COMT). Both of

these enzymes are involved in the last stages of the monolignol

pathway [55] that controls lignin synthesis and composition (i.e.,

the ratio of three major subunits, H-lignin, G-lignin and S-lignin)

[57].

We simulated mutants bm1 and bm3 using Zea mays iRS1563

under photosynthetic conditions by restricting the flux of the

reactions catalyzed by enzymes CAD and COMT to 10% of the

wild-type values. It is expected that the disruption of the activity

for these genes will directly affect lignin content and composition

(see File S7 to find literature data used for bm1 and bm3 mutants).

We were interested to see whether the Zea mays iRS1563 metabolic

model will be able to correctly propagate this disruption across the

metabolic pathways and correctly predict the effect on other key

metabolites. Table 6 contrasts experimental results by (Marita et al

(2003), Vanholme et al (2008) and Sattler et al (2010)) with in silico

predictions for the maximum theoretical yield of lignins, sugars

and crude protein in terms of whether they increased, decreased,

or remained the same in the mutant strains. Out of 21 compared

components Zea mays iRS1563 correctly predicted the direction (or

absence) of change for 17 cases.

In Figure 6 we highlight two cases that describe the availability

of glucose and galactose to cell wall for mutants bm1 and bm3,

Figure 4. Compartment and localization information for Zea mays iRS 1563. Mitochondrion and vacuole compartments are present in both
cell types whereas peroxisome is only present in bundle-sheath cell [40]. Plastidic reactions are distributed between mesophyll and bundle-sheath
cells.
doi:10.1371/journal.pone.0021784.g004

Figure 5. Venn diagram for genes, reactions and metabolites.
(a) between Zea mays iRS1563 and AraGEM, (b) between Zea mays
iRS1563 and Arabidopsis thaliana iRS1597, and (c) between Zea mays
iRS1563 and maize C4GEM.
doi:10.1371/journal.pone.0021784.g005
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respectively. ‘Carbohydrate synthesis’ and ‘Hemicellulose synthe-

sis’ are aggregate reactions that describe the utilization ratios of

sugar molecules such as arabinose, fructose, galactose, glucose

ribose, mannose, sucrose, and xylose for the production of

carbohydrate and hemicellulose present in the plant cell wall.

For simplicity, we have simulated the model under the

photosynthetic condition where CO2 can be uptaken with a

maximum allowable rate of 1000 mM/gDW-h along with photons

in excess. In Figure 6a, wild-type and bm1 mutant flux values for

reactions involving glucose as reactant including ‘Carbohydrate

synthesis’, ‘Hemicellulose synthesis’, ‘Alpha,alpha-trehalose gluco-

hydrolase’ [R00010], ‘Sucrose glucohydrolase’ [R00801], ‘Sn-

Glycerol-3-phosphate: D-glucose 6-phosphotransferase’ [R00850]

and ‘Cellobiose glucohydrolase’ [R00306], are highlighted. For

the wild-type case, the maximum theoretical yield of glucose is

predicted to be 1.66 moles/mole of CO2 but it is reduced to 0.93

moles/moles of CO2 for the bm1 mutant. The reduced capability

of the bm1 mutant to direct flux towards ‘Carbohydrate synthesis’

and ‘Hemicellulose synthesis’ implies that less glucose is available

for the formation of cell wall components which is consistent with

the experimental finding of Table 6.

Figure 6b contrasts the wild-type and bm3 mutant maximum

theoretical yields for all reactions involving galactose including

‘Hemicellulose synthesis’, ‘ATP: D-galactose 1-phosphotransfer-

ase’ [R01092] and ‘Galactosylglycerol galactohydrolase’

[R01104], ‘3-O-alpha-D-Galactosyl-1D-myo-inositol galactohy-

drolase’ [R01194] and ‘alpha-galactosidase’ [R03634]. A reduc-

tion of the maximum theoretical yield of galactose from 0.81 to

0.65 moles/mole of CO2 for the bm3 mutant is observed. In

addition, the maximum theoretical yield for reaction ‘Hemicellu-

lose synthesis’ decreases by 4-fold compared to wild-type in line

with the experimental finding. However, the experimentally

observed increase of glucose availability in mutant bm3 and xylose

availability for both bm1 and bm3 mutants are in contrast with the

model predictions (see Table 6). As reported by Guillaumie et al

(2007) several gene expression levels were changed during bm1 and

bm3 mutations implying that additional regulatory constraints may

be needed to capture these changes.

Discussion

Maize, apart from its central role a food crop, is also a

promising plant biomass target for cellulosic biofuels production.

Plant cell wall cellulose, hemicellulose and lignin polymers are

major contributors of plant biomass [48,58]. Therefore, control-

ling the amount and composition of cell wall polymers is important

in developing cellulosic maize for biofuel production. In cell wall,

lignin provides rigidity by forming a matrix where cellulose and

hemicellulose are imbedded via cross-linking bonds [53,59]. This

makes digestion of cellulose and hemicellulose by microbial

enzymes (i.e., cellulases) difficult during dilignification, one of the

critical steps in cellulosic biofuel production [60]. Many genetic

modification strategies have been explored to improve maize food

crop and/or biofuel characteristics. For example, cellulosic

biomass yield improvements have been pursued before by altering

the lignin content and composition [61,62], genetically manipu-

lating the cellulose biosynthetic pathway [63] and over-expressing

the gene encoding phosphoenolpyruvate carboxylase (PEPC) to

improve CO2 fixation rate [64]. At the same time, grain yield

enhancements have been attempted by up-regulating ADP-glucose

pyrophosphorylase (AGP) that catalyzes the rate limiting step in

starch synthesis [65].

Unfortunately, existing genetic engineering strategies to reduce

lignin content are problematic as lignin reductions are usually

achieved at the expense of plant viability and fitness [60]. It is

becoming widely accepted that focusing on a single pathway at a

time without quantitatively assessing the system-wide implications

of the genetic disruptions may be responsible for not preserving the

agronomic properties of the plant. By accounting for both primary

and some secondary metabolism pathways of maize, Zea mays

iRS1563 can be used to explore in silico the effect of genetic

modifications aimed at plant cell wall modification and/or starch

storage on the overall metabolic state of the plant (e.g., biomass

precursor availability, cofactor balancing, redox state, etc.).

Moving a step further, the use of computational strain optimiza-

tion techniques [66,67] can be customized for engineering plant

metabolism. By taking full inventory of plant metabolism optimal

gene modifications could be pursued for a variety of targets in

coordination with experimental techniques. These may include (i)

increase cellulose and hemicellulose production, (ii) starch yield,

(iii) tolerance against biotic stress (e.g., fungal elicitation), or (iv)

disruption of the production of lignin subunits (H/G/S) while

enhancing the production of easily digestible lignin precursor (e.g.,

rosmarinic acid, conferyl ferulate, tyramine conjugates, etc).

In this paper, we introduced the first comprehensive genome-

scale metabolic model (Zea mays iRS1563) for maize metabolism.

The model meets (or exceeds) the quality and completeness criteria

set out [68,69] for genome-scale reconstructions. In analogy to the

human genome-scale model Recon 1 [70], Zea mays iRS1563 can

be viewed as a mathematically structured database enabling

systematic studies of maize metabolism.185 of unique to maize

reactions accounting for a fraction of secondary metabolism were

delineated. As a by product of this effort a more up-to-date version

of AraGEM [12] was constructed including GPR associations.

Comparisons between Zea mays iRS1563 and maize C4GEM also

revealed the detail in description of primary and secondary

metabolism. Model predictions of Zea mays iRS1563 for two widely

occurring maize Mendelian mutants were tested against experi-

mental observations with very good agreement in the direction of

changes. By making use of high throughput enzymatic assays,

Table 6. Change in content of cell wall components in bm1
and bm3 Maize mutants.

Model findings vs Experimental
observations

bm1 mutant bm3 mutant

H-lignin Q/ = Q/Q

G-lignin Q/Q Q/Q

S-lignin Q/Q Q/Q

Total lignin Q/Q Q/Q

S-lignin/G-lignin ratio = / = = / =

Glucose Q/Q Q/q

Mannose Q/Q Q/Q

Arabinose Q/Q Q/Q

Galactose Q/Q Q/Q

Xylose Q/q Q/q

Crude protein - Q/Q

Cell wall components include lignin subunits, total lignin, S-lignin/G-lignin ratio,
sugars, starch and protein. List of used symbols include ‘Q’: decrease in
quantity; ‘q’: increase in quantity; ‘ = ’: no change in quantity, with respect to
wild Maize plant; ‘/’: comparison of model findings with actual observations,
and ‘-’: no experimental observation found.
doi:10.1371/journal.pone.0021784.t006

Zea mays iRS1563, a Maize Metabolic Model

PLoS ONE | www.plosone.org 9 July 2011 | Volume 6 | Issue 7 | e21784



proteomic and transcriptomic data across different parts of the

maize plant, Zea mays iRS1563 could serve as the starting point for

the development of tissue-specific maize models [20,71,72].

Furthermore, Zea mays iRS1563 could also serve as the stepping

stone for the development of genome-scale models for other

important C4 plants such as Sorghum and switch grass.

Materials and Methods

A number of recent publications [15,27,68] have outlined the

general steps necessary for the metabolic reconstruction process.

In the following section, we highlight the specific methods used in

the reconstruction of Zea mays iRS1563 and subsequent model

simulations in more detail.

Model reconstruction
The maizesequence database [10] provided the filtered gene set

(FGS) which has been generated from the working gene set upon

removing pseudogenes and low confidence hypothetical models.

The FGS of B73 maize genome (release 4a.53) was downloaded

from maizesequence database on February 17, 2010. Once maize

genes were obtained, we used sequence comparison tools [73] such

as stand-alone BLAST (version 2.2.22, NIH) and BLAST+
(version 2.2.22, NIH) for performing homology comparisons.

Marvin (version 5.3.3, ChemAxon Kft) was used to calculate the

average micro-species charge to determine the net charge of

individual metabolites at pH 7.2 assumed for all organelles. In the

final step of the model reconstruction, we implemented GapFind

and GapFill [37] for analyzing and subsequently restoring

metabolic network connectivity.

Model simulations
Flux balance analysis (FBA) [74] was employed both in model

validation and model testing phases. Zea mays iRS1563 was

evaluated in terms of biomass production under three standard

physiological scenarios: photosynthesis, photorespiration, and

respiration. Flux distributions for each one of these states were

approximated using FBA:

Figure 6. Maximum theoretical yields of (a) glucose and (b) galactose for wild-type vs bm1 mutant and wild-type vs bm3 mutant,
respectively. Here the numeric values represent reaction fluxes and have the unit of mM/gDW-h.
doi:10.1371/journal.pone.0021784.g006
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Maximize vBiomass

Subject to

Xm

j~1

Sijvj~0 Vi [ 1,:::::, n ð1Þ

vj,minƒvjƒvj,max V j [ 1,:::::,m ð2Þ

Here, Sij is the stoichiometric coefficient of metabolite i in reaction

j and vj is the flux value of reaction j. Parameters vj,min and vj,max

denote the minimum and maximum allowable fluxes for reaction j,

respectively. As mentioned in Table 4, the three physiological

states were represented via modifying the relevant minimum or

maximum allowable fluxes and the following constraints:

voxi~0 ð3Þ

vcarboxi§3voxi ð4Þ

vcarboxi~0 ð5Þ

where vBiomass is the flux of biomass reaction and voxi and vcarboxi are

the fluxes of carboxylation and oxidation reactions associated with

enzyme RUBISCO. For photosynthesis and photorespiration,

constraints (3) and (4) were respectively included in the linear

model, whereas for respiration both constraints (3) and (5) were

included.

Once the model was validated, it was further tested for two

maize mutants (i.e., bm1 and bm3) under the photosynthetic

condition. The following two constraints were included individ-

ually in the linear model to represent the mutants:

vbm1ƒw|WFbm1 ð6Þ

vbm3ƒw|WFbm3 ð7Þ

Here, w represents the percent of residual activity of 10%. vbm1 and

vbm3 are the fluxes of reactions catalyzed by CAD and COMT,

respectively and WFbm1 and WFbm3 are the corresponding wild-

type flux values under the photosynthetic condition.

CPLEX solver (version 12.1, IBM ILOG) was used in the

GAMS (version 23.3.3, GAMS Development Corporation)

environment for implementing GapFind and GapFill [37] and

solving the aforementioned optimization models. All computations

were carried out on Intel Xeon E5450 Quad-Core 3.0 GH and

Intel Xeon E5472 Quad-Core 3.0 GH processors that are the part

of the lionxj cluster (Intel Xeon E type processors and 96 GB

memory) of High Performance Computing Group of The

Pennsylvania State University.
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